
E2-2014-93

I. B. Pestov ∗

SYMMETRY AND QUANTUM EFFECTS
OF EXTRA DIMENSION OF SPACE

Submitted to ©Modern Physics Letters Aª

∗ E-mail: pestov@theor.jinr.ru



�¥¸Éμ¢ A. �. E2-2014-93
‘¨³³¥É·¨°´Ò¥ ¨ ±¢ ´Éμ¢Ò¥ ÔËË¥±ÉÒ ¤μ¶μ²´¨É¥²Ó´μ° · §³¥·´μ¸É¨ ¶·μ¸É· ´¸É¢ 

�·¥¤¶μ² £ ¥É¸Ö, ÎÉμ Ë¨§¨Î¥¸±μ¥ ¶·μ¸É· ´¸É¢μ ¨³¥¥É ¤μ¶μ²´¨É¥²Ó´ÊÕ · §-
³¥·´μ¸ÉÓ. ‚μ§³μ¦´Ò¥ ÔËË¥±ÉÒ ÔÉμ° ¨´´μ¢ Í¨¨ ¨¸¸²¥¤μ¢ ´Ò ´  ¶·¨³¥·¥ ¶·μ-
¸É¥°Ï¥£μ ³ É¥³ É¨Î¥¸±μ£μ ¶·μ¸É· ´¸É¢  Å Î¥ÉÒ·¥Ì³¥·´μ£μ ¥¢±²¨¤μ¢  ¶·μ¸É· ´-
¸É¢ . �μ± § ´μ, ÎÉμ ¶·¨Î¨´  ¨ ¶·μ¨¸Ìμ¦¤¥´¨¥ ¢· Ð É¥²Ó´μ£μ ¤¢¨¦¥´¨Ö Ö¸´μ
¢¨¤´Ò Éμ²Ó±μ ¢ Î¥ÉÒ·¥Ì³¥·¨¨. � ¸¸³μÉ·¥´  ¶ ·  Ê· ¢´¥´¨° „¨· ± , μ¶·¥¤¥-
²Ö¥³ÒÌ ¥¸É¥¸É¢¥´´Ò³¨ É¥É· ¤ ³¨ ´  Î¥ÉÒ·¥Ì³¥·´μ³ ¥¢±²¨¤μ¢μ³ ¶·μ¸É· ´¸É¢¥.
‘· ¢´¨¢ Ö ÔÉ¨ Ê· ¢´¥´¨Ö ¸ μ·¨£¨´ ²Ó´Ò³ Ê· ¢´¥´¨¥³ „¨· ±  ¢ ¶·μ¸É· ´¸É¢¥-
¢·¥³¥´¨ Œ¨´±μ¢¸±μ£μ, ³Ò ¢ÒÖ¸´¨²¨, ÎÉμ ´  Î¥ÉÒ·¥Ì³¥·´μ³ ¥¢±²¨¤μ¢μ³ ¶·μ-
¸É· ´¸É¢¥ ¸ÊÐ¥¸É¢Ê¥É ¤¢¥ ¶·¨Î¨´´Ò¥ ¸É·Ê±ÉÊ·Ò. �É¨³ ¤ ´μ · Í¨μ´ ²Ó´μ¥ ¤μ-
± § É¥²Ó¸É¢μ ¸ÊÐ¥¸É¢μ¢ ´¨Ö ²¥¶Éμ´μ¢ ¨ ±¢ ·±μ¢, ±¢ ·±-²¥¶Éμ´´μ° ¸¨³³¥É·¨¨ ¨
±μ´Ë °´³¥´É . ‘ Í¥²ÓÕ ¶·μ¨²²Õ¸É·¨·μ¢ ÉÓ ´¥±μÉμ·Ò¥ ¢μ¶·μ¸Ò, ¸¢Ö§ ´´Ò¥ ¸
É ± ´ §Ò¢ ¥³μ° ¸±·ÒÉμ° ¸¨³³¥É·¨¥° ¨ ¸±·ÒÉÒ³¨ · §³¥·´μ¸ÉÖ³¨, ¨§ÊÎ¥´Ò ¥¸É¥-
¸É¢¥´´Ò¥ μÉμ¡· ¦¥´¨Ö Î¥ÉÒ·¥Ì³¥·´μ£μ ¥¢±²¨¤μ¢  ¶·μ¸É· ´¸É¢  ´  É·¥Ì³¥·´μ¥
¥¢±²¨¤μ¢μ ¶·μ¸É· ´¸É¢μ.

� ¡μÉ  ¢Ò¶μ²´¥´  ¢ ‹ ¡μ· Éμ·¨¨ É¥μ·¥É¨Î¥¸±μ° Ë¨§¨±¨ ¨³. �.�. �μ£μ²Õ¡μ¢ 
�ˆŸˆ.

�·¥¶·¨´É �¡Ñ¥¤¨´¥´´μ£μ ¨´¸É¨ÉÊÉ  Ö¤¥·´ÒÌ ¨¸¸²¥¤μ¢ ´¨°. „Ê¡´ , 2014

Pestov I. B. E2-2014-93
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It is supposed that the physical space has extra dimension. Possible effects of this
innovation are investigated on the example of the simplest mathematical space Å the
four-dimensional Euclidian space. It is demonstrated that the origin and the nature
of a rotational motion are clearly visible in four dimensions only. A pair of the
Dirac equations associated with the natural tetrads on the four-dimensional Euclidian
space is considered. Comparing these equations with the original Dirac equation in
the Minkowski space-time, we show that there are two causal structures on the four-
dimensional Euclidian space. With this, the rational proof of the existence of leptons
and quarks, leptonÄquark symmetry and conˇnement is obtained. To illustrate some
questions connected with the so-called hidden symmetry and hidden dimensions,
natural mappings of the four-dimensional Euclidian space onto the three-dimensional
one are considered.
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INTRODUCTION

One of the primary goals of physics is to understand the variety of phys-
ical reality in a uniˇed way: a single mathematical framework, in which all
fundamental forces and units of matter can be described together in a manner
that is internally consistent, and consistent with current and future observations.
The greatest advances have been steps towards this goal: the uniˇcation of terres-
trial and celestial mechanics by Newton; of optics with the theories of electricity
and magnetism by Maxwell; of geometry and the theory of gravitation by Ein-
stein; of electromagnetism with weak interactions, but the work of uniˇcation
can be completed if gravity is included. Experiments at the LHC and elsewhere
should let us complete the Standard Model, but a uniˇed theory will require ˇrst
of all a solution of the conceptual problems and probably radically new ideas.
Thus, motivation for our study is clear. Here, we should like to understand the
physical meaning of the fourth dimension. What does it mean? The mathematical
space is a smooth manifold. A smooth manifold, or C∞-manifold, is a differen-
tiable manifold, for which all the transition maps are smooth. That is, derivatives
of all orders exist; so, it is a Ck-manifold for all k. An atlas on the topological
space M is a collection of pairs (Uα, ϕα) called charts, where Uα are open sets
that cover M , and for each index α

ϕα : Uα → Rn

is a homeomorphism of Uα onto an open subset of n-dimensional real space.
An equivalence class of such atlases is said to be a smooth structure. The un-
derlying space Rn is the space of n tuples of real numbers (q1, q2, · · · , qn) with
usual topology. Here, we should like to emphasize that coordinates q1, q2, · · · , qn

should be considered on equal footing, but space-time is a mathematical space,
whose points must be speciˇed by both space and time coordinates. However, it
is clear that there is no regular method to introduce space coordinates and time
coordinate in the framework of a smooth manifold alone. Our goal is to recognize
a regular transition from the mathematical space to space-time and with this to de-
rive new information about the nature of space and time. To this end, we consider
the Dirac equation in the mathematical space. A comparison will be produced
of the Dirac theory of the electron with spin in the simplest four-dimensional

1



mathematical space and the original Dirac theory in the Minkowski space-time.
New representations about nature of space, time, rotation, quarkÄlepton symmetry
and conˇnement will be derived from this consideration.

1. DIRAC EQUATION IN A MATHEMATICAL SPACE

The Dirac equation in the four-dimensional mathematical space reads [1]:

iγμDμψ = mψ, (1)

where Dμ are linear differential operators

Dμ = Ei
μ∂i = E1

μ

∂

∂q1
+ E2

μ

∂

∂q2
+ E3

μ

∂

∂q3
+ E4

μ

∂

∂q4

and Ei
μ are quadruplets of linear independent vector ˇelds, which will be con-

sidered as components of a tetrad ˇeld or simply tetrad. The tetrad has sixteen
components. The gamma matrices γμ are normalized as follows:

γμγν + γνγμ = 2ημν , ημν = ημν = diag (1, −1, −1, −1).

The world indices of vectors are denoted by latin letters i, j, k, · · · = 1, 2, 3, 4,
and the greek letters enumerate the vector ˇelds in question μ, ν · · · = 0, 1, 2, 3.
For simplicity, we consider the case when the vector part of the torsion tensor

Hi
jk = Ei

μ(∂jE
μ
k − ∂kEμ

j )

is equal to zero, H i
ik = 0. Since

γμDμ = γ0D0 + γ1D1 + γ2D2 + γ3D3,

then to get a regular transition from the mathematical space to space-time, we
need to introduce the system of coordinates x1, x2, x3, t, in which the linear
differential operator D0 takes the form

D0 = Ei
0∂i →

∂

∂t
.

To this end, let us consider the system of ordinary differential equations

dqi

dt
= Ei

0(q
1, q2, q3, q4).

It is well known that this system has a unique solution

q1 = f1(q1
0 , q

2
0 , q

3
0 , q4

0 , t), · · · , q4 = f4(q1
0 , q2

0 , q
3
0 , q

4
0 , t),
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which satisˇes the condition

q1
0 = f1(q1

0 , q2
0 , q

3
0 , q

4
0 , t0), · · · , q4

0 = f4(q1
0 , q2

0 , q
3
0 , q

4
0 , t0).

Let the initial point P (q1
0 , q

2
0 , q3

0 , q
4
0) belong to the three-dimensional surface S,

which is parameterized by the coordinates x1, x2, x3

q1
0 = h1(x1, x2, x3), q2

0 = h2(x1, x2, x3),

q3
0 = h3(x1, x2, x3), q4

0 = h4(x1, x2, x3).

The surface S should be chosen so that the variables x1, x2, x3, t deˇne a new
system of coordinates in the mathematical space and the tetrad takes the follow-
ing form:

Ei
0 = (0, 0, 0, 1), Ei

1 = (E1
1 , E2

1 , E3
1 , 0),

Ei
2 = (E1

2 , E2
2 , E3

2 , 0), Ei
3 = (E1

3 , E2
3 , E3

3 , 0).

The so-deˇned surface will be called the characteristic surface of space-time, the
variables x1, x2, x3 will be called the space coordinates, and accordingly t will be
the time coordinate. We conclude that the space-time is a causal structure on the
mathematical space, which is deˇned by the vector ˇeld or congruence of lines.
We recall that the congruence of lines is a set of lines characterized by that the
only element of the set crosses every point of a manifold or its part. The lines
belonging to the congruence do not intersect and ˇll either the whole manifold or
its part. In the mathematical space equipped by the causal structure, Eq. (1) takes
the Hamiltonian form

i
∂

∂t
ψ = Hψ,

where the operator H does not contain the partial derivative up to t. After this
general consideration, we start to learn the simplest four-dimensional mathemati-
cal space R4.

2. SYMMETRY AND GEOMETRICAL ASPECTS
OF THE FOUR-DIMENSIONAL EUCLIDIAN SPACE

Points of R4 have the vector

q = (q1, q2, q3, q4)

and the quaternion representations

q = q1i + q2j + q3k + q41,
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with the usual linear structure. The quaternion algebra is deˇned as usual:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

The scalar product

p · q = p1q1 + p2q2 + p3q3 + p4q4

can be written in the quaternion form in two ways:

p · q =
1
2
(pq + qp) =

1
2
(pq + qp), (2)

where q = −q1i − q2j − q3k + q41. The scalar product is invariant with respect
to the right- and left-turn dilatations

q ⇒ q̃ = s q, ⇒ q̃ = q t, (3)

since
p̃ · q̃ = ss (p · q), p̃ · q̃ = tt (p · q).

We suppose that q and λq, where λ is a number, are equivalent. For a given q,
equations q = sq, q = qt have only trivial solutions s = t = 1, and the absence
of ˇxed points under turn dilatations exhibits a fundamental property of the space
in question: the existence of two simply transitive groups of transformations.

Now, we introduce two natural frames intrinsically connected with the space
in question. The standard frame

c1 = (1, 0, 0, 0) c2 = (0, 1, 0, 0) c3 = (0, 0, 1, 0) c4 = (0, 0, 0, 1),

c1 = i, c2 = j, c3 = k, c4 = 1

gives rise to the pair of right-handled moving frames

m1 = iq, m2 = jq, m3 = kq, m4 = 1q, n1 = qi, n2 = qj, n3 = qk, n4 = q1.

m1 = ( q4, −q3, q2, −q1 ),
m2 = ( q3, q4, −q1, −q2 ),
m3 = (−q2, q1, q4, −q3 ),
m4 = ( q1, q2, q3, q4 ),

n1 = ( q4, q3, −q2, −q1 ),
n2 = (−q3, q4, q1, −q2 ),
n3 = ( q2, −q1, q4, −q3 ),
n4 = ( q1, q2, q3, q4 ).
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It is easy to see that

ma · mb = qq̄ δab, na · nb = qq̄ δab, (a, b = 1, 2, 3, 4).

Let us consider the running point T (q1, q2, q3, q4), and the twelve coherent points

A(q4, −q3, q2, −q1), B(q3, q4, −q1, −q2), C(−q2, q1, q4, −q3),

K(q4, q3, −q2, −q1), L(−q3, q4, q1, −q2), M(q2, −q1, q4, −q3),

Ā(−q4, q3, −q2, q1), B̄(−q3, −q4, q1, q2), C̄(q2, −q1, −q4, q3),

K̄(−q4, −q3, q2, q1), L̄(q3, −q4, −q1, q2), M̄(−q2, q1, −q4, q3).

The distance function is deˇned as usual:

d2
PQ = (p1 − q1)

2
+ (p2 − q2)

2
+ (p3 − q3)

2
+ (p4 − q4)

2
.

With this, it is easy to see that

d2
AB = d2

AC = d2
BC = d2

TA = d2
TB = d2

TC = 2qq̄,

d2
ĀB̄ = d2

ĀC̄ = d2
B̄C̄ = d2

TĀ = d2
TB̄ = d2

TC̄ = 2qq̄

and
d2

KL = d2
KM = d2

LM = d2
TK = d2

TL = d2
TM = 2qq̄,

d2
K̄L̄ = d2

K̄M̄ = d2
L̄M̄ = d2

TK̄ = d2
TL̄ = d2

TM̄ = 2qq̄,

where dAB is the distance between the points A and B. We see a pair of regular
tetrahedrons and a dual one with a common vertex T : TABC and TKLM ,
T ĀB̄C̄ and TK̄L̄M̄ . These tetrahedrons give a visual representation of the
frames in question

mμ nμ, −mμ − nμ, (μ = 1, 2, 3)

and discover the nature of rotational motion. Let q = q(t) be a trajectory in R4.
When point T moves along this trajectory, the tetrahedrons TABC and TKLM
are pulsed and rotated with respect to each other. And the same is for the dual
tetrahedrons T ĀB̄C̄ and TK̄L̄M̄ .

The matrix of scalar products

Pμν = mμ · nν , (μ, ν = 1, 2, 3)

describes this relative rotational motion.
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The scalar products of the tangent vector q̇ = dq/dt with the vectors of dual
frames ma and na, (a = 1, 2, 3, 4)

m1 ·
dq
dt

= q4 dq1

dt
− q3 dq2

dt
+ q2 dq3

dt
− q1 dq4

dt
,

m2 ·
dq
dt

= q3 dq1

dt
+ q4 dq2

dt
− q1 dq3

dt
− q2 dq4

dt
,

m3 ·
dq
dt

= −q2 dq1

dt
+ q1 dq2

dt
+ q4 dq3

dt
− q3 dq4

dt
,

n1 ·
dq
dt

= q4 dq1

dt
+ q3 dq2

dt
− q2 dq3

dt
− q1 dq4

dt
,

n2 ·
dq
dt

= −q3 dq1

dt
+ q4 dq2

dt
+ q1 dq3

dt
− q2 dq4

dt
,

n3 ·
dq
dt

= q2 dq1

dt
− q1 dq2

dt
+ q4 dq3

dt
− q3 dq4

dt
,

m4 ·
dq
dt

= n4 ·
dq
dt

= q1 dq1

dt
+ q2 dq2

dt
+ q3 dq3

dt
+ q4 dq4

dt

are invariant with respect to the left- and right-turn dilatations. The invariants

Ωμ =
1
2

mμ · dq
dt

, Ω̃μ =
1
2

nμ · dq
dt

, (μ = 1, 2, 3)

are components of angular velocity of rotation of tetrahedron TABC with respect
to tetrahedron TKLM and vice versa. These invariants play the important role
in the rigid-body dynamics as well. Thus, a kinematics of rotational motion has
an adequate representation in the four dimensions.

To quantize the rotational motion, let us introduce the four-dimensional
operator ∇:

∇4 = (
∂

∂q1
,

∂

∂q2
,

∂

∂q3
,

∂

∂q4
),

and setting

Mν =
1
2
(mν · ∇4), Nν =

1
2
(nν · ∇4), (ν = 1, 2, 3),

we have six anti-Hermitian operators of angular momentum of a rotational motion.
Factor (1/2) is essential, since natural commutation relations hold valid

M1M2 − M2M1 = M3, N1N2 − N2N1 = −N3,
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and so on. The operator of dilatations

D = (m4 · ∇4) = q1 ∂

∂q1
+ q2 ∂

∂q2
+ q3 ∂

∂q3
+ q4 ∂

∂q4

has important meaning as well, since it commutes with the operators of angular
momentum

DMν − MνD = 0, DNν − NνD = 0, (ν = 1, 2, 3).

Now, we shall introduce two natural tetrads in the space in question and consider
the Dirac equations associated with these quadruplets of linear independent vector
ˇelds.

3. GLOBAL TETRAD

Let
a = (a1, a2, a3, a4)

be a constant unit vector, then a global tetrad in R4 is deˇned as follows:

E0 = (a1, a2, a3, a4), E1 = (−a4, −a3, a2, a1),

E2 = (a3, −a4, −a1, a2), E3 = (−a2, a1, −a4, a3).

We put

D0 = E0 · ∇4, D1 = E1 · ∇4, D2 = E2 · ∇4, D3 = E3 · ∇4,

then the Dirac equation in the four-dimensional Euclidian space reads

iγμDμψ =
mc

�
ψ. (4)

Since
γμDμ = γ0D0 + γ1D1 + γ2D2 + γ3D3,

then to get a regular transition from the Dirac equation in question to the original
Dirac equation, we need to introduce the system of coordinates x1, x2, x3, t, in
which the linear differential operator D0 takes the following form:

D0 = Ei
0∂i →

∂

∂t
.

To this end (see Sec. 1), we need to solve the system of equations

dqi

dt
= ai.
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The general solution is a straight line that goes through the ˇxed point q0 =
(q1

0 , q2
0 , q3

0 , q4
0):

q(t) = a(t − t0) + q0. (5)

We deˇne the three-dimensional characteristic surface S in the space of initial
data as follows:

a · q0 = t0. (6)

The general solution to Eq. (6) has the form

q0 = t0E0 + xE1 + yE2 + zE3.

Substituting this representation into formula (5), we have

q = tE0 + xE1 + yE2 + zE3.

The Dirac equation in the coordinates t, x, y, z has the ordinary form

i(γ0 ∂

∂t
+ γ1 ∂

∂x
+ γ2 ∂

∂y
+ γ3 ∂

∂z
)ψ =

mc

�
ψ.

One can work in either the coordinates q1, q2, q3, q4 (that are considered on
equal footing) or the coordinates t, x, y, z, but the ˇrst approach looks like more
fundamental, because the direction of the vector a is not ˇxed, and this distinctive
degeneration is not visible in the second approach.

Now, it is important to show the deˇnition of interval in the four-dimensional
Euclidian space. The interval in R4 is deˇned as follows. Let

qs = 2a(a · q) − q

be the vector symmetrical to the vector q with respect to the vector a. Then, in
the coordinates q1, q2, q3, q4, the interval can be written as follows:

s2 = q · qs = 2(a · q)2 − q · q = (q · q) cos 2θ,

where θ is an angle between a and q. It is easy to see that in the coordinates
t, x, y, z,

s2 = t2 − x2 − y2 − z2.

We see that the existence of a natural global tetrad in the four-dimensional
Euclidian space presupposes the existence of the Minkowski space-time and,
hence, the known causal structure discovered here as a preferred system of coor-
dinates deˇned by the given direction. The causal structure may be considered in
this case as spontaneous breaking of isotropy of the four-dimensional Euclidian
space. The global tetrad deˇnes a metric as usual:

gij = ημνEμ
i Eν

j = 2aiaj − δij .
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4. LOCAL TETRAD

Let
q = (q1, q2, q3, q4)

be a radius-vector, then a natural local tetrad in the four-dimensional Euclidian
space can be represented as a quadruplet of orthogonal unit vector ˇelds

E0 = (
q1

τ
,

q2

τ
,

q3

τ
,

q4

τ
), E1 = (

−q4

τ
,
−q3

τ
,

q2

τ
,

q1

τ
),

E2 = (
q3

τ
,
−q4

τ
,
−q1

τ
,

q2

τ
), E3 = (

−q2

τ
,

q1

τ
,
−q4

τ
,

q3

τ
),

where
τ =

√
(q · q) =

√
(q1)2 + (q2)2 + (q3)2 + (q4)2

is the length of the radius-vector. The metric deˇned by the local tetrad has a
simple representation gij = ημνEμ

i Eν
j = 2titj − δij . We again put

D0 = E0 · ∇, D1 = E1 · ∇, D2 = E2 · ∇, D3 = E3 · ∇,

but here the operator ∇ is deˇned as follows:

∇ = ∇4 −
3

2τ2
q,

since the vector part of the torsion tensor is not equal to zero in this case. The
Dirac equation describing the rotational motion on the quantum level takes the
following form:

iγμDμψ =
mc

�
ψ. (7)

Let us consider how to equip the four-dimensional Euclidian space with a pre-
ferred system of coordinates in this case. The general solution of the system of
equations

dqi

dτ
=

qi√
(q1)2 + (q2)2 + (q3)2 + (q4)2

can be written in two ways:

qi(τ) = qi
0

τ

τ0
, τ ∈ [τ0,∞),

where the initial data belong to the three-dimensional sphere

q0 · q0 = τ0
2;
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and
qi(τ) = qi

0τ, τ ∈ [0,∞),

where the initial data belong to the unit three-dimensional sphere

q0 · q0 = 1.

The characteristic surface in this case can be parameterized by the Euler angles,
θ, ϕ, γ. In the coordinates τ, θ, ϕ, γ, we have

D0 =
∂

∂τ
− 3

2τ
, D1 =

1
τ

(
− cot θ cos γ

∂

∂γ
− sin γ

∂

∂θ
+

cos γ

sin θ

∂

∂ϕ

)
,

D2 =
1
τ

(
− cot θ sin γ

∂

∂γ
+ cos γ

∂

∂θ
+

sin γ

sin θ

∂

∂ϕ

)
, D3 =

1
τ

∂

∂γ
.

Let us pay attention to the following internal properties of the four-dimensional
Euclidian space: kinematical picture and nature of rotational motion; existence
of two causal structures. In one case, the causal structure may be geometrically
represented as the congruence of parallel three-dimensional planes and the con-
gruence of parallel straight lines orthogonal to these planes. In the other case, the
causal structure is deˇned as the congruence of the three-dimensional sphere with
a common centre and the congruence of rays orthogonal to the three-dimensional
spheres. A physical interpretation: we put forward the idea that the behavior of
leptons is deˇned by the ˇrst causal structure, and the physics of quarks is tightly
connected with the new causal structure, which represents a rotating matter. The
latter provides understanding and rational proof of quarkÄlepton symmetry, quark
conˇnement (conˇnement is not a force, because in any case there is a more
powerful one), conservation of the so-called baryon number (read new causal
structure). Equations (4), (7) and machinery of the electroweak theory provide
the new theoretical basis for understanding the world of leptons and quarks.

The action for the point particle associated with the rotational motion can be
written in the following form:

S = −mc

q∫
p

√
1 − τ2ω2dτ,

where ω = dl/dτ and dl is the element of the arc on the unit three-dimensional
sphere. Really, du · du = dτ2 + τ2dl2, and u · du = τdτ . On this ground, one
can develop the classical mechanics in the new frameworks.

In conclusion of this section, we formulate the Maxwell equations in the
framework of the new causal structure. Let Ai be the vector potential of the
electromagnetic ˇeld. The gauge-invariant tensor of the electromagnetic ˇeld is

10



deˇned as usual Fij = ∂iAj −∂jAi. The strength of the electric ˇeld is a general
covariant and gauge-invariant quantity that is deˇned by the equation Ei = tkFik ,
where in our case tk = tk = qk/τ .

The rotor of the vector ˇeld A = (A1, A2, A3, A4) is deˇned as a vector
product of ∇4 and A:

rotA = ∇4 × A, (rotA)i = eijkltj∂kAl =
1
2
eijkltj(∂kAl − ∂lAk),

where eijkl are the contravariant components of the LeviÄCivita tensor normalized
as e1234 = 1. The general covariant and gauge-invariant deˇnition of the magnetic
ˇeld strength is given by the formula H = rotA, H i = (rotA)i. Thus, Hi =

tk
∗
F ik, where

∗
F ij = gikgjl

∗
F kl =

1
2
gikgjle

klmnFmn. It is evident that vectors E
and H are orthogonal to q:

q ·E = 0, q ·H = 0.

Below, the Maxwell equations are written in the form that is most suitable for
solution:

(D0 · ∇4)H +
2
τ
H = −rotE, (8)

(D0 · ∇4)E +
2
τ
E = rotH + eJ, (9)

∇4 ·E = eψ̄γ0ψ, ∇4 ·H = 0, (10)

where the current J is given by the expression

J = E1ψ̄γ1ψ + E2ψ̄γ2ψ + E3ψ̄γ3ψ.

5. CONNECTION WITH THREE-DIMENSIONAL SPACE

To complete the picture of rotational motion and to throw light on some
other questions, we consider here the properties of natural mappings of the four-
dimensional Euclidian space onto the three-dimensional one. Let ϕ(x, y, z) be a
differentiable function of the Cartesian coordinates x, y, z of the three-dimensional
Euclidian space, and three differentiable functions

x = x(q1, q2, q3, q4), y = y(q1, q2, q3, q4), z = z(q1, q2, q3, q4)

deˇne a mapping of R4 onto E3. Let us calculate the result of the action of the
linear differential operator

L = ξi(q1, q2, q3, q4)
∂

∂qi

11



on the function ϕ(x, y, z). Using the chain rule, we have

Lϕ(x, y, z) = (Lx)
∂ϕ

∂x
+ (Ly)

∂ϕ

∂y
+ (Lz)

∂ϕ

∂z
.

If functions

Lx = ξi ∂x

∂qi
, Ly = ξi ∂y

∂qi
, Lz = ξi ∂z

∂qi

of the variables q1, q2, q3, q4 can be presented as functions of the variables x, y, z,
then setting

Lx = vx(x, y, z), Ly = vy(x, y, z), Lz = vz(x, y, z),

one can calculate the result of the action of the operator L with the help of the
new differential operator

V = vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
,

which can be considered as transform of the operator L under the mapping in
question. After these general remarks let us consider natural mapping of R4 onto
E3. It is well known that a rotation with dilatation of the vector v = v1i+v2j+v3k
can be presented as follows:

v → svs̄.

Let us consider the quaternions

R1 = qiq̄, R2 = qjq̄, R3 = qkq̄,

T1 = q̄iq, T2 = q̄jq, T3 = q̄kq.

Under the left-turn dilatations q → sq, the quaternions R1, R2, R3 transform as
follows: Rμ → sRμs̄, (μ = 1, 2, 3). Under the right-turn dilatations q → qt̄,
the quaternions T1, T2, T3 transform similarly to Rμ, Tμ → tTμt̄, (μ = 1, 2, 3).
We see that the coordinates of the quaternions in question can be considered as
the Cartesian coordinates of E3. We denote these coordinates as xμ, yμ, zμ, (μ =
1, 2, 3) and, respectively, ξμ, ημ, ζμ, (μ = 1, 2, 3),

Rμ = (xμ, yμ, zμ), Tμ = (ξμ, ημ, ζμ).

The vectors Rμ and Tμ have the same length and constitute the right-handled
orthogonal bases, since

R1 × R2 = qq̄R3, R1 · (R2 × R3) = (qq̄)3,

T1 × T2 = qq̄T3, T1 · (T2 × T3) = (qq̄)3.

12



Here, we are slightly detained to give a simple and important geometrical
interpretation of the Cartan spinors [2, 3], which is tightly connected with the
complex-analytic structures on R4. To this end, let us consider the complex null
vectors

W1 = R2 +
√
−1R3, W2 = R3 +

√
−1R1, W3 = R1 +

√
−1R2.

Calculating components of these vectors, we have

W1 = (u1, v1, w1) = ( 2ξ1ξ2, ξ2
1 − ξ2

2 , −
√
−1ξ2

1 −
√
−1ξ2

2),

where ξ1 = q2 +
√
−1q3, ξ2 = q1 +

√
−1q4,

W2 = (u2, v2, w2) = (−
√
−1η2

1 −
√
−1η2

2 , 2η1η2, η2
1 − η2

2),

where η1 = q3 +
√
−1q1, η2 = q2 +

√
−1q4,

W3 = (u3, v3, w3) = ( ζ2
1 − ζ2

2 , −
√
−1ζ2

1 −
√
−1ζ2

2 , 2ζ1ζ2),

where ζ1 = q1 +
√
−1q2, ζ2 = q3 +

√
−1q4.

Studying the behavior of the pairs (ξ1, ξ2), (η1, η2), (ζ1, ζ2) under the turn
dilatations, we conclude that these pairs are spinors. It is also evident that the
Cartan spinor is simply the system of complex coordinates on R4. The general
theory of complex manifolds is explained in [4]. Actually, it is shown that
there are three canonical systems of complex coordinates deˇned by the complex
structures i, j, k. The turn dilatations in the complex coordinates coincide with
spinor transformations. To introduce the spinor with the so-called dotted indices,
one simply needs to consider the vectors

W̄1 = R2 −
√
−1R3, W̄2 = R3 −

√
−1R1, W̄3 = R1 −

√
−1R2.

Thus, it is evident that the spinors do not represent a new geometrical quantity.
Now, it is time to prolong and write out expressions for the coordinates

xμ, yμ, zμ, (μ = 1, 2, 3) and ξμ, ημ, ζμ, (μ = 1, 2, 3). We have

x1 = (q1)2 − (q2)2 − (q3)2 + (q4)2, y1 = 2q1q2 + 2q3q4,

x2 = 2q1q2 − 2q3q4, y2 = −(q1)2 + (q2)2 − (q3)2 + (q4)2,

x3 = 2q1q3 + 2q2q4, y3 = −2q1q4 + 2q2q3,

z1 = 2q1q3 − 2q2q4,

z2 = 2q1q4 + 2q2q3,

z3 = −(q1)2 − (q2)2 + (q3)2 + (q4)2,

13



and

(ξ1, η1, ζ1) = (x1, x2, x3),
(ξ2, η2, ζ2) = (y1, y2, y3),
(ξ3, η3, ζ3) = (z1, z2, z3).

Thus, all natural mappings of R4 onto E3 are presented. Now, it is interesting
to ˇnd transforms of the operators of the angular momenta of the rotational
motion. Below, the results of calculations will be presented only for one case
(with comments only with respect to other situations). For obviousness, let us
put x1 = x, y1 = y, z1 = z. After some calculations the following results can be
presented:

M1ϕ(x, y, z) = 0,

−M2ϕ(x, y, z)=x3
∂ϕ

∂x
+y3

∂ϕ

∂y
+z3

∂ϕ

∂z
, M3ϕ(x, y, z)=x2

∂ϕ

∂x
+y2

∂ϕ

∂y
+z2

∂ϕ

∂z
.

It is visible that the operators in question have no transforms. In the other case,
the picture is more interesting, since

N1ϕ(x, y, z) = 0
∂ϕ

∂x
− z

∂ϕ

∂y
+ y

∂ϕ

∂z
,

N2ϕ(x, y, z) = z
∂ϕ

∂x
+ 0

∂ϕ

∂y
− x

∂ϕ

∂z
, N3ϕ(x, y, z) = −y

∂ϕ

∂x
+ x

∂ϕ

∂y
+ 0

∂ϕ

∂z
.

Let us put N = (N1, N2, N3), and the last relations can be written as follows:

Nϕ(x, y, z) = (r ×∇)ϕ(x, y, z).

These relations are valid for all coordinates xμ, yμ, zμ, (μ = 1, 2, 3). If we
consider the coordinates ξμ, ημ, ζμ, (μ = 1, 2, 3), then the operators N take place
of the operators M and vice versa. The relation

Mϕ(ξ, η, ζ) = −(r×∇)ϕ(ξ, η, ζ)

exhibits this exchange. Thus, after the mappings in question we see instead of the
operators of the angular momentum of the rotational motion the operators of the
orbital angular momentum of the point particle. It is interesting that the relation

1
2
Dϕ(x, y, z) = x

∂ϕ

∂x
+ y

∂ϕ

∂y
+ z

∂ϕ

∂z

holds valid in all instances.
Let us pay attention to the following important things. The coordinates of

the four-dimensional Euclidian space are not observable, but the picture of the
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rotation is very detailed and beautiful in this case and can be represented in the
descriptive-geometric form. The coordinates of the three-dimensional Euclidian
space are quadratic functions of the coordinates of R4 and are observable, but
the harmonic picture of rotation is reduced to the operators of the orbital angular
momentum of the point particle. There is an interesting problem of half-integer
orbital angular momentum, which is in the sphere of interests of physicists up to
now [2]. From our consideration it follows that eigenfunctions of the operators
of angular momentum of the rotational motion can be the eigenfunctions of the
operator of the orbital angular momentum only in the case when these functions
are even, and this is the hidden reason of the integer eigenvalues. Let us give
one more interesting example of four-dimensional and three-dimensional points
of view on the important physical object.

6. HYDROGEN ATOM AND FOUR-DIMENSIONAL SPACE

This is the Schréodinger equation of the hydrogen atom:

− �
2

2m
�ψ(x, y, z) − e2

r
ψ(x, y, z) = Eψ(x, y, z).

We introduce into consideration the four-dimensional Laplacian setting

�4 =
∂2

∂q1
2

+
∂2

∂q2
2

+
∂2

∂q3
2

+
∂2

∂q4
2

and calculate a result of the action of this operator on the wave function ψ(x, y, z)
under the condition that x, y, z are the functions of the coordinates q1, q2, q3, q4

as is explained above. The result can be written in the form of the equation

�4ψ(x, y, z) = 4r�ψ(x, y, z), (11)

since r =
√

x2 + y2 + z2 = qq̄ = (q1)2 +(q2)2 +(q3)2 +(q4)2. In what follows,
we will put qq̄ = u2. From this equation it follows that for any harmonic function
ψ(x, y, z) in the three-dimensional Euclidian space we can put in correspondence
a harmonic function in the four-dimensional Euclidian space simply setting

x = (q1)2 − (q2)2 − (q3)2 + (q4)2, y = 2q1q2 + 2q3q4, z = 2q1q3 − 2q2q4.

For example, 1/r = 1/u2. Another conclusion means that a solution ψ(x, y, z)
of the Schréodinger equation after the substitution written above will be a solution
to the equation

(�4 +
8me2

�2
+

8Em

�2
u2)ψ(x, y, z) = 0
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in the four-dimensional Euclidian space. Seeing this equation, we have reason to
consider the equation

(�4 +
8me2

�2
+

8Em

�2
u2)ψ(q1, q2, q3, q4) = 0 (12)

as the Schréodinger equation for the hydrogen atom in the four-dimensional Euclid-
ian space. The operators M and N act in the space of solution of Eq. (12), and
hence it is invariant with respect to the turns but not dilatations. Below, we will
give solution of Eq. (12). Let us consider the harmonic polynomials

Dj
mn(q1, q2, q3, q4) =

√
(j + m)!(j − m)!(j + n)!(j − n)!

∑
k

(−1)m+k×

× (q1 + iq2)m−n+k(q1 − iq2)k(q3 + iq4)j−m−k(q3 − iq4)j+n−k

(m − n + k)!k!(j − m − k)!(j + n − k)!
(13)

known as matrices of rotations in the theory of angular momentum [2]. Since

Dj
mn(q1, q2, q3, q4) = u2jDj

mn(q1/u, q2/u, q3/u, q4/u),

we can consider these polynomials as functions on the sphere S3 and denote as
Dj

mn. In R4, Laplacian in the spherical system of coordinates can be written as
follows:

�4 =
∂2

∂u2
+

3
u

∂

∂u
+

1
u2

�S ,

where �S is the LaplaceÄBeltrami operator on the unit sphere S3. It is clear that
we can look for solution of Eq. (12) in the following form:

ψ(q1, q2, q3, q4) = R(u)Dj
mn.

Since
�SDj

mn = −2j(2j + 2)Dj
mn,

the function R(u) satisˇes the equation

d2R

du2
+

3
u

dR

du
− 2j(2j + 2)

u2
R + (

8Zme2

�2
+

8Em

�2
u2)R = 0. (14)

The ˇnal step is to introduce the new variable r = u2 and get the equation

d2R

dr2
+

2
r

dR

dr
− j(j + 1)

r2
R +

2m

�2
(
Ze2

r
+ E)R = 0, (15)

well-known in quantum mechanics [5]. However, in our case, j takes not only

integer but half-integer values j = 0,
1
2
, 1, · · · . The ˇnal formula for the energy
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levels of the hydrogen atom in the four-dimensional space can be written as
follows:

E = − me4

2�2(k + j + 1)2
, (16)

where k and j take values

k = 0, 1, 2, · · · , j = 0,
1
2
, 1, · · · .

We see that in the four-dimensional Euclidian space there are extra energy
levels connected with a rotational motion, but coordinates are not observable and
these extra levels have no clear physical interpretation. Equation (12) is invariant
with respect to the transformation

ψ(q1, q2, q3, q4) → ψ(−q1, −q2, −q3, −q4),

and since

Dj
mn(−q1, −q2, −q3, −q4) = (−1)2j Dj

mn(q1, q2, q3, q4),

we again must consider only even wave functions.

CONCLUSION

In conclusion, we give the answer to the following questions. What are the
new results in your article? In what way are these new results timely? Why
are these new results signiˇcant? 1. A new deˇnition of space-time is given.
The origin and nature of the rotational motion are recognized. It is established
that on the four-dimensional Euclidian space there are two space-time structures
and one of them is tightly connected with the rotational motion and a simply
transitive group of turn dilatations. On this ground, the new basic equations for
description of the so-called strong interactions are suggested. 2. At the present
time, quantum chromodynamics has no alternative, but in the framework of this
theory, we have no answer to the set of principle questions, and hence new
approaches are desirable. From this point of view, our suggestion to consider
the leptons on the ground of one causal structure and to connect the quarks with
the other causal structure on the same four-dimensional physical space looks like
quite timely. 3. The problem of time and everything connected with this topic
are always signiˇcant. The results obtained are signiˇcant, because they give
a simple and evident explanation of quarkÄlepton symmetry, quark conˇnement
and baryon number conservation. From the point of view in question, the baryon
number conservation means that quarks cannot change the causal structure in
which they live.
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