Kh. M. Beshtoev

VIOLATION OF $C P$ INVARIANCE
FOR NEUTRAL $K^{0}, D^{0}, B_{d}^{0}, B_{s}^{0}$ MESONS
AND QUARKS IN WEAK INTERACTIONS

Бештоев Х. М.
Нарушение $C P$-инвариантности для кварков и нейтральных
$K^{0}-, D^{0}-, B_{d}^{0}$-, B_{s}^{0}-мезонов в слабых взаимодействиях
Работа посвящена рассмотрению возможных схем введения $C P$-нарушения для нейтральных мезонов и кварков в слабых взаимодействиях. Отмечено, что в общем случае введение $C P$-фазы только для первого и третьего семейств является некорректным. Такие фазы нужно вводить и для остальных семейств, и при этом не обязательно, чтобы эти фазы были одинаковыми для всех семейств. Кроме того, рассмотрены нарушения $C P$-инвариантности для K^{0}-, D^{0}-, B_{d}^{0}, B_{s}^{0}-мезонов, где кроме $C P$-фаз появляются углы смешивания $\beta_{1}^{\prime}, \beta_{c}, \beta_{d}, \beta_{s}$. Получены выражения для вероятностей переходов при $C P$-нарушении для этих мезонов. В заключение обсуждается схема $C P$-нарушения для d-, s-, b-кварков, где появляются углы их смешивания и фазы.

Работа выполнена в Лаборатории физики высоких энергий им. В. И. Векслера и А. М. Балдина ОИЯИ.
$C P$ violation in the Kobayashi-Maskawa matrix was introduced by using phase δ which is the same for the three families of quarks. However, analysis of $C P$ violation of mesons has shown that new small-angle mixings appear besides of $C P$ phases. This work is devoted to the consideration of possible schemes for introducing $C P$ violation. It is noted that in general case it is not correct to use $C P$ phase only for the first and third quark families as it is usually introduced. $C P$ phase has to be presented for all quark families, and moreover these phases cannot be the same for all families. Besides, a common case of $C P$ violation was considered for $K^{0}, D^{0}, B_{d}^{0}, B_{s}^{0}$ mesons, where mixing angles and phases are present at $C P$ violation. Expressions for transition probabilities for these processes are given. In conclusion, mixing of d, s, b quarks at $C P$ violation was considered with taking into account their angle mixings and phases.

The investigation has been performed at the Veksler and Baldin Laboratory of High Energy Physics, JINR.

1. INTRODUCTION

Previously it was supposed that P parity is a well number, however, after theoretical [1] and experimental [2] works it has become clear that in weak interactions P parity is violated. Then in work [3], there has been an advanced supposition that $C P$ parity, but not P parity, is conserved in weak interactions. Work [4] has reported that there is two π-decay modes in K_{L} decays with a probability of about 0.2%, which is a detection of $C P$-parity violation.

It has been detected that strangeness S also is violated in weak interactions [5] (see also references in [6]). In order to solve this problem, N. Cabibbo [6] proposes to introduce matrix mixing of d, s quarks. Then we can connect the decay modes of mesons (for example, π and K mesons) or giperons. For this aim, it is necessary to use charged weak interactions current j_{F}^{μ} of d, s quarks (of two quark families) in the following form:

$$
j_{F}^{\mu}=(\bar{u} \bar{c})_{L} \gamma^{\mu} V\binom{d}{s}_{L}, \quad V=\left(\begin{array}{cc}
\cos \theta & \sin \theta \tag{1}\\
-\sin \theta & \cos \theta
\end{array}\right)
$$

where V characterizes the mixing of d and s quarks, and θ is the angle mixing of d, s quarks

$$
\begin{equation*}
\binom{d^{\prime}}{s^{\prime}}_{L}=V\binom{d}{s}_{L} \tag{2}
\end{equation*}
$$

This approach was then extended for the case of three quark families by Kobayashi and Maskawa in [7]. In the case of three quark families, there appears a parameter violating $C P$ parity, while in the case of two quark families this parameter is absent. For introduction of the three quark mixings, we will use again charged vector current J^{μ}, which has the following form:

$$
\begin{gather*}
J^{\mu}=(\bar{u} \bar{c} \bar{t})_{L} \gamma^{\mu} V\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)_{L} \tag{3}\\
V=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right), \quad\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)_{L}=V\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)_{L} \tag{4}
\end{gather*}
$$

It is more suitable to choose parameterization of V in the following form, which was proposed by Maiani [8]:

$$
\begin{align*}
V & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{\gamma} & s_{\gamma} \\
0 & -s_{\gamma} & c_{\gamma}
\end{array}\right)\left(\begin{array}{ccc}
c_{\beta} & 0 & s_{\beta} \exp (-i \delta) \\
0 & 1 & 0 \\
-s_{\beta} \exp (i \delta) & 0 & c_{\beta}
\end{array}\right)\left(\begin{array}{ccc}
c_{\theta} & s_{\theta} & 0 \\
-s_{\theta} & c_{\theta} & 0 \\
0 & 0 & 1
\end{array}\right), \\
c_{\theta} & =\cos \theta, s_{\theta}=\sin \theta, c_{\beta}=\cos \beta, c_{\gamma}=\cos \gamma, \exp (i \delta)=\cos \delta+i \sin \delta, \quad(5 \tag{5}
\end{align*}
$$

where θ, β, γ are mixing angles of three quarks and δ is the parameter of $C P$ violation. It is important to remark that the parameter of $C P$ violation is the same for all three quark families, i.e., it is a global parameter.

2. $C P$ VIOLATION IN MESON SECTOR

Before considering $C P$ violation, let us consider the case of KobayashiMaskawa matrix V^{\prime} when the parameter of $C P$ violation is zero $(\delta=0)$

$$
\begin{gather*}
V=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right), \\
V^{\prime}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{\gamma} & s_{\gamma} \\
0 & -s_{\gamma} & c_{\gamma}
\end{array}\right)\left(\begin{array}{ccc}
c_{\beta} & 0 & s_{\beta} \\
0 & 1 & 0 \\
-s_{\beta} & 0 & c_{\beta}
\end{array}\right)\left(\begin{array}{ccc}
c_{\theta} & s_{\theta} & 0 \\
-s_{\theta} & c_{\theta} & 0 \\
0 & 0 & 1
\end{array}\right) . \tag{6}
\end{gather*}
$$

Values of 9 parameters $V_{a, b}, a=1-3, b=1-3$ are established [9] by now. The values of θ, β, γ, are established also, but value of δ has not been estibleshed with high precision. Besides, the expression for V in (5) can have another form. For expample, it can be in the form

$$
V_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{7}\\
0 & c_{\gamma} & s_{\gamma} \\
0 & -s_{\gamma} & c_{\gamma}
\end{array}\right)\left(\begin{array}{ccc}
c_{\beta} & 0 & s_{\beta} \\
0 & 1 & 0 \\
-s_{\beta} & 0 & c_{\beta}
\end{array}\right)\left(\begin{array}{ccc}
c_{\theta} & s_{\theta} \exp (-i \delta) & 0 \\
-s_{\theta} \exp (i \delta) & c_{\theta} & 0 \\
0 & 0 & 1
\end{array}\right),
$$

or in the form

$$
V_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{8}\\
0 & c_{\gamma} & s_{\gamma} \exp (-i \delta) \\
0 & -s_{\gamma} \exp (i \delta) & c_{\gamma}
\end{array}\right)\left(\begin{array}{ccc}
c_{\beta} & 0 & s_{\beta} \\
0 & 1 & 0 \\
-s_{\beta} & 0 & c_{\beta}
\end{array}\right)\left(\begin{array}{ccc}
c_{\theta} & s_{\theta} & 0 \\
-s_{\theta} & c_{\theta} & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

It is not obligatory that the parameter δ in V, V_{2}, V_{3} must be the same. It can be different: $\delta, \delta_{2}, \delta_{3}$.

Let us consider more realistic case, but first consider $C P$ violation for neutral K^{0}, D^{0}, B^{0} mesons.
2.1. The Case of K^{0}, \bar{K}^{0} Mesons. At strangeness violation, K^{0}, \bar{K}^{0} mesons are transformed into superposition states of K_{1}^{0}, K_{2}^{0} mesons

$$
\begin{equation*}
K^{0}=\frac{K_{1}^{0}+K_{2}^{0}}{\sqrt{2}}, \quad \bar{K}^{0}=\frac{K_{1}^{0}-K_{2}^{0}}{\sqrt{2}}, \tag{9}
\end{equation*}
$$

and it leads to K^{0}, \bar{K}^{0} meson oscillations via K_{1}^{0}, K_{2}^{0}, which dominate in the time range $t \simeq 0.0 \div 8 \tau_{K_{1}^{0}}$ ($\tau_{K_{1}^{0}}$ is the lifetime of K_{1}^{0} and $\tau_{K_{1}^{0}} \cong \tau_{K_{S}}$ mesons).
$C P$ violation in the system of K^{0} mesons was widely investigated experimentally $[1,4,9,10]$ and theoretically $[11,12]$. At $C P$ violation in the system of K^{0} mesons, oscillations are absent and there is realized the interference between K_{S}, K_{L} states, which appear at $C P$ violation

$$
\begin{align*}
& K_{1}^{0}(t)=\cos \beta_{1} K_{S}(t)+\sin \beta_{1} \mathrm{e}^{i \delta_{1}} K_{L}(t) \\
& K_{2}^{0}(t)=-\sin \beta_{1} \mathrm{e}^{-i \delta_{1}} K_{S}(t)+\cos \beta_{1} K_{L}(t) \tag{10}
\end{align*}
$$

where β_{1} is the angle mixing at $C P$ violation, and δ_{1} is the $C P$ phase.
There can be the case [11], when

$$
\begin{align*}
& K_{1}^{0}(t)=\cos \beta_{1} K_{S}(t)+\sin \beta_{1} \mathrm{e}^{i \delta_{1}} K_{L}(t) \\
& K_{2}^{0}(t)=-\sin \beta_{1} \mathrm{e}^{i \delta_{1}} K_{S}(t)+\cos \beta_{1} K_{L}(t)
\end{align*}
$$

If we separate (factorize) time dependence of $K_{S}(t), K_{L}(t)$, then

$$
K_{S}(t)=\mathrm{e}^{-i E_{S} t-\frac{\Gamma_{S} t}{2}} K_{S}(0), \quad K_{L}(t)=\mathrm{e}^{-i E_{L} t-\frac{\Gamma_{L} t}{2}} K_{L}(0),
$$

where $E_{k}^{2}=\left(p^{2}+m_{k}^{2}\right), \quad k=S, L$ and Γ_{S}, Γ_{L} are decay widths of K_{S}, K_{L} meson states.

Then the probability $P\left(K^{0}, K_{1}^{0} \rightarrow K_{1}^{0}, t\right)$ of the $K_{1}^{0}(t)$ meson state presence in dependence on time t for primary K^{0} meson is given by the following expression [12]:

$$
\begin{align*}
& P\left(K^{0}, K_{1}^{0} \rightarrow K_{1}^{0}, t\right)=\left|K_{1}^{0}(t)\right|^{2} \simeq \frac{1}{2}\left[\exp \left(-\Gamma_{S} t\right)+\right. \\
& \left.\quad+\varepsilon^{2} \exp \left(-\Gamma_{L} t\right)+2 \varepsilon \exp \left(\frac{1}{2}\left(\Gamma_{S}+\Gamma_{l}\right) t\right) \cos \left(\left(E_{L}-E_{S}\right)-\delta_{1}\right) t\right] \tag{11}
\end{align*}
$$

and the probability $P\left(\bar{K}^{0}, K_{1}^{0} \rightarrow K_{1}^{0}, t\right)$ of the $K_{1}^{0}(t)$ meson state presence in dependence on time t for primary \bar{K}^{0} meson is given by the following expression:

$$
\begin{align*}
& P\left(\bar{K}^{0}, K_{1}^{0} \rightarrow K_{1}^{0}, t\right)=\left|K_{1}^{0}(t)\right|^{2} \simeq \frac{1}{2}\left[\exp \left(-\Gamma_{S} t\right)+\right. \\
& \left.\quad+\varepsilon^{2} \exp \left(-\Gamma_{L} t\right)-2 \varepsilon \exp \left(\frac{1}{2}\left(\Gamma_{S}+\Gamma_{l}\right) t\right) \cos \left(\left(E_{L}-E_{S}\right)-\delta_{1}\right) t\right] \tag{12}
\end{align*}
$$

where $\varepsilon=\sin \beta_{1}$ is the parameter of mixing at $C P$ violation [12].

Value for $\sin \beta_{1} \simeq 2.23 \cdot 10^{-3}, \delta_{1} \simeq 43^{0}$ (see $[1,4,9,10]$). The K_{S}, K_{L} meson interference dominates at $t>8 \tau_{K_{S}}$. It is important not to mix it up with K^{0}, \bar{K}^{0} meson oscillations, which dominate at $t<8 \tau_{K_{S}}$!
2.2. The Case of D^{0}, \bar{D}^{0} Mesons. The case of D^{0}, \bar{D}^{0} mesons fundamentally differs from the K^{0}, \bar{K}^{0} meson case, since they consist of c, u quarks $D^{0}=c \bar{u}$ and $\bar{D}^{0}=\bar{c} u$. It is supposed that u, c, t quark states are not mixed in weak interactions, while d, s, b quarks are in mixed states (see Eq. (4)). Therefore the quark block diagram for D^{0}, \bar{D}^{0} meson oscillations will strongly differ from the K^{0}, \bar{K}^{0} meson oscillations case. We will not come to detailed consideration of D^{0}, \bar{D}^{0} meson oscillations, since we are interested in $C P$ violation. However, it is necessary to remark that observation of D^{0}, \bar{D}^{0} meson oscillations is a very difficult problem. The task to detect $C P$ violation in this case is also a very hard problem.

At violation of d, s, b number in weak interactions, D^{0}, \bar{D}^{0} mesons are transformed into superpositions of $D_{1 c}^{0}, D_{2 c}^{0}$ mesons

$$
\begin{equation*}
D^{0}=\frac{D_{1 c}^{0}+D_{2 c}^{0}}{\sqrt{2}}, \quad \bar{D}^{0}=\frac{D_{1 c}^{0}-D_{2 c}^{0}}{\sqrt{2}}, \tag{13}
\end{equation*}
$$

and it leads to D^{0}, \bar{D}^{0} meson oscillations via $D_{1 c}^{0}, D_{2 c}^{0}$.
At $C P$ violation in the system of D^{0}, \bar{D}^{0} mesons, oscillations have to be absent and there is realized the interference between $D_{S c}(t), D_{L c}(t)$ states, which appear at $C P$ violation

$$
\begin{align*}
& D_{1 c}^{0}(t)=\cos \beta_{c} D_{S c}(t)+\sin \beta_{c} \mathrm{e}^{i \delta_{c}} D_{L c}(t) \\
& D_{2 c}^{0}(t)=-\sin \beta_{c} \mathrm{e}^{-i \delta_{c}} D_{S c}(t)+\cos \beta_{c} D_{L c}(t) \tag{14}
\end{align*}
$$

where β_{c} is the angle mixing at $C P$ violation and δ_{d} is the $C P$ phase.
There can be the case [11] when

$$
\begin{align*}
& D_{1 c}^{0}(t)=\cos \beta_{c} D_{S c}(t)+\sin \beta_{c} \mathrm{e}^{i \delta_{c}} D_{L c}(t) \\
& D_{2 c}^{0}(t)=-\sin \beta_{c} \mathrm{e}^{i \delta_{c}} D_{S c}(t)+\cos \beta_{c} D_{L c}(t)
\end{align*}
$$

If to use the procedure which was done in (11), then the expression for probability $P\left(D^{0}, D_{1 c}^{0} \rightarrow D_{1 c}^{0}, t\right)$ of the $D_{1 c}^{0}(t)$ meson state presence in dependence on time t for primary D_{d}^{0} meson gets the following form:

$$
\begin{align*}
P\left(D^{0}, D_{1 c}^{0} \rightarrow\right. & \left.D_{1 c}^{0}, t\right)=\left|D_{1 c}^{0}(t)\right|^{2} \simeq \frac{1}{2}\left[\exp \left(-\Gamma_{S c} t\right)+\varepsilon_{c}^{2} \exp \left(-\Gamma_{L c} t\right)+\right. \\
& \left.+2 \varepsilon_{c} \exp \left(\frac{1}{2}\left(\Gamma_{S c}+\Gamma_{L c}\right) t\right) \cos \left(\left(E_{L c}-E_{S c}\right)-\delta_{c}\right) t\right] \tag{15}
\end{align*}
$$

and the probability of the presence of $D_{1 c}^{0}(t)$ meson state in time t dependence for primary \bar{D}_{d}^{0} meson is given by the following expression:

$$
\begin{align*}
P\left(\bar{D}^{0}, D_{1 c}^{0} \rightarrow\right. & \left.D_{1 c}^{0}, t\right)=\left|D_{1 c}^{0}(t)\right|^{2} \simeq \frac{1}{2}\left[\exp \left(-\Gamma_{S c} t\right)+\varepsilon_{c}^{2} \exp \left(-\Gamma_{L c} t\right)-\right. \\
& \left.-2 \varepsilon_{c} \exp \left(\frac{1}{2}\left(\Gamma_{S c}+\Gamma_{L c}\right) t\right) \cos \left(\left(E_{L c}-E_{S c}\right)-\delta_{d}\right) t\right] \tag{16}
\end{align*}
$$

where $\varepsilon_{d}=\sin \beta_{c}, \Gamma_{S c}, \Gamma_{L c}$ are the decay widths of $D_{S c}, D_{L c}$ meson states [12].
Until now, an indication of a strong presence of $C P$ violation in experiments with D^{0}, \bar{D}^{0} mesons [13] has not been found.
2.3. The Case of B^{0}, \bar{B}^{0} Mesons. In this case, B^{0}, \bar{B}^{0} mesons consist of quarks, which are in mixed states in the framework of weak interactions. In contrast to the K^{0} meson case, here there will be two states $B_{d}^{0}=b \bar{d}$ and $B_{s}^{0}=b \bar{s}$. The quark block diagram for B^{0}, \bar{B}^{0} mesons will work in analogy with the K^{0}, \bar{K}^{0} meson case (i.e., oscillations will take place there). Now we will consider some $C P$ violation. As in the case of K^{0} mesons, at $C P$ violation there has to arise interference between $C P= \pm 1$ states. But observation of this interference term in experiments is a very hard task, since B_{d}^{0}, B_{s}^{0} have big masses and, hence, very many decay canals. Unfortunately, an indication of the strong presence of $C P$ violation has not been found until now in experiments [14] with $B_{d}^{0}, \bar{B}_{d}^{0}$ and $B_{s}^{0}, \bar{B}_{s}^{0}$ mesons. Nevertheless, we can introduce, in analogy with K^{0} meson parameters, mixing angles and phase $\delta_{d s}$ of $C P$ violation.

At violation of b-number in weak interactions, $B_{d}^{0}, \bar{B}_{d}^{0}$ mesons are transformed into superpositions of $B_{1 d}^{0}, B_{2 d}^{0}$ bosons

$$
\begin{equation*}
B_{d}^{0}=\frac{B_{1 d}^{0}+B_{2 d}^{0}}{\sqrt{2}}, \quad \bar{B}_{d}^{0}=\frac{B_{1 d}^{0}-B_{2 d}^{0}}{\sqrt{2}}, \tag{17}
\end{equation*}
$$

and it leads to $B_{d}^{0}, \bar{B}_{d}^{0}$ meson oscillations via $B_{1 d}^{0}, B_{2 d}^{0}$.
At $C P$ violation in the system of B^{0}, \bar{B}^{0} mesons, oscillations have to be absent and there is realized the interference between $B_{S d}, B_{L d}$ states, which appear at $C P$ violation

$$
\begin{align*}
& B_{1 d}^{0}(t)=\cos \beta_{d} B_{S d}(t)+\sin \beta_{d} \mathrm{e}^{i \delta_{d}} B_{L d}(t) \\
& B_{2 d}^{0}(t)=-\sin \beta_{d} \mathrm{e}^{-i \delta_{d}} B_{S d}(t)+\cos \beta_{d} B_{L d}(t) \tag{18}
\end{align*}
$$

where β_{d} is the angle mixing at $C P$ violation, and δ_{d} is the $C P$ phase.
There can be the case [11] when

$$
\begin{align*}
& B_{1 d}^{0}(t)=\cos \beta_{d} B_{S d}(t)+\sin \beta_{d} \mathrm{e}^{i \delta_{d}} B_{L d}(t) \\
& B_{2 d}^{0}(t)=-\sin \beta_{d} \mathrm{e}^{i \delta_{d}} B_{S d}(t)+\cos \beta_{d} B_{L d}(t)
\end{align*}
$$

If to use the procedure which was done in (11), then the expression for probability $P\left(B_{d}^{0}, B_{1 d}^{0} \rightarrow B_{1 d}^{0}, t\right)$ of the $B_{1 d}^{0}(t)$ meson state presence in dependence on time t for primary B_{d}^{0} meson gets the following form:

$$
\begin{align*}
P\left(B_{d}^{0}, B_{1 d}^{0} \rightarrow\right. & \left.B_{1 d}^{0}, t\right)=\left|B_{1 d}^{0}(t)\right|^{2} \simeq \frac{1}{2}\left[\exp \left(-\Gamma_{S d} t\right)+\varepsilon_{d}^{2} \exp \left(-\Gamma_{L d} t\right)+\right. \\
& \left.+2 \varepsilon_{d} \exp \left(\frac{1}{2}\left(\Gamma_{S d}+\Gamma_{L d}\right) t\right) \cos \left(\left(E_{L d}-E_{S d}\right)-\delta_{d}\right) t\right] \tag{19}
\end{align*}
$$

and the probability $P\left(\bar{B}_{d}^{0}, B_{1 d}^{0} \rightarrow B_{1 d}^{0}, t\right)$ of the presence of $B_{1 d}^{0}(t)$ meson state in time t dependence for primary \bar{B}_{d}^{0} meson is given by the following expression:

$$
\begin{align*}
P\left(\bar{B}_{d}^{0}, B_{1 d}^{0} \rightarrow\right. & \left.B_{1 d}^{0}, t\right)=\left|B_{1 d}^{0}(t)\right|^{2} \simeq \frac{1}{2}\left[\exp \left(-\Gamma_{S d} t\right)+\varepsilon_{d}^{2} \exp \left(-\Gamma_{L d} t\right)-\right. \\
& \left.-2 \varepsilon_{d} \exp \left(\frac{1}{2}\left(\Gamma_{S d}+\Gamma_{L d}\right) t\right) \cos \left(\left(E_{L d}-E_{S d}\right)-\delta_{d}\right) t\right] \tag{20}
\end{align*}
$$

where $\varepsilon_{d}=\sin \beta_{d}, \Gamma_{S d}, \Gamma_{L d}$ are decay widths of $B_{S d}, B_{L d}$ meson states [12].
At violation of b number in weak interactions, $B_{s}^{0}, \bar{B}_{s}^{0}$ mesons are transformed into superpositions of $B_{1 s}^{0}, B_{2 s}^{0}$ bosons

$$
\begin{equation*}
B_{s}^{0}=\frac{B_{1 s}^{0}+B_{2 s}^{0}}{\sqrt{2}}, \quad \bar{B}_{s}^{0}=\frac{B_{1 s}^{0}-B_{2 s}^{0}}{\sqrt{2}}, \tag{21}
\end{equation*}
$$

and it leads to B_{s}^{0}-, \bar{B}_{s}^{0}-meson oscillations via $B_{1 s}^{0}, B_{2 s}^{0}$.
In the case of $B_{s}^{0}, \bar{B}_{s}^{0}$ mesons, we have $B_{S s}, B_{L s}$ states, which appear at $C P$ violation

$$
\begin{align*}
& B_{1 s}^{0}(t)=\cos \beta_{s} B_{S s}(t)+\sin \beta_{s} \mathrm{e}^{i \delta_{s}} B_{L s}(t) \\
& B_{2 s}^{0}(t)=-\sin \beta_{s} \mathrm{e}^{-i \delta_{s}} B_{S s}(t)+\cos \beta_{s} B_{L s}(t) \tag{22}
\end{align*}
$$

where β_{s} is the angle mixing at $C P$ violation, and δ_{s} is the $C P$ phase.
There also can be the case [11] when

$$
\begin{align*}
& B_{1 s}^{0}(t)=\cos \beta_{s} B_{S s}(t)+\sin \beta_{s} \mathrm{e}^{i \delta_{s}} B_{L s}(t) \\
& B_{2 s}^{0}(t)=-\sin \beta_{s} \mathrm{e}^{i \delta_{s}} B_{S s}(t)+\cos \beta_{s} B_{L s}(t)
\end{align*}
$$

If to use the procedure which was done in (11), then the expression for probability $P\left(B_{d}^{0}, B_{1 d}^{0} \rightarrow B_{1 d}^{0}, t\right)$ of the presence of $B_{1 s}^{0}(t)$ meson state in dependence on time t for primary B_{s}^{0} meson gets the following form:

$$
\begin{align*}
P\left(B_{d}^{0}, B_{1 d}^{0} \rightarrow\right. & \left.B_{1 d}^{0}, t\right)=\left|B_{1 s}^{0}(t)\right|^{2} \simeq \frac{1}{2}\left[\exp \left(-\Gamma_{S s} t\right)+\varepsilon_{s}^{2} \exp \left(-\Gamma_{L s} t\right)+\right. \\
& \left.+2 \varepsilon_{s} \exp \left(\frac{1}{2}\left(\Gamma_{S s}+\Gamma_{L s}\right) t\right) \cos \left(\left(E_{L s}-E_{S s}\right)-\delta_{s}\right) t\right] \tag{23}
\end{align*}
$$

and the probability $P\left(\bar{B}_{d}^{0}, B_{1 d}^{0} \rightarrow B_{1 d}^{0}, t\right)$ of the presence of $B_{1 s}^{0}(t)$ meson state in time t dependence for primary \bar{B}_{s}^{0} meson is given by the following expression:

$$
\begin{align*}
P\left(\bar{B}_{d}^{0}, B_{1 d}^{0} \rightarrow\right. & \left.B_{1 d}^{0}, t\right)=\left|B_{1 s}^{0}(t)\right|^{2} \simeq \frac{1}{2}\left[\exp \left(-\Gamma_{S s} t\right)+\varepsilon_{s}^{2} \exp \left(-\Gamma_{L s} t\right)-\right. \\
& \left.-2 \varepsilon_{s} \exp \left(\frac{1}{2}\left(\Gamma_{S s}+\Gamma_{L s}\right) t\right) \cos \left(\left(E_{L s}-E_{S s}\right)-\delta_{s}\right) t\right] \tag{24}
\end{align*}
$$

where $\varepsilon=\sin \beta_{s}, \Gamma_{S s}, \Gamma_{L s}$ are decay widths of $B_{S s}, B_{L s}$ meson states [12].

3. $C P$ VIOLATION IN THE QUARK SECTOR

Now let us return to $C P$ violation for quarks, but with another approach than it was done in [7]. There $C P$ violation becomes apparent by using $C P$ phase δ. But at consideration of $C P$ violation in the case of K^{0}, \bar{K}^{0}, mesons we see that there appears a new angle mixing β_{1} and the phase δ_{1}, while the angle mixing β_{1} in [7] is absent. For simplification we will consider $C P$ violation in quark sector using pairs of quarks. For the first pair we have

$$
\binom{d^{\prime \prime}}{s^{\prime \prime}}_{L}=\left(\begin{array}{cc}
\cos \beta_{1}^{\prime} & \sin \beta_{1}^{\prime} \mathrm{e}^{i \delta_{1}^{\prime}} \tag{25}\\
-\sin \beta_{1}^{\prime} \mathrm{e}^{i \delta_{1}^{\prime}} & \cos \beta_{1}^{\prime}
\end{array}\right)\binom{d^{\prime}}{s^{\prime}}_{L} .
$$

It is obvious that $\beta_{1}^{\prime} \neq \beta_{1}$ and $\delta_{1}^{\prime} \neq \delta_{1}$.
For the second pair of quarks we have

$$
\binom{d^{\prime \prime}}{b^{\prime \prime}}_{L}=\left(\begin{array}{cc}
\cos \theta_{1}^{\prime} & \sin \theta_{1}^{\prime} \mathrm{e}^{i \delta_{2}^{\prime}} \tag{26}\\
-\sin \theta_{1}^{\prime} \mathrm{e}^{i \delta_{2}^{\prime}} & \cos \theta_{1}^{\prime}
\end{array}\right)\binom{d^{\prime}}{b^{\prime}}_{L} .
$$

For the third pair of quarks we have

$$
\binom{s^{\prime \prime}}{b^{\prime \prime}}_{L}=\left(\begin{array}{cc}
\cos \gamma_{1}^{\prime} & \sin \gamma_{1}^{\prime} \mathrm{e}^{i \delta_{3}^{\prime}} \tag{27}\\
-\sin \gamma_{1}^{\prime} \mathrm{e}^{i \delta_{3}^{\prime}} & \cos \gamma_{1}^{\prime}
\end{array}\right)\binom{s^{\prime}}{b^{\prime}}_{L} .
$$

Probably origin of all the above parameters $\beta_{1}^{\prime}, \theta_{1}^{\prime}, \gamma_{1}^{\prime}, \delta_{1}^{\prime}, \delta_{2}^{\prime}, \delta_{3}^{\prime}$ has a dynamic character and, therefore, for computation of values of these parameters, it is necessary to know the precise dynamic nature of $C P$ violation.

CONCLUSION

$C P$ violation in Kobayashi-Maskawa matrix has been introduced by using phase δ, which is the same for the three families of quarks. However, analysis of $C P$ violation of mesons has shown that new small angle mixings appear besides
of $C P$ phases. This work is devoted to the consideration of possible schemes for introducing $C P$ violation. It is noted that in general case it is not correct to use $C P$ phase only for the first and third quark families as it is usually introduced. $C P$ phase has to be presented for all quark families and, moreover, these phases for all families cannot be the same. Besides, the common case of $C P$ violation has been considered for $K^{0}, D^{0}, B_{d}^{0}, B_{s}^{0}$ mesons, where mixing angles and phases are presented at $C P$ violation. $C P$ violation for K^{0} mesons is determined by the angle mixing β_{1}^{\prime} and phase δ_{1}^{\prime}; for B_{d}^{0} meson, by the angle mixing β_{d} and phase δ_{d}; and for B_{s}^{0} meson, by the mixing β_{s} and phase δ_{s}. Also are given expressions for transition probabilities for these processes. And in conclusion mixing of d, s, b quarks at $C P$ violation has been considered with taking into account their angle mixings and phases (i.e., there $C P$ angle mixings appear besides of $C P$ phases).

REFERENCES

1. Lee T. D., Yang C. N. // Phys. Rev. 1956. V. 104. P. 254.
2. Wu C. S. et al. // Phys. Rev. 1957. V. 105. P. 1413; Phys. Rev. 1957. V. 106. P. 1361.
3. Landau L. D. // Sov. J. JETP. 1957. V.32. P. 405.
4. Christenson J. H. et al. // Phys. Rev. Lett. 1964. V. 13. P. 138.
5. Roe B. P. et al. // Phys. Rev. Lett. 1961. V.7. P. 346.
6. Cabibbo N. // Phys. Rev. Lett. 1963. V. 10. P. 531.
7. Kobayashi M., Maskawa K. // Prog. Theor. Phys. 1973. V.49. P. 652; Okun' L. B. Leptons and Quarks. M.: Nauka, 1990.
8. Maiani L. // Proc. Int. Symp. on Lepton-Photon Int. Hamburg, DESY, 1977. P. 867.
9. Phys. Lett. B. Review of Part. Phys. 2008. V. 667. P. 145, 733;

Phys. Rev. D. Review of Part. Phys. 2012. V. 86, 010001. P. 157, 852.
10. Adler R. et al. // Phys. Lett. B. 1995. V.363. P. 243;

Apostolakis A. et al. // Phys. Lett. B. 1999. V.458. P. 545; Marianna Testa (Kloe Collab.). hep-ex/0505015v.1, 2006.
11. Wи T. T., Yang C. N. // Phys. Rev. Lett. 1964. V.13. P. 380.
12. Beshtoev Kh. M. // Nuclear Phys. B (Proc. Supl.). 2011. V. 219-220. P. 276-280; hep-ph/1401.5989v.2, Febr 2014.
13. Phys. Lett. B. Review of Part. Phys. 2008. V.667. P. 783; Phys. Rev. D. Review of Part. Phys. 2012. V. 86, 010001. P. 903, 1066.
14. Phys. Lett. B. Review of Part. Phys. 2008. V.667. P.914; Phys. Rev. D. Review of Part. Phys. 2012. V. 86, 010001. P. 1066.

Редактор Э. В. Ивашкевич

Подписано в печать 01.10.2014.
Формат $60 \times 90 / 16$. Бумага офсетная. Печать офсетная.
Усл. печ. л. 0,68 . Уч.-изд. л. 0,96 . Тираж 325 экз. Заказ № 58343 ,

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6.

E-mail: publish@jinr.ru
www.jinr.ru/publish/

