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On (W 1

2 (R)∩W 1
∞(R))-Solutions of the Equation utt = (a(u)ux)x + f(x, t)

We consider the initial value problem for the equation in the title with u(x, 0) =
u0(x) ∈ W 1

2 (R)∩W 1
∞(R) and ut(x, 0) = u1(x) ∈ L2(R)∩L∞(R) in the case when

this equation is uniformly hyperbolic. We prove the existence and uniqueness of a
local weak solution u(x, t) of this problem such that in particular (u(·, t), ut(·, t)) ∈
(W 1

2 (R)∩W 1
∞(R)) × (L2(R) ∩ L∞(R)) for any ˇxed t in the interval of existence.

For smooth initial data, it is proved that the life time of the smooth solution coincides
with the life time of our weak solution.
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1. INTRODUCTION.
NOTATION. STATEMENTS OF THE MAIN RESULTS

We continue our studies of nonlinear second-order hyperbolic problems begun
in [7]. Here we consider the following problem:

utt = (a(u)ux)x + f(x, t), (x, t) ∈ R × I, u = u(x, t), (1)

u(·, 0) = u0(·) ∈ W 1
2∩W 1

∞, ut(·, 0) = u1(·) ∈ L2 ∩ L∞. (2)

Hereafter all the quantities that we deal with are real, I ⊂ R is an interval that
contains 0, a(·) is a sufˇciently smooth function that satisˇes in particular

0 < a1 � a(s) � a2 < +∞ and |a′(s)| � a3 (3)

for some positive constants a1, a2 and a3 that do not depend on s ∈ R, and
W 1

p = W 1
p (R) and Lp = Lp(R) are the standard Sobolev and Lebesgue spaces

that will be introduced more carefully in the following (here 1 � p � +∞). For
simplicity, the function f in equation (1) is assumed to be in particular sufˇciently
smooth and bounded with its gradient.

Studies of the initial value problems for quasi-linear hyperbolic equations
have a long history and currently the basic results on the well-posedness for
such problems are known. Generally speaking, such a problem has a unique local
sufˇciently smooth solution provided the initial data is sufˇciently regular (on this
subject, see, for example, [1Ä3]). A speciˇc feature of this class of problems is
that their solutions have a tendency to form singularities in ˇnite intervals of time
t and therefore, a standard result states only the local existence of a solution. At
the same time, generally speaking, again, it is known only that higher derivatives
of such smooth solutions of quasi-linear second-order hyperbolic equations may
blow up (on this subject, see, for example, [4]). At least for this reason, it seems
to be of an interest to study weak solutions of problems of type (1)Ä(2), supposing
in particular that, maybe, such a weak solution (that has no higher derivatives)
could be global, that is, deˇned for all (x, t) ∈ R×R. In addition, to the author's
knowledge, concretely for solutions of equation (1) the blow up phenomenon is
unknown.
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A known result on the existence of a local lower regularity solution for a prob-
lem of the type of (1)Ä(2) is due to Th. J. R. Hughes, T. Kato and J. E. Marsden [2]:
these authors have proved that if the functions a and f obey certain regularity
assumptions and the initial data are in Hs × Hs−1, s > 3

2 , then there exist an
interval I � 0 and a unique local solution of a problem similar to our one in
the space C(I; Hs) (in fact, in this article, a much more complicated problem
is considered, in particular, a multidimensional one, when x ∈ R

d with integer
d � 1). We also refer the reader to the recent book [6] for a theory of linear
hyperbolic equations and systems.

So, in the present paper, our aim is to prove the existence and uniqueness
of a local weak solution for problem (1)Ä(2). As for applications of problems of
this type, there are a lot of them. Equations of this type arise in the elasticity
theory, in the description of various wave and oscillation processes, etc. In this
context, one may consider equations (1) and (2) as a model problem and the
present article as a step in the way of studies of weak solutions of more realistic
quasi-linear second-order hyperbolic problems, solutions of which possess only
the ˇrst partial derivatives.

Now, we introduce some notation. Let Ω ⊂ R
d be an open domain with

a smooth boundary, where d � 1 is integer. By Lp(Ω) with 1 � p < +∞ we
denote the standard Lebesgue space of functions g, h, . . . measurable in Ω for
which the norm

‖g‖Lp =

⎧⎨
⎩

∫
Ω

|g(x)|pdx

⎫⎬
⎭

1
p

is ˇnite. We set ‖g‖L∞(Ω) = ess supx∈Ω |g(x)| and Lp = Lp(R). As is well
known, L2(Ω) is a separable Hilbert space with the scalar product

(g, h)L2(Ω) =
∫
Ω

g(x)h(x)dx.

Denote now by x = (x1, . . . , xd) the points of Ω and let w ∈ L1(Ω). Everywhere

we understand the weak derivative ϕ(x) =
∂w

∂xi
in the sense of distributions. By

W l
p(Ω), where 1 � p � +∞ and l � 0 is integer, we denote the standard Sobolev

space that consists of all functions g ∈ Lp(Ω) such that
∂lg

∂xi1 . . . ∂xil

∈ Lp(Ω)

for any indexes i1, . . . , il = 1, 2, . . . , d. The space W l
p(Ω) is equipped with the

norm ‖g‖W l
p(Ω) = ‖g‖Lp(Ω) +

∑
|k|=l

‖Dk
xg‖Lp(Ω), where k = (k1, . . . , kd), ki are

nonnegative integer, |k| = k1 + . . . + kd and Dk
x =

∂|k|

∂xk1
1 . . . ∂kd

d

. Then, W l
2(Ω)
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is a separable Hilbert space for any l � 0, with the standard scalar product. We
set W l

p = W l
p(R). In addition, Lp(Ω) and W l

p(Ω) are Banach spaces.
For an interval I , integer k � 0 and a Banach space B with a norm ‖ · ‖B

denote by Ck(I; B) the Banach space of functions g : I → B continuous and
bounded with all their derivatives of all orders up to k. The space Ck(I; B) is

equipped with the norm ‖g(·)‖Ck(I;B) =
k∑

m=0
sup
t∈I

‖dmg(t)
dtm

‖B . By Lb(I; B) we

denote the space of functions g : I → B bounded and such that ‖g(t)‖B is a
measurable function of t ∈ I , taken with the norm ‖g‖Lb(I;B) = sup

t∈I
‖g(t)‖B .

We denote by Cw(I; B) the space of functions g : I → B bounded in
the norm of B and continuous in the topology of weak convergence of B.
We write g ∈ Ck

loc(I; B) if for any compact subinterval I1 ⊂ I one has:
g ∈ Ck(I1; B).

For noninteger s > 0, we denote by [s] the maximal integer number smaller
than s and set for any interval I and any function g which is l = [s] times
continuously differentiable in I:

‖g‖Cs(I;R) =
l∑

k=0

sup
t∈I

∣∣∣∣dkg(x)
dtk

∣∣∣∣ + sup
x,y∈I
x �=y

|g(l)(x) − g(l)(y)|
|x − y|s−l

.

Then, the set of all functions g above, for which ‖g‖Cs(I;R) < ∞, equipped by
the norm ‖ · ‖Cs(I;R) is a Banach space. We denote Cs(R; R) by Cs(R).

For s ∈ R, by Hs(Rd) we denote the Hilbert space which is the completion of
the set of inˇnitely differentiable ˇnite functions g in R

d with respect to the norm
‖g‖Hs(Rd) = ‖F−1(1 + |r|2) s

2 (Fg)(r)‖L2 , where F is the Fourier transform,
taken with the corresponding scalar product. We set Hs = Hs(R). Then, as is
known, Hs′

is continuously embedded in Hs for any s, s′ satisfying s′ > s. In
addition, Hs is isomorphic to W s

2 for any integer s � 0 and Lp(Ω) = W 0
p (Ω)

for any 1 � p � +∞.
Sometimes we denote by c, c1, C, C1, C2, C

′, C′′, . . . positive constants not
indicating especially what they are independent of if it is clear from the context.

For some s > 0, we shall impose the following assumptions on the functions
a and f :

(a) Let a(·) ∈ Cs(R) and estimates (3) hold.
(f) Let f(·, t) ∈ Cloc(R; Hs) ∩ Cloc(R; Cs(R)).

In accordance with the book [5], we accept the following deˇnition of a weak
solution of problem (1)Ä(2).

Deˇnition. Let I = [0, T ), where T > 0, and let assumptions (a) and (f) be
valid with s = 1. We say that a function u(x, t) ∈ W 1

2 (R × I) is a weak solution
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of problem (1)Ä(2), if for any η(x, t) continuously differentiable and ˇnite in R×I
one has:

T∫
0

dt

∫
R

{−ut(x, t)ηt(x, t) + a(u(x, t))ux(x, t)ηx(x, t) − f(x, t)η(x, t)}dx+

+
∫
R

u1(x)η(x, 0)dx = 0. (4)

One can deˇne a weak solution of problem (1)Ä(2) in the same sense for t < 0 by
complete analogy.

Sometimes, in what follows, we shall consider in place of equations (1)
and (2) the following problem:

utt = a(u)uxx + f1(x, t, u, ux), (x, t) ∈ R × I, u = u(x, t), (5)

u(·, 0) = u0(·), ut(·, 0) = u1(·), (6)

where I is an interval containing 0, f1(x, t, u, ux) = f(x, t) + a′(u)u2
x and now

(u0, u1) ∈ Hs × Hs−1 with integer s � 2. Clearly, (5) is equation (1) written in
another form. According to [2], the following result takes place.

Theorem 0. Let for some s > 3
2 assumptions (a) and (f) be valid and let in (6)

(u0, u1) ∈ Hs × Hs−1. Then, there exist T > 0, that depends only on ‖u0‖Hs +
‖u1‖Hs−1 , and a unique solution us(·, t) ∈ C([−T, T ]; Hs)∩C1([−T, T ]; Hs−1)
of problem (5)Ä(6). We call such a solution of problem (5)Ä(6) the Hs-solution
of this problem. This solution can be uniquely continued on a maximal interval
(−T−

s , T +
s ), where T−

s , T +
s > 0, such that either T +

s = +∞ (resp. T−
s = +∞)

or
lim sup
t→T+

s −0

[‖us(·, t)‖Hs + ‖us
t (·, t)‖Hs−1 ] = +∞

(resp. lim sup
t→−T−

s +0

[‖us(·, t)‖Hs + ‖us
t (·, t)‖Hs−1 ] = +∞). This Hs-solution de-

pends on initial data continuously in the sense that for any compact interval
J ⊂ (−T−

s , T +
s ) and initial data in (6) sufˇciently close to (u0, u1) in Hs×Hs−1

the corresponding Hs-solution can be continued on the whole interval J and
the correspondence (u0, u1) → (u(·, t), ut(·, t)) as a mapping of Hs × Hs−1

in C(J ; Hs) × C1(J ; Hs−1) is continuous. If s′ > s > 3
2 and (u0, u1) ∈

Hs′ × Hs′−1, problem (5)Ä(6) has a unique Hs-solution us(x, t) and a unique
Hs′

-solution us′
(x, t) deˇned in the maximal intervals of time I and I ′, respec-

tively. Then, in fact, I = I ′ and us(x, t) = us′
(x, t) for all (x, t) ∈ R × I .

For the Proof of this result, see [2].�

4



Now, we can establish our main results. They are as follows.

Theorem 1. Let assumptions (a) and (f) hold with s = 3. Then, for any
R > 0 there exists T > 0 such that for any initial data (u0, u1) ∈ (W 1

2∩W 1
∞) ×

(L2 ∩ L∞) which satisfy ‖u0‖W 1
2 ∩W 1

∞
+ ‖u1‖L2∩L∞ � R problem (1)Ä(2) has

a weak solution u(x, t) such that (u(·, t), ut(·, t)) ∈ (C(I; L2) ∩ Cw(I; W 1
2 ) ∩

Lb(I; W 1
∞))×(Cw(I; L2)∩Lb(I; L∞)), where I = [−T, T ]. Such a weak solution

that belongs to the indicated function spaces is unique. There exists a maximal
interval (−T−, T +) with T−, T + > 0 such that our weak solution can be uniquely
continued on this interval and either T + = +∞ (resp. T− = +∞) or

lim sup
t→T+−0

{‖u(·, t)‖W 1
2 ∩W 1

∞
+ ‖ut(·, t)‖L2∩L∞} = +∞

(resp. lim sup
t→−T−+0

[‖u(·, t)‖W 1
2 ∩W 1

∞
+ ‖ut(·, t)‖L2∩L∞ ] = +∞).

Theorem 2. Let for some s′ � 2 assumptions (a) and (f) be valid with some
s � max{s′; 3} and let in (6) (u0, u1) ∈ Hs′ ×Hs′−1. Now, in the formulation of
this claim, we rename s′ by s. Then, according to theorem 0 above, problem (5)Ä
(6) has a unique Hs-solution us(x, t) whose maximal interval of existence is
denoted Is = (−T−

s , T +
s ) (T−

s , T +
s > 0). Clearly, according to Theorem 1 our

problem still has a unique weak solution u(x, t). We denote by I the maximal
interval of existence of this weak solution. Clearly, Is ⊂ I and us(·, t) = u(·, t)
for any (x, t) ∈ R × Is. We state that, in fact, Is = I and us(x, t) ≡ u(x, t).

Remark 1. The author of this article believes that the result stated with
Theorem 1 is incomplete and that, in fact, for our weak solution u(x, t) one has:
(u(·, t), ut(·, t)) ∈ (C(I; W 1

2 )∩Lb(I; W 1
∞))× (C(I; L2)∩Lb(I; L∞)). However,

it is not proved in this article.

Remark 2. Suppose that (u0, u1) ∈ Hs × Hs−1 with some s � 2 and that
the functions a and f are sufˇciently regular. Then, according to Theorem 2
our weak solution u(x, t) blows up in a ˇnite interval of time if and only if
it is so for the Hs-solution, and the time T of this blowing up for these two
solutions is the same. It gives a negative answer to our question, whether it may
be that the Hs-solution blows up at a time T > 0, but the corresponding weak
solution is global, that is, the latter one can be continued on the entire real line
t ∈ R.

The next Sec. 2 contains preliminary considerations including a derivation of
a priori estimates of Hs-solutions of equations (5) and (6) with s = 2 which
are given by Theorem 0. Our proofs of Theorems 1 and 2 are established in
Sec. 3.
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2. PRELIMINARIES. A PRIORI ESTIMATES OF SMOOTH SOLUTIONS

Everywhere in this section s = 2, if otherwise is not stated, and we accept that
assumptions (a) and (f) are valid with s = 2 except for Lemmas 3 and 4, where
s = 3. Let us now consider problem (5)Ä(6) for (u0, u1) = (uε

0, u
ε
1) ∈ H2 × H1,

where ε ∈ (0, 1] is a parameter. According to Theorem 0, for any ε ∈ (0, 1] there
exists T ε > 0 and a unique H2-solution uε(x, t) of problem (5)Ä(6) that belongs
to the space C([−T ε, T ε]; H2) ∩ C1([−T ε, T ε]; H1), where T ε depends only on
‖uε

0‖H2 + ‖uε
1‖H1 . We take such initial data (uε

0, u
ε
1) that (uε

0, u
ε
1) → (u0, u1) as

ε → +0 in W 1
2 × L2 and that there exists D > 0 such that

‖uε
0‖W 1

∞
+ ‖uε

1‖L∞ � D

for any ε ∈ (0, 1]. In the following in this section, we shall prove that there
exists T > 0 such that T ε can be chosen not smaller than T for any ε >
0 sufˇciently small. More precisely, we shall derive upper estimates for the
pair (uε(x, t), uε

t(x, t)) in the space C([−T, T ]; H2)×C1([−T, T ]; H1) for some
T > 0 independent of ε which according to [2] implies

T ε � T (7)

for any ε > 0 sufˇciently small. We shall derive all our estimates including (7)
only for t > 0, because for t < 0 they can be obtained by complete analogy.

So, consider problem (5)Ä(6). Then, for a1(x, t) = a(u(x, t)) and f1(x, t) =
f(x, t) + a′(u(x, t))u2

x(x, t), where u(x, t) is the corresponding H2-solution of
equations (5) and (6), all the assumptions of Lemma 12 in [7] are valid. In our
case, according to this result the following relation occurs (here n � 1 is arbitrary
integer):

1
2

d

dt

∫
R

{
(|ut(x, t)| + a

1
2 (u(x, t))|ux(x, t)|)2n+

+ (|ut(x, t)| − a
1
2 (u(x, t))|ux(x, t)|)2n

}
dx =

=
n−1∑
k=0

2n

(
2n − 1

2k

) ∫
R

ak(u(x, t))f1(x, t)u2n−2k−1
t (x, t)u2k

x (x, t)dx−

−
n∑

k=1

k

(
2n

2k − 1

) ∫
R

ak−1(u(x, t))a′(u(x, t))u2n−2k+1
t (x, t)u2k

x (x, t)dx+

+
n∑

k=1

k

(
2n

2k

)∫
R

ak−1(u(x, t))a′(u(x, t))u2n−2k+1
t (x, t)u2k

x (x, t)dx, (8)

where
( n

m

)
=

n!
m!(n − m)!

, 0 � m � n are positive integer and 0! = 1.
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Lemma 1. Let assumptions (a) and (f) be valid with s = 2 and let (−T−
2 , T +

2 )
denote the maximal interval on which the H2-solution u(x, t) of problem (5)Ä(6)
taken with (u0, u1) ∈ H2×H1 can be continued. Then, for any R > 0 there exist
T>0 and C>0 such that for any such (u0, u1) that satisfy ‖u0‖W 1

∞
+‖u1‖L∞ �R

for any t ∈ [−T, T ] ∩ (−T−
2 , T +

2 ) one has: ‖u(·, t)‖W 1
∞

+ ‖ut(·, t)‖L∞ � C.

Proof. To prove this claim, we apply identity (8). Let t � 0. Using the
binomial formula and the Héolder inequality, from (8) we obtain

d

dt

{ ∫
R

[(|ut(x, t)| + a
1
2 (u(x, t))|ux(x, t)|)2n+

+ (|ut(x, t)| − a
1
2 (u(x, t))|ux(x, t)|)2n]dx

} 1
2n

�

� C1

{∫
R

[(|ut(x, t)| + a
1
2 (u(x, t))|ux(x, t)|)2n+

+ (|ut(x, t)| − a
1
2 (u(x, t))|ux(x, t)|)2n]dx

} 1
2n−1

×

×
{[( ∫

R

|f(x, t)|2ndx

) 1
2n

+ ‖ux(·, t)‖2
L4n

]
×

×
[∫

R

((|ut(x, t)| + a
1
2 (u(x, t))|ux(x, t)|)2n+

+ (|ut(x, t)| − a
1
2 (u(x, t))|ux(x, t)|)2n)dx

]1− 1
2n

+

+ (‖ut(·, t)‖L∞ + ‖ux(·, t)‖L∞)×

×
∫
R

[(|ut(x, t)| + a
1
2 (u(x, t))|ux(x, t)|)2n+

+ (|ut(x, t)| − a
1
2 (u(x, t))|ux(x, t)|)2n)]dx

}
,

where the constant C1 > 0 does not depend on R > 0, t ∈ (−T−
2 , T +

2 ) and on
n � 1. From this relation, we derive:
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{ ∫
R

[(|ut(x, t)| + a
1
2 (u(x, t))|ux(x, t)|)2n+

+ (|ut(x, t)| − a
1
2 (u(x, t))|ux(x, t)|)2n]dx

} 1
2n

�

�
{∫

R

[(|u1(x)| + a
1
2 (u0(x))|u0x(x)|)2n+

+ (|u1(x)| − a
1
2 (u0(x))|u0x(x)|)2n]dx

} 1
2n

+

+C2

t∫
0

(‖f(·, s)‖L2n +‖ux(·, s)‖2
L4n

)ds+C3

t∫
0

{
(‖us(·, s)‖L∞ +‖ux(·, s)‖L∞)×

×
∫
R

[(|us(x, s)| + a
1
2 (u(x, s))|ux(x, s)|)2n+

+ (|us(x, s)| − a
1
2 (u(x, s))|ux(x, s)|)2n]dx

} 1
2n

ds,

where the positive constants C2 and C3 do not depend on R > 0, t ∈ [0, T+
2 ) and

on n � 1. For t ∈ [0, T+
2 ), take the limit n → +∞ in the latter relation. Then,

we obtain

‖|ut(·, t)| + a
1
2 (u(·, t))|ux(·, t)|‖L∞ �

� ‖|u1(·)| + a
1
2 (u0(·))|u0x(·)|‖L∞ + C2

t∫
0

‖f(·, s)‖L∞ds+

+ C4

t∫
0

{1 + ‖|us(·, s)| + a
1
2 (u(·, s))|ux(·, s)|‖2

L∞}ds

for a constant C4 > 0 independent of R > 0 and t ∈ [0, T+
2 ) (here we used

the known relations ‖g‖L2n → ‖g‖L∞ as n → +∞ and (|p|2n + |q|2n)
1
2n →

max{|p|; |q|} as n → +∞ for any g ∈ L2∩L∞ and p, q ∈ R, respectively). Now
Lemma 1 immediately follows from the latter estimate.�

In the following, we ˇx this choice of the constant T > 0.

Lemma 2. Let assumptions (a) and (f) be valid with s = 2. Then, for any
R > 0 and R1 > 0 there exists C > 0 such that for any initial data (u0, u1) ∈
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H2 × H1 that satisfy ‖u0‖W 1
∞

+ ‖u1‖L∞ � R and ‖u0‖W 1
2

+ ‖u1‖L2 � R1 for

any t ∈ [−T, T ]∩ (−T−
2 , T +

2 ) one has

‖u(·, t)‖W 1
2

+ ‖ut(·, t)‖L2 � C,

where u(x, t) is the corresponding H2-solution of equations (5) and (6).
Proof. Again, we use identity (8), taken now with n = 1. Applying the

Héolder inequality and Lemma 1, we obtain from this relation:

d

dt

∫
R

{(|ut(x, t)| + a
1
2 (u(x, t))|ux(x, t)|)2+

+ (|ut(x, t)| − a
1
2 (u(x, t))|ux(x, t)|)2}dx =

= 4
∫
R

f(x, t)ut(x, t)dx + 10
∫
R

a′(u(x, t))ut(x, t)u2
x(x, t)dx �

� 2‖f(·, t)‖2
L2

+ 10(1 + a3‖ut(·, t)‖L∞)
∫
R

[u2
t (x, t) + u2

x(x, t)]dx �

� C1 + C2

∫
R

{(|ut(x, t)| + a
1
2 (u(x, t))|ux(x, t)|)2+

+ (|ut(x, t)| − a
1
2 (u(x, t))|ux(x, t)|)2}dx,

where the constants C1 > 0 and C2 > 0 do not depend on t ∈ [−T, T ] ∩
(−T−

2 , T +
2 ). Now, applying Gronwell's lemma, we obtain

‖ut(·, t)‖L2 + ‖ux(·, t)‖L2 � C3, (9)

with a constant C3 > 0 independent of t ∈ [−T, T ] ∩ (−T−
2 , T +

2 ). Finally,
using (9),

‖u(·, t)‖L2 � ‖u0‖L2 +

t∫
0

‖us(·, s)‖L2ds � ‖u0‖L2 + TC3.

Our proof of Lemma 2 is complete.�

Lemma 3. Let assumptions (a) and (f) be valid with s = 3. Then, for any
R > 0 and R2 > 0 there exists C > 0 such that for any initial data (u0, u1) ∈
H2×H1 in (6) that satisfy ‖u0‖W 1

∞
+‖u1‖L∞ � R and ‖u0‖H2 +‖u1‖H1 � R2

for any t ∈ [−T, T ] ∩ (−T−
2 , T +

2 ) one has:

‖u(·, t)‖H2 + ‖ut(·, t)‖H1 � C,

where u(x, t) is the corresponding H2-solution of problem (5)Ä(6).

9



Proof. Let (u0, u1) ∈ H2 × H1 satisfy the assumptions of Lemma 3 and
(u0, u1) ∈ H3 × H2. Denote

P (u) =
1
2

∫
R

{u2
xt(x, t) + a(u(x, t))u2

xx(x, t)}dx.

Then, according to Theorem 0, for any sufˇciently small δ > 0 the corresponding
H3-solution u(x, t) can be continued on the whole interval [−T−

2 + δ, T +
2 − δ],

provided (u0, u1) are sufˇciently close to (u0, u1) in H2 × H1, and we have:

dP (u)
dt

=
∫
R

{uxt(x, t)uxtt(x, t) + a(u(x, t))uxx(x, t)uxxt(x, t)+

+
1
2
a′(u(x, t))ut(x, t)u2

xx(x, t)}dx.

Apply Lemmas 1 and 2, integration by parts and the Héolder inequality to the
expression in the right-hand side of this equality. Then,

dP (u)
dt

=
∫
R

{uxt(x, t)[uxtt(x, t) − (a(u(x, t))uxx(x, t))′x]+

+
1
2
a′(u(x, t))ut(x, t)u2

xx(x, t)}dx �

�
∫
R

|uxt(x, t)| · [|f ′
x(x, t)| + |(a′(u(x, t))u2

x(x, t))′x|]dx+

+ C1‖ut‖Lb([−T,T ]∩[−T−
2 +δ,T+

2 −δ];L∞)P (u) � C2 + C3P (u) (10)

for constants C1 > 0, C2 > 0 and C3 > 0 independent of t ∈ [−T, T ] ∩
(−T−

2 , T +
2 ). Now, the result for our H3-solution follows by Gronwell's lemma.

To obtain this claim for H2-solutions, it sufˇces now to rewrite (10) in the integral
form and to apply the continuous dependence of our H2-solution on initial data
stated in Theorem 0. Lemma 3 is proved.�

Remark 3. Note that our proved Lemmas 1 and 3 immediately imply the
following. Let (u0, u1) ∈ H2×H1 and u(x, t) be the corresponding H2-solution
of problem (5)Ä(6). Suppose that ‖u(·, t)‖W 1

∞
+ ‖ut(·, t)‖L∞ is bounded in a

bounded interval of time J . Then, the expression ‖u(·, t)‖H2 + ‖u(·, t)‖H1 is
also bounded in J .

Lemma 4. Let assumptions (a) and (f) be valid with s = 3. Then, for any
R > 0 there exist C > 0 and T > 0, where T > 0 was deˇned earlier, such that
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for any initial data (uε
0, u

ε
1)∈H2×H1, that satisfy ‖uε

0‖W 1
2 ∩W 1

∞
+‖uε

1‖L2∩L∞�R,
the corresponding H2-solution uε(x, t) can be continued on the whole interval
[−T, T ] and

‖uε(·, t)‖W 1
2 ∩W 1

∞
+ ‖uε

t(·, t)‖L2∩L∞ � C

for any t ∈ [−T, T ].
Proof. Immediately follows from Theorem 0 and proved Lemmas 1Ä3.�

3. PROOFS OF THEOREMS 1 AND 2

We begin with proving Theorem 1. Again, we shall establish our proof
only for t > 0 because for t < 0 it can be made by analogy. Let us prove
the existence of a solution of problem (1)Ä(2) stated with Theorem 1. We use ε-
approximations of problem (5)Ä(6) described in Sec. 2. So, let (uε

0, u
ε
1) ∈ H2×H1

and let uε(x, t) be the corresponding H2-solution of equations (5) and (6). Here
(uε

0, u
ε
1) → (u0, u1) ∈ W 1

2 × L2 as ε → +0 and

‖uε
0‖W 1

∞
+ ‖uε

1‖L∞ � ‖u0‖W 1
∞

+ ‖u1‖L∞ + 1

for any ε ∈ (0, 1]. According to Lemma 4, there exists T > 0 depending only on
‖u0‖W 1

∞
+ ‖u1‖L∞ such that for any ε ∈ (0, 1] the corresponding H2-solution of

problem (5)Ä(6) can be continued on the whole interval [−T, T ].
Let us prove that in a sense the functions uε(x, t) converge to a function

u(x, t) as ε → +0. Denote A(u) =
u∫
0

a(r)dr, w(x, t) = uε1(x, t) − uε2(x, t)

and take b ∈ [0, T ] and η(x, t) =
t∫
b

[A(uε1(x, s)) − A(uε2(x, s))]ds for t ∈ [0, b]

and η ≡ 0 if t > b. Introduce also k(x, t) =
A(uε1(x, t)) − A(uε2(x, t))

uε1(x, t) − uε2(x, t)
if

uε1(x, t) 
= uε2(x, t) and k(x, t) = a(uε1(x, t)) otherwise.

It is easily seen that in particular η(x, t) ∈ W 1
2 (R × [0, T ]) and that η = 0

for t � b. In addition, using results in Sec. 2, one may verify that k(x, t) is a
continuously differentiable function in R× [0, b] and there exists C > 0 such that

a1 � k(x, t) � a2 and |k′
t(x, t)| � C (11)

for any (x, t) ∈ R × [0, b] and for any sufˇciently small ε1, ε2 > 0.
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Observe that identity (4) with this function η still holds. Now, from (4),
applying Lemma 3:

0 =

b∫
0

dt

∫
R

{wt(x, t)[A(uε1(x, t))−A(uε2 (x, t))]−[A(uε1 (x, t))−A(uε2(x, t))]′x×

×
t∫

b

ds[A(uε1(x, s)) − A(uε2(x, s))]′x}dx −
∫
R

[uε1
1 (x) − uε2

1 (x)]η(x, 0)dx =

= β(ε1, ε2) +

b∫
0

dt

∫
R

k(x, t)w(x, t)wt(x, t)dx+

+
∫
R

dx

b∫
0

ds[A(uε1(x, s)) − A(uε2(x, s))]′x×

×
s∫

0

dt[A(uε1(x, t)) − A(uε2(x, t))]′x = β(ε1, ε2) +
1
2

∫
R

k(x, b)w2(x, b)dx−

− 1
2

b∫
0

dt

∫
R

k′
t(x, t)w2(x, t)dx+

1
2

∫
R

{ b∫
0

dt[A(uε1(x, t))−A(uε2(x, t))]′x

}2

dx,

(12)

where β(ε1, ε2) → 0 as ε1, ε2 → +0. From this estimate, in view of (11), it
follows by applying Gronwell's lemma that:

‖w‖C([0,T ];L2) → 0 as ε1, ε2 → +0.

Therefore, the functions uε(x, t) converge to a function u(x, t) in C([0, T ]; L2)
as ε → +0. In addition, it follows from Lemma 4 that there exists C > 0 such
that

‖uε
t‖C([0,T ];L2)∩Lb([0,T ];L∞) + ‖uε‖C([0,T ];W 1

2 )∩Lb([0,T ];W 1
∞) � C (13)

for all ε ∈ (0, 1] sufˇciently small.
Let us prove that u(·, t) ∈ W 1

p (R × [0, T ]) for any p ∈ [2,∞). According
to (13), there exists a sequence εn → +0 such that uεn converges to some
w(x, t) ∈ W 1

p (R × [0, T ]) weakly in this space as εn → +0. But this sequence
uεn converges to u in C([0, T ]; L2). Hence, u ≡ w ∈ W 1

p (R × [0, T ]).
In view of (13) and the arguments above, we have in addition that uε → u

in C([0, t]; Lp) for any p ∈ [2,∞) and ‖u(·, t)‖Lp � C1 for a constant C1 > 0
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independent of p and t ∈ [0, T ]. Hence, ‖u(·, t)‖L∞ = lim
p→+∞

‖u(·, t)‖Lp � C1

which implies in addition that ‖u(·, t‖L∞ is a measurable function of t. Therefore,
u(·, t) ∈ Lb([0, T ]; L∞).

Let us prove that u(·, t) ∈ Lb([0, T ]; W 1
∞). Take arbitrary t ∈ [0, T ] and

p ∈ [2,∞). Then, in view of (13), there exists a sequence εn → +0 such
that uεn(·, t) converges weakly in W 1

p to some w ∈ W 1
p . By the known property

and (13) ‖w‖W 1
p

� lim inf
n→∞

‖uεn(·, t)‖W 1
p

� C2 for a constant C2 > 0 independent

of p ∈ [2,∞) and of t. But the sequence {uεn(·, t)}n=1,2,3,... converges strongly
in L2 to u(·, t). Thus, u(·, t) ≡ w(·) ∈ W 1

p and ‖u(·, t)‖W 1
p

� C2 for any
p ∈ [2,∞) and t ∈ [0, T ]. The latter estimate implies that ‖ux(·, t)‖L∞ =
lim

p→∞
‖ux(·, t)‖Lp � C2. Hence, we need only to prove that ‖ux(·, t)‖L∞ is

a measurable function of t. By the Fubini theorem and the proved fact that
u ∈ W 1

p (R × [0, T ]) for any p ∈ [2,∞) ‖ux(·, t)‖Lp is a measurable function
of t. But hence, indeed ‖ux(·, t)‖L∞ = lim

p→∞
‖ux(·, t)‖Lp is measurable in t.

So, indeed u(·, t) ∈ Lb([0, T ]; W 1
∞). Note that we have proved in addition that

u(·, t) ∈ Lb([0, T ]; W 1
p ), for any p ∈ [2,∞).

Let us prove that u(·, t) ∈ Cw([0, T ]; W 1
2 ). Let t ∈ [0, T ] and {tn}n=1,2,3,... ⊂

[0, T ] be arbitrary, such that tn → t as n → ∞. Let us prove that u(·, tn) →
u(·, t) weakly in W 1

2 . According to (13) and the proved above, the sequence
{u(·, tn)}n=1,2,3,... is relatively compact in the topology of weak convergence of
the space W 1

2 . Let w(·) ∈ W 1
2 be an arbitrary limit point of this sequence in this

sense. We have, at the same time, u(·, tn) → u(·, t) strongly in L2. Therefore,
u(·, t) ≡ w(·) and u(·, tn) → u(·, t) as n → ∞ weakly in W 1

2 .
Let us prove that ut(·, t) ∈ Cw([0, T ]; L2). For this aim, we recall that

for any s � 0 a norm [| · |]H−s equivalent to ‖ · ‖H−s can be introduced as
follows: [|g|]H−s = sup

h∈Hs: ‖h‖Hs=1

|(g, h)L2 |, where the expression (g, h)L2 can

be deˇned by the standard limiting procedure. Using this fact, let us prove that

the expression uε
t(·, t) =

t∫
0

{(a(uε(·, s))uε
x(·, s))x +f(·, s)}ds is converging in the

space C([0, T ]; H−2) as ε → +0. We have formally for any h in the unit sphere
in H2:∣∣(h, (a(uε1)uε1

x )x − (a(uε2)uε2
x )x)L2

∣∣ �
∣∣([a(u)hx]′x, uε1 − uε2)L2

∣∣ +

+
∣∣([hxuε1

x , a(uε1) − a(u))L2

∣∣ +
∣∣([hxuε2

x , a(uε2) − a(u))L2

∣∣ . (14)

Since a(u) ∈ W 1
2 and uε(·, t) → u(·, t) in L2 as ε → +0 and by (13), the

expressions [a(u)hx]′x and hxuε
x are bounded in L2 uniformly with respect to

ε ∈ (0, 1], to t ∈ [0, T ] and to h in the unit sphere in H2. In addition, clearly
a(uε) → a(u) in L2 as ε → +0. Therefore, each of the three terms in the
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right-hand side of (14) goes to 0 as εi → +0 uniformly with respect to h in the
unit sphere in H2 and to t ∈ [0, T ].

So, we have proved that indeed, the sequence {uε
t(·, t)}ε∈(0,1] is converging

in the space C([0, T ]; H−2) as ε → +0. In addition, one can prove by complete
analogy that ut(·, t) ∈ C([0, T ]; H−2) and that uε

t(·, t) → ut(·, t) in this space
as ε → +0. Note also that one can prove completely as above that uε

tt(·, t) →
utt(·, t) in C([0, T ]; H−2) as ε → +0 and that equation (1) written for our
function u holds in the sense of the space C([0, T ]; H−2).

Take an arbitrary t ∈ [0, T ]. In view of (13), an arbitrary sequence
{uεn

t (·, t)}n=1,2,3,... with εn → +0 is relatively compact in the space L2 taken
with the topology of the weak convergence. Let w be an arbitrary limit point
of such a sequence in this sense. But by the proved earlier, uεn

t goes to
ut in C([0, T ]; H−2). Thus, w = ut(·, t) and thus ut(·, t) ∈ L2 for any
t ∈ [0, T ].

Let us prove that ut(·, t) ∈ Cw([0, T ]; L2). Let {tn}n=1,2,3,... ⊂ [0, T ] and
t ∈ [0, T ] be arbitrary, such that tn → t as n → ∞. In view of (13) and the
proved above, it sufˇces to prove only that ut(·, tn) → ut(·, t) weakly in L2

as n → ∞. By (13), the sequence {ut(·, tn)}n=1,2,3,... is relatively compact in
the space L2 taken with the topology of the weak convergence. Let w be an
arbitrary limit point of this sequence in this sense. But then, since ut(·, tn) →
ut(·, t) in H−2 as n → ∞, we have: w = ut(·, t), so that indeed ut(·, t) ∈
Cw([0, T ]; L2).

One can prove by analogy with the arguments above that ut(·, t) ∈
Cw([0, T ]; Lp) for any p ∈ [2,∞) and that, in view of (13),

‖ut(·, t)‖Lp � C, p ∈ [2,∞), t ∈ [0, T ],

where C > 0 is the constant in (13). Therefore, ‖ut(·, t)‖L∞ � C for any
t ∈ [0, T ]. In addition, since as is proved earlier, ut ∈ W 1

p (R × [0, T ]) for any
p ∈ [2,∞), the norm ‖ut(·, t)‖L∞ is a measurable function of t ∈ [0, T ]. Thus,
indeed ut(·, t) ∈ Lb([0, T ]; L∞).

So, we have proved that problem (1)Ä(2) has a solution u(·, t) that belongs
to C([0, T ]; L2) ∩ Lb([0, T ]; W 1

∞) ∩ Cw([0, T ]; W 1
2 ) and is such that ut(·, t) ∈

Cw([0, T ]; L2)∩Lb([0, T ]; L∞). Now, let us prove the uniqueness of such a solu-
tion. Suppose that u1(x, t) and u2(x, t) are arbitrary two solutions of this problem
each of which belongs to the function spaces above. Again, let us take b ∈ [0, T ],

η(x, t) =
t∫
b

[A(u1(x, s)) − A(u2(x, s))]ds for t ∈ [0, b] and η(x, t) ≡ 0 for

t � b, and introduce k(x, t) =
A(u1(x, t)) − A(u2(x, t))

u1(x, t) − u2(x, t)
if u1(x, t) 
= u2(x, t),

k(x, t) = a(u1(x, t)) otherwise. It is easily seen that η(x, t) ∈ W 1
2 (R×[0, T ]) and

that η(x, T ) ≡ 0. In addition, one can veriˇed that k(x, t) is a continuous function
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of (x, t) ∈ R × [0, T ], that

0 < a1 � k(x, t) � a2 < +∞ for any (x, t) ∈ R × [0, T ]

and that kt(x, t) ∈ L∞(R × [0, T ]).
Now, substitute our function η(x, t) in identity (4). Then, repeating transfor-

mations in (12), we obtain for w(x, t) = u1(x, t) − u2(x, t):

∫
R

k(x, b)w2(x, b)dx −
b∫

0

dt

∫
R

k′
t(x, t)w2(x, t)dx+

+
∫
R

⎧⎨
⎩

b∫
0

dt[A(u1(x, t)) − A(u2(x, t))]′x

⎫⎬
⎭

2

dx = 0

for any b ∈ [0, T ]. Hence. u1(x, t) ≡ u2(x, t) by Gronwell's lemma. The
uniqueness of a solution u(x, t) of problem (1)Ä(2) that belongs to the function
spaces indicated in the statement of Theorem 1 is proved for t > 0. For t < 0,
all our proofs can be made by complete analogy. By a standard procedure, this
weak solution can be uniquely continued on a maximal interval as Theorem 1
says. So, Theorem 1 is proved. Now, Theorem 2 follows from Theorem 0 and
remark 3 established in Sec. 2. Our proofs are complete.

Remark 4. It follows, in fact, from our proof of Theorem 1 that our weak
solution u(x, t) of problem (1)Ä(2), the existence and uniqueness of which we
have proved above, for any p ∈ [2, +∞) and sufˇciently small δ > 0 belongs in
addition to Cw([−T−+δ, T +−δ]; W 1

p ), that ut(·, t) ∈ Cw([−T−+δ, T +−δ]; Lp)
and that utt ∈ C([−T−+δ, T +−δ]; H−2). In addition, it follows from our proof
of Theorem 1 that after the substitution of our weak solution u in equation (1)
for any sufˇciently small δ > 0 the equality in (1) holds at least in the sense of
the space C([−T− + δ, T + − δ]; H−2).

Remark 5. The author hopes that methods developed in this article may be
found useful in studies of problems of a more general kind, for example, problems
of the type of the initial value problem for the equation

utt = (a(t, x, u)ux)x + f(t, x, u)

under suitable assumptions on the functions a and f . As for applications of our
methods in the multidimensional case when x ∈ R

d with some integer d � 2, it
seems that, to do this, one needs, in particular, to derive a suitable multidimen-
sional analog of identity (8) for this case.
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