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’· ´¸¶μ·É´Ò¥ ±μÔËË¨Í¨¥´ÉÒ ¢ SU(3) ²¨´¥°´μ° ¸¨£³ -³μ¤¥²¨
¸ ¶¥É²¥° �μ²Ö±μ¢ 

‚ · ³± Ì ¶·¨¡²¨¦¥´¨Ö ¸·¥¤´¥£μ ¶μ²Ö ¢ SU(3) ²¨´¥°´μ° ¸¨£³ -³μ¤¥²¨ ¸ ¶¥-
É²¥° �μ²Ö±μ¢  (‹‘Œ�) ¶·μ¢μ¤¨É¸Ö ¨§ÊÎ¥´¨¥ ¡μ²ÓÏμ£μ É¥·³μ¤¨´ ³¨Î¥¸±μ£μ ¶μ-
É¥´Í¨ ²  ¸ Í¥²ÓÕ ¶μ²ÊÎ¥´¨Ö ¶ · ³¥É·μ¢ ¶μ·Ö¤±  ±¨· ²Ó´μ£μ Ë §μ¢μ£μ ¶¥·¥Ìμ¤ 
¤²Ö ²¥£±¨Ì ¨ ¸É· ´´ÒÌ ±¢ ·±μ¢ (σl, σs),   É ±¦¥ ¤²Ö ¨§ÊÎ¥´¨Ö ¶ · ³¥É·μ¢ ¶μ·Ö¤± 
¤¥±μ´Ë °´³¥´É  (φ, φ∗). Š·μ³¥ Éμ£μ, ¢ÒÎ¨¸²¥´´Ò° (subtracted) ±μ´¤¥´¸ É Δl,s

¨ ±¨· ²Ó´Ò° ¶ · ³¥É· ¶μ·Ö¤±  (Mb) ¸· ¢´¨¢ ÕÉ¸Ö ¸ ·¥§Ê²ÓÉ É ³¨ ·¥Ï¥ÉμÎ´μ°
Š•„. ˆ¸¶μ²Ó§ÊÖ ¤¨´ ³¨Î¥¸±ÊÕ ³μ¤¥²Ó ±¢ §¨Î ¸É¨Í („ŒŠ—), ³Ò μÍ¥´¨²¨ Ï¨-
·¨´Ê · ¸¶ ¤  ¨ ¢·¥³Ö ·¥² ±¸ Í¨¨ ¤²Ö ±¢ ·±μ¢ ¨ £²Õμ´μ¢. ‚ · ³± Ì ‹‘Œ ¨ ¸
ÊÎ¥Éμ³ ¶¥É²¨ �μ²Ö±μ¢  ¡Ò²¨ μ¶·¥¤¥²¥´Ò  ´μ³ ²¨Ö É¥´§μ·  Ô´¥·£¨¨-¨³¶Ê²Ó¸ 
(Δ/T 4), Ê¤¥²Ó´ Ö É¥¶²μÉ  ¨ ±¢ ¤· É ¸±μ·μ¸É¨ §¢Ê± . Š·μ³¥ Éμ£μ, É¥³¶¥· ÉÊ·´Ò¥
§ ¢¨¸¨³μ¸É¨ ´μ·³¨·μ¢ ´´μ° ¶²μÉ´μ¸É¨ ±¢ ·±μ¢ ¨ ±¢ ·±μ¢μ° ¢μ¸¶·¨¨³Î¨¢μ¸É¨
¡Ò²¨ ¨§ÊÎ¥´Ò ¶·¨ · §´ÒÌ §´ Î¥´¨ÖÌ Ì¨³¨Î¥¸±μ£μ ¶μÉ¥´Í¨ ² . �²¥±É·¨Î¥¸± Ö
¶·μ¢μ¤¨³μ¸ÉÓ ¨ É¥¶²μ¶·μ¢μ¤´μ¸ÉÓ, σe ¨ κ, μ¡Ñ¥³´ Ö ¨ ¶μ¶¥·¥Î´ Ö ¢Ö§±μ¸É¨, χ
¨ η, ´μ·³¨·μ¢ ´´Ò¥ ± ¶²μÉ´μ¸É¨ Ô´É·μ¶¨¨, μÍ¥´¨¢ ²¨¸Ó ¢ ³μ¤¥²¨ ‹‘Œ� ¨
É ±¦¥ ¸· ¢´¨¢ ²¨¸Ó ¸ ¤ ´´Ò³¨ ·¥Ï¥ÉμÎ´μ° Š•„.

� ¡μÉ  ¢Ò¶μ²´¥´  ¢ ‹ ¡μ· Éμ·¨¨ É¥μ·¥É¨Î¥¸±μ° Ë¨§¨±¨ ¨³. �.�. �μ£μ-
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�·¥¶·¨´É 	¡Ñ¥¤¨´¥´´μ£μ ¨´¸É¨ÉÊÉ  Ö¤¥·´ÒÌ ¨¸¸²¥¤μ¢ ´¨°. „Ê¡´ , 2015

Tawˇk A., Diab A. E2-2015-4
Transport Coefˇcients from SU(3) Polyakov Linear-σ Model

In the mean ˇeld approximation, the grand potential of SU(3) Polyakov linear-σ
model (PLSM) is analyzed for the order parameter of the light and strange chiral
phase-transitions, σl and σs, respectively, and for the deconˇnement order parame-
ters φ and φ∗. Furthermore, the subtracted condensate Δl,s and the chiral order-
parameters Mb are compared with lattice QCD calculations. By using the dynamical
quasiparticle model (DQPM), which can be considered as a system of noninteract-
ing massive quasiparticles, we have evaluated the decay width and the relaxation
time of quarks and gluons. In the framework of LSM and with Polyakov loop
corrections included, the interaction measure Δ/T 4, the speciˇc heat cv and speed
of sound squared c2

s have been determined, as well as the temperature dependence
of the normalized quark number density nq/T 3 and the quark number susceptibili-
ties χq/T 2 at various values of the baryon chemical potential. The electric and heat
conductivity, σe and κ, and the bulk and shear viscosities normalized to the thermal
entropy, ξ/s and η/s, are compared with available results of lattice QCD calculations.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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I. INTRODUCTION

One of the main targets of the relativistic heavy-ion facilities such as the
Nuclotron-based Ion Collider fAcility (NICA), Dubna, the Relativistic Heavy
Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN
is to characterize the phase diagram of hadronic/partonic matter, which can be
studied by quantum chromodynamics (QCD) [1, 2], and especially to analyze
the properties of the new state of matter, the quarkÄgluon plasma (QGP) [3],
such as the electromagnetic phenomena, which in turn are described by quantum
electrodynamics (QED) compared to QCD. Moreover, the predictions of a phase
change hadrons/partons by means of lattice QCD calculations assist to complete
the view of the experimental and theoretical information about the characteristics
of the QCD matter under the extreme conditions of high pressure/density and/or
temperature. On the other hand, experimentalists seem to exert a big effort to
stimulate the results with as much precision as possible in order to characterize the
key properties of such QCD matter in small scale (very high energy). It is obvious
that achieving this ultimate goal requires sophisticated theoretical, experimental,
and numerical works.

The PolyakovÄNambuÄJona-Lasinio (PNJL) model [4Ä6], the Polyakov
linear-σ model (PLSM) or the Polyakov quark-meson model (PQM) [7Ä10],
as well as the Dynamical QuasiParticle Model (DQPM) [11Ä13] are examples
of phenomenological QCD-like models aiming to study the strongly interacting
matter in dense and thermal medium. In PLSM, the thermodynamic quantities
have been investigated [9, 10, 14, 15]. Furthermore, the normalized and non-
normalized higher-order moments of the particle multiplicity have been analyzed
within PLSM [10,15]. Also, the chiral phase-structure of various mesonic states
at ˇnite temperatures has been evaluated with and without anomaly contribu-
tions [16, 17]. In a previous work, we have presented calculations for the chiral
phase-structure of (pseudo)-scalar and (axial)-vector meson masses in thermal
and dense medium in presence and absence of the Polyakov loop correction
with and without the anomaly contribution [18]. Furthermore, the chiral phase-
structure in the limit of large number of colors Nc and the normalization of
these mesonic states with respect to the lowest Matsubara frequency are intro-
duced [18]. Recently, studying QGP in presence of external magnetic ˇeld has
been reported [19]. Also, the thermodynamics and higher-order moments with
gluonic quasiparticles have been calculated from SU(3) PLSM [20].
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The transport coefˇcients, which cannot be measured directly, are conjec-
tured to characterize various essential properties of the system of interest, such as
electric and heat conductivity and bulk and shear viscosity. It is obvious that the
hydrodynamic models could play an essential role towards this goal. But in very
limited cases, the QCD transport coefˇcients can be determined by means of nu-
merical and even analytical methods [21Ä23]. The confrontation to the LQCD re-
sults enables the judgement about the effective models, such as PNJL and PLSM.
The transport coefˇcients calculated from PNJL [24] and DQPM [25] and the
thermodynamics and the bulk viscosity near phase transition from Z(1) and O(4)
models in Hartree approximation for CornwallÄJackiwÄTomboulis (CJT) formal-
ism are summarized in [26]. The shear and bulk viscosities of the partonic and the
hadronic matter from the parton-hadron-string dynamics (PHSD) were presented
in [27]. The ratio of bulk and shear viscosity to the electric conductivity of QGP
has been reported in [28].

In the present work, we introduce a calculation procedure that allows com-
bining some transport coefˇcients to the relativistic hydrodynamics in an indirect
way. We make beneˇt from the exact knowledge we have so far about the fun-
damental thermodynamic quantities such as the equation of state, speciˇc heat,
squared speed of sound and quark number multiplicity as a function of tempera-
ture at ˇxed chemical potential in order to determine electric and heat conductivity
and bulk and shear viscosity. Doing this, we can estimate the relationship between
these quantities and the possible experimental observations.

The present work is organized as follows. The PLSM approach shall be
elaborated in Sec. II. Section III summarizes the chiral phase-structure from the
PLSM and compares the phase transition for light and strange quarks with LQCD
calculations. The estimation of the decay widths and the relaxation time of
quarks and gluons is given in Sec. III B. The thermodynamic quantities, which
are conjectured to play an essential role in estimating the transport coefˇcients
such as, trace anomaly, speciˇc heat, squared speed of sound, the quark number
multiplicity and the quark number susceptibility as a function of T at different
chemical potentials will be calculated in Sec. III C. The normalized electric and
heat conductivities are outlined in Sec. III D 1. The ratios of bulk and shear
viscosities relative to the thermal entropy density are given in Sec. III D 2. Also,
the different scenarios for the ratios of conductivities and the different types of
viscosity are speciˇed in this section. Section IV is devoted to conclusion and
outlines.

II. REMINDER OF THE QCD-LIKE APPROACH

A. SU(3) Polyakov Linear-σ Model. The PLSM Lagrangian with Nf = 3
quark 
avors and Nc = 3 color degrees of freedom consists of two parts

L = Lchiral − U(φ, φ∗, T ). (1)
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The chiral part Lchiral = Lq + Lm, which is coupled to the Polyakov loop
potential with SU(3)L × SU(3)R symmetry [16, 29], consists, in turn, of two
potential types, the ˇrst one tends to the fermionic contribution of quarks, Eq. (2),
coupled with a 
avor-blind Yukawa coupling g of the quarks [30], i. e., the quarks
are coupled to the mesons

Lq =
∑

f

q̄f (iγμDμ − gTa(σa + iγ5πa))q. (2)

The second one refers to the mesonic contribution, Eq. (3),

Lm = Tr (∂μΦ†∂μΦ − m2Φ†Φ) − λ1[Tr (Φ†Φ)]2−
− λ2 Tr (Φ†Φ)2 + c[Det (Φ) + Det (Φ†)] + Tr [H(Φ + Φ†)]. (3)

Through the covariant derivative Dμ = ∂μ − iAμ, the quarks can be coupled
to the Euclidean gauge ˇeld [31, 32] Aμ � δμ0A0. In Eq. (3), Φ is a complex
3×3 matrix depending on σa (scalar ˇelds) and πa (pseudoscalar ˇelds) [16], Φ =
Taφa = Ta(σa +iπa), where Ta = λa/2 with a = 0, . . . , 8 are the nine generators
of the U(3) symmetry group and λa are the eight Gell-Mann matrices [33], γμ are
the chiral spinors, σa are the scalar mesons, and πa are the pseudoscalar mesons.

The chiral symmetry is explicitly broken by H which is a 3 × 3 matrix with
nine parameters ha, H = Taha. Exact three ˇnite condensates σ̄0, σ̄3, and σ̄8

are likely, because the ˇnite vacuum expectation values of Φ and Φ̄ are conjec-
tured to carry the quantum numbers of vacuum, and the diagonal components
of the explicit symmetry breaking term h0, h3, and h8 should not vanish [34].
Therefore, the parameters ha, with h0 �= 0, h3 = 0 and h8 �= 0, and the
squared tree-level mass of the mesonic ˇelds m2, two possible coupling con-
stants λ1 and λ2, Yukawa coupling g, and a cubic coupling constant c can be
estimated c = 4807.84 MeV, h1 = (120.73)3 MeV3, hs = (336.41)3 MeV3,
m2 = −(306.26)2 MeV2, λ1 = 13.48 and λ3 = 46.48 and g = 6.5.

In presence of U(1)A axial anomaly of the QCD vacuum, it is convenient
to convert the condensates σ0 and σ8 into a light and strange quark condensate,
σl and σs, based on an orthogonal basis transformation [35](

σl

σs

)
=

1√
3

( √
2 1

1 −
√

2

) (
σ0

σ8

)
. (4)

The Polyakov-loop effective potential [31] which is given in the second
term of Eq. (1), U(φ, φ∗, T ), introduces dynamics to the expectation value of the
color traced Wilson loop in the temporal direction φ(
x) = 〈P(
x)〉/Nc so that
φ = (Trc P)/Nc and φ∗ = (Trc P†)/Nc, where the Polyakov loop P is inversely
proportional to the color degree of freedom Nc [31],

P(
x) = P exp

⎡
⎢⎣i

1/T∫
0

dτ A4(
x, τ)

⎤
⎥⎦ , (5)
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where A4 = iA0 is called Polyakov gauge [31,32]. It was found that enlarging Nc

decreases the critical temperature of the deconˇnement phase transition [18].
For the temperature dependence of the Polyakov loop in pure YoungÄMills

theory, we utilize a temperature-dependent potential U(φ, φ∗, T ) having Z(3)
center symmetry as that of the pure gauge QCD Lagrangian [6,8]. The Polyakov
loops φ and φ∗ are considered as order parameter for the deconˇnement phase-
transition [6, 8]. In the present work, U(φ, φ∗, T ) is given as a polynomial
expansion in φ and φ∗ [5, 6, 8, 36],

Upoly(φ, φ∗, T )
T 4

= −b2(T )
2

(|φ|2+ |φ∗|2)− b3

6
(φ3+φ∗3)+

b4

16
(|φ|2 + |φ∗|2)2, (6)

where b2(T ) = a0 + a1(T0/T ) + a2(T0/T )2 + a3(T0/T )3. The parameters a0 =
6.75, a1 = −1.95, a2 = 2.625, a3 = −7.44, b3 = 0.75, and b4 = 7.5 reproduce
the pure gluonic QCD thermodynamics and describe the Polyakov loop as a
function of temperature. For a better agreement with LQCD results, the critical
temperature T0 is ˇxed at 270 MeV, especially in the pure gauge sector.

B. Mean Field Approximation. In thermal equilibrium and by using a path
integral over the quark, antiquark, and meson ˇeld, the grand partition function
can be deˇned as

Z =
∫ ∏

a

DσaDπa

∫
DψDψ̄ exp

⎡
⎣∫

x

⎛
⎝L +

∑
f=u,d,s

μf ψ̄fγ0ψf

⎞
⎠

⎤
⎦ , (7)

where
∫
x

≡ i
1/T∫
0

dt
∫
V

d3x with V being the volume of the system, and μf is the

chemical potential for quark 
avors f = (u, d, s). We assume symmetric quark
matter and degenerate light quarks and therefore deˇne a uniform 
avor blind
chemical potential μf ≡ μu,d = μs [7, 16,30].

For the meson ˇelds, their expectation values σ̄l and σ̄s can be estimated
by means of mean ˇeld approximation [14, 37]. Standard methods [37] are used
in calculating the integrals over the fermions yields. Then, the thermodynamic
potential density Ω(T, μ) = −T lnZ/V is

Ω(T, μ) = U(σl, σs) + U(φ, φ∗, T ) + Ωψ̄ψ. (8)

The quark and antiquark potential has been introduced in [14,37]

Ωψ̄ψ = −2TNf

∞∫
0

d3
p

(2π)3
×

×
{
ln

[
1 + 3(φ + φ∗e−(E−μ)/T ) × e−(E−μ)/T + e−3(E−μ)/T

]
+

+ ln
[
1 + 3(φ∗ + φe−(E+μ)/T ) × e−(E+μ)/T + e−3(E+μ)/T

]}
, (9)
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where Nf gives the number of the quark 
avors, E =
√


p2 + m2 is the energy
of the valence quark and antiquark, for both light and strange quarks [35], where
ml = gσl/2 and ms = gσs/

√
2.

The purely mesonic potential is given as

U(σl, σs) = −hlσl − hsσs +
m2(σ2

l + σ2
s)

2
−

− cσ2
l σs

2
√

2
+

λ1σ
2
l σ2

s

2
+

(2λ1 + λ2)σ4
l

8
+

(λ1 + λ2)σ4
s

4
. (10)

Equations (6), (9), and (10) construct the thermodynamic potential density, Eq. (8),
in which seven parameters m2, hl, hs, λ1, λ2, c, and g, condensates σl and σs, and
order parameters for the deconˇnement φ and φ∗ should be determined. First, the
six parameters m2, hl, hs, λ1, λ2 and c can be ˇxed in vacuum by six experimen-
tally known quantities [16]. In order to evaluate σl, σs, φ, and φ∗, the thermody-
namic potential, Eq. (8), should be minimized with respect to σl, σs, φ, and φ∗

∂Ω
∂σl

=
∂Ω
∂σs

=
∂Ω
∂φ

=
∂Ω
∂φ∗

∣∣∣∣
min

= 0, (11)

meaning that σl = σ̄l, σs = σ̄s, φ = φ̄, and φ∗ = φ̄∗, especially at vanishing
chemical potential, are the global minimum.

III. RESULTS

In order to calculate the transport coefˇcients, other quantities, including the
phase transition, the quark decay constant and the quark number susceptibility,
should be estimated ˇrst.

A. Phase Transitions and Their Order Parameters. The fundamen-
tal thermodynamical quantities can be deduced from the partition function Z ,
Eq. (8). When the thermodynamical potential, Eq. (8), should be globally min-
imized, σl, σs, φ, and φ∗ can be determined. In vacuum, σl0 = 92.4 MeV and
σs0 = 94.5 MeV, respectively [14,16].

In the left-hand panel of Fig. 1, the normalized chiral condensates, σl/σl0

and σs/σs0 , which correspond to the light and strange quarks, respectively, are
given as a function of temperature. The normalization is calculated with re-
spect to σl0 and σs0 , respectively. At vanishing chemical potential, the two
Polyakov-loop potentials (characterizing deconˇnement phase-transition) are iden-
tical, i. e., 〈φ〉 = 〈φ∗〉. The right-panel shows the temperature dependence of the
quark-number susceptibilities of the chiral and that of the deconˇnement phase-
transitions. The quark-number susceptibility is deduced from the temperature
derivative of the corresponding quantity. It is apparent that the quark-number sus-
ceptibilities can be estimated directly from the thermodynamical potential, Eq. (8).
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Fig. 1 (color online). Left-hand panel: the normalized chiral condensates σl

and σs (solid and dotted curves, respectively) and the Polyakov loop potential,
the order parameters φ and φ∗ (dashed curve) are given as a function of tem-
perature at vanishing baryon chemical potential. The right-hand panel shows
the temperature dependence of the chiral susceptibilities for light and strange
quarks (solid and dotted curves, respectively) and that for the deconˇnement
phase-transition (dashed curve)

In order to estimate the critical temperature, two approaches can be imple-
mented:

• the intersect of the order parameter with the corresponding chiral conden-
sate, the left-hand panel of Fig. 1.

• the peak in the thermal evolution of the strange and nonstrange chiral
condensates, the right-hand panel of Fig. 1.

In this way and according to the right-hand panel of Fig. 1, we can esti-
mate the chiral restoration temperatures. The critical temperature from the light
quark-number susceptibility obviously differs from the strange quark-number sus-
ceptibility. The broken chiral-symmetry for the light condensate is restored at
T l

χ ∼ 181 MeV. For strange quark the restoration comes off at T s
χ ∼ 220 MeV.

The critical temperature of the deconˇnement phase-transition seems to have a
higher value, T d

c ∼ 256 MeV.

Furthermore, the PLSM can be exploited to determine the physical masses
of the degenerated light and strange quarks under the assumption that the quark
chemical potentials are equivalent, μu = μd = μs. It is worthwhile to devote
further efforts to determining the correlations and the 
uctuations between the
chiral and deconˇnement phase-transition(s). According to the direct dependence
of quark masses on their condensates, ml = gσl/2 and ms = gσs/

√
2, and when

taking into account the 
avor-blind Yukawa coupling g = 6.5, one can straight-
forwardly deduce that the mass of the light constituent quark ml ∼ 300 MeV
and that of the strange constituent quark ms ∼ 433 MeV. In deducing chiral
condensates, various approaches have been implemented:
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• From the combined light and strange condensates as calculation in lattice,
the subtracted condensate is given as [38]

Δl,s =
〈l̄l〉 −

(
ml

ms

)
〈s̄s〉

∣∣∣∣
T

〈l̄l〉 −
(

ml

ms

)
〈s̄s〉

∣∣∣∣
T=0

, (12)

which obviously reads the ratio of the net light to strange quark condensates
at ˇnite temperature T to that at vanishing temperature [39]. This requires
estimating the quark-masses dependence on the chiral condensate at vanishing
and ˇnite temperature.

• From PLSM with 2 +1 quark 
avors [40], it was found that the subtracted
condensate is related to the ˇt parameters but with three degenerate quark 
avors.
In this case, replacing ml and ms by hl and hs, receptively, leads to

Δl,s =
σl −

(
hl

hs

)
σs

∣∣∣∣
T

σl −
(

hl

hs

)
σs

∣∣∣∣
T=0

. (13)

• From lattice QCD simulations, the dimensionless quantities are preferable.
Thus, the chiral order-parameter can be expressed in terms of the chiral conden-
sate [41],

Mb =
ms〈σ̄l(T, μ)〉

T 4
. (14)

The left-hand panel of Fig. 2 presents the subtracted chiral condensates as
a function of temperature at vanishing baryon chemical potential. The PLSM
calculations are compared with various 2 + 1 lattice QCD simulations, in which
asqtad [43] and p4 [44,45] improved staggered fermion actions with almost phys-
ical strange and light quark masses and temporal extent Nτ = 8 are implemented.
The agreement between both sets of calculations is excellent. The steeper drop
in the chiral subtracted condensate comes from the pure gluonic potential in the
grand canonical calculation in absence of the gluons interaction. The latter should
be improved with the inclusion of Polyakov loop potential.

It is evident that Δl,s remains ˇnite at low T . Near Tc, Δl,s decreases
very rapidly within a narrow range of temperatures, i. e., the light quark and
gluon degrees of freedom liberate, and the deconˇnement and/or the restoration
of broken chiral symmetry take place. It is worthwhile to highlight that the
introducing of the Polyakov loop corrections improves the calculation of the pure
gluonic potential through a gluon contribution, which causes smoothing chiral-
transition or repaid crossover [39,42].

The right-hand panel shows the temperature dependence of Mb, which com-
bines the strange quark mass with the light condensate normalized over T 4. The
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Fig. 2 (color online). Left-hand panel: the subtracted condensate given as a
function of temperature at vanishing baryon chemical potential is compared with
the lattice QCD results [39, 42]. Right-hand panel: the order parameter, Mb,
Eq. (14), calculated from PLSM (solid curve) is compared with lattice QCD
simulations implementing HISQ/tree action [41], Nτ = 8, Mq/Ms = 0.025
(triangles) and Mq/Ms = 0.05 (circles)

PLSM calculations (solid curve) are compared with HISQ/tree lattice QCD with
Nτ = 8 and two values for the quark masses, Mq/Ms = 0.025 (triangles) and
Mq/Ms = 0.05 (circles) [41]. The agreement between the two sets of calculations
is convincing, especially at high temperatures.

B. Dynamics of Gluonic Quasiparticles. The dynamical quasiparticle model
(DQPM) describes the phenomenology of interacting massless quarks and gluons
as noninteracting massive quasiparticles [46Ä48]. The gluonic and quark decay
widths and the relaxation time for quarks and gluons can be determined [48].
It was found that DQPM describes well the QCD properties in terms of single-
particle Green's function, especially above the critical temperatures [48]. The
model parameters are ˇtted in order to construct the equation of state at high
temperatures [48].

In DQPM, the coupling constant g2 (squared) at T > Tc has been approxi-
mated as [48]

g2(T/Tc) =
48π2

(11Nc − 2Nf) ln [λ2(T/Tc − Ts/Tc)2]
, (15)

where λ = 2.42 and Ts = 0.56 Tc are parameters extracted from the ˇt to
the lattice QCD results with Nf = 0 [48]. Alaternatively, a slightly different
analytical form for g2(T/Tc), which was ˇtted with the lattice QCD data [49],
can also be implemented. Accordingly, it was found that the effective gluons and
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Fig. 3 (color online). The temperature dependence of the decay constants of
quarks, antiquarks and gluons (long dotted and dotted curves) and their relaxation
times (solid and dashed curves) at vanishing chemical potential are calculated
from the dynamical quasiparticle model

quarks and antiquarks, respectively, have ˇnite decay widths at vanishing baryon
chemical potential [48]

Γg(T ) =
1
3
Nc

g2T

8π
ln

(
2c

g2
+ 1

)
, (16)

Γq(q̄)(T ) =
1
3

N2
c − 1
2Nc

g2T

8π
ln

(
2c

g2
+ 1

)
, (17)

where the parameter c = 14.4 is related to a magnetic cutoff [48]. In frame
of DQPM, the 
avor blind reaction rates for quarks and gluons are inversely-
dependent on the decay width, τq ∼ 1/Γq and τg ∼ 1/Γg, respectively. These two
quantities are essential in computing the electrical and the thermal conductivity,
Sec. III D.

Also for bulk and shear viscosity, the relaxation time plays an important role.
Figure 3 presents the dependence of the quark and gluon relaxation time and their
decay widths on the temperature at vanishing baryon chemical potential as calcu-
lated from DQPM. From Eqs. (16) and (17), the relaxation time is approximately
inversely proportional to the decay width. We notice that the thermal evolution
of the quark relaxation time is shorter than that of the gluon, while the values of
gluonic decays widths are smaller than those of the quarks.

C. Thermodynamics. The thermodynamical quantities can be estimated
from the free energy density of the canonical partition function Z at vanishing
baryon chemical potential. In the present work, we want to introduce the ther-
modynamical quantities needed in computing conductivities and viscosities, such
as the interaction measure, speed of sound c2

s, speciˇc heat cV and higher-orders
of the quark number multiplicity.
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1. Interaction Measure. The normalized interaction measure can be derived
from trace of the energy-momentum tensor, T μ

ν = ε − 3p,

Δ
T 4

=
ε − 3p

T 4
, (18)

with ε(p) being the energy density (pressure). Therefore, the normalized in-
teraction measure can be related to the QCD running strong coupling constant,
∝ T 4α2

s [50].
In Fig. 4, the temperature dependence of the normalized interaction measure

Δ/T 4, Eq. (18), from LSM with the quark 
avor blind Yukawa coupling constant
g = 6.5 and from PLSM with g = 6.5 and 10.5 is illustrated. The results
are compared with different lattice QCD calculations with asqtad [43] and p4
actions [44,45], temporal number Nτ = 8 as well as in the continuum extrapolated
limit [42].

We notice that the thermal dependence of the normalized interaction measure,
which is estimated at Yukawa coupling g = 6.5, describes well the lattice QCD
calculations with asqtad action and Nτ = 8 (square points) [51]. When increasing
the Yukawa coupling to 10.5, the peak gets closer to the lattice QCD calculations
with p4 action and Nτ = 8 (triangle points) [42]. In the hadron phase, the in-

Fig. 4 (color online). The trace anomaly (ε−3p)/T 4 as a function of temperature
at vanishing baryon chemical potential is calculated from LSM (dashed curve)
and PLSM with Yukawa coupling constants g = 6.5 (solid curve) and g = 10.5
(dotted curve) and compared with lattice QCD calculations (triangle, square and
circle symbols) [42], [51]
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teraction measure is small and increases with the temperature. A peak appears at
the critical temperature. Further increase in the temperature decreases the interac-
tion measure, i. e., derives the system stronger in the deconˇnement status. The
critical temperature in lattice calculations Tc ∼ 181± 9 MeV. Inserting Polyakov
loop potential in LSM moves the peak to a higher temperature. Accordingly,
Tχ ∼ 240 MeV (in PLSM).

2. Speed of Sound and Speciˇc Heat. Analogyously to hydrodynamical
approaches, which have been applied on the relativistic heavy-ion collisions and
conducted the RHIC discovery of 2004, the speed of sound cs is also an essential

Fig. 5 (color online). a) The speed of sound squared calculated as a function
of temperature at vanishing baryon chemical potential from LSM (dashed curve)
and PLSM (solid curve) is compared with the lattice QCD calculations [52]
(triangle points), [42] (square points) and [51] (circle points). b) The temperature
dependence of the dimensionless speciˇc heat cV /T 3 is calculated from LSM
(dashed curve) and PLSM (solid curve) at vanishing baryon chemical potential
and compared with the lattice QCD results [51]. In both panels, the arrow in
upper right corner refers to the StefanÄBoltzmann-limit
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quantity to be estimated. The speed of sound is related to the equation of
state p(ε). At a constant entropy

c2
s =

(
∂p

∂ε

)
s

=
s

cv
, (19)

where the speciˇc heat cv gives the thermal rate change of the energy density at
a constant volume,

cV =
(

∂ε

∂T

)
v

. (20)

In Fig. 5, the temperature dependence of the speed of sound squared (left-
panel) and the speciˇc heat at a constant volume (right-panel) are calculated at
vanishing baryon chemical potential. In the left-hand panel, the results from
LSM and PLSM are compared with lattice QCD calculations [42] (square points)
with Nτ = 8 and [51] (square points) in the continuum limit extrapolation.
A satisfying agreement between lattice QCD and PLSM is obtained, especially
above the critical temperature Tc. The temperature is normalized with respect
to Tc, where the lattice Tc ∼ 181±9 MeV, while the chiral restoration temperature
from PLSM Tχ ∼ 240 MeV. It is obvious that the speed of sound c2

s approaches
the StefanÄBoltzmann limit, 1/3, at very high temperatures. The peak, which
appears near the critical temperature, is due to the fast rate of the energy density
change with increasing temperature. The temperature dependence of the speciˇc
heat calculated from LSM and PLSM at vanishing baryon chemical potential is
presented in the right-hand panel of Fig. 5. The presence of color and gluon
interactions, which are included through the Polyakov loop potential, tends to
enhance the peak.

3. Higher-Order of Quark Number Multiplicity. In this section, we introduce
the ˇrst two higher-order moments, which refer to the particle number multiplicity
distribution and susceptibility calculated from PLSM. Studying the dependence
of quark number on the temperature is equivalent to analysis of the thermal
evolution of the 
uctuations in the degrees of freedom of the system, which has a
net-number of light or strange quarks. Here, we assume degenerate quarks so that
the baryon chemical potentials μu = μd = μs. The second-order moment, χq ,
stands for the variance in the given distribution, i. e., how far a set of numbers
spread out δnq = nq −〈nq〉. The dimensionless quark-number and quark number
susceptibility can be deduced as

nq(T, μ)
T 3

= −∂Ω(T, μ)
T 3∂μ

, (21)

χq(T, μ)
T 2

= −∂2Ω(T, μ)
T 2∂μ2

. (22)

The temperature dependence of dimensionless quantities, quark number (left-
hand) and quark-number susceptibility (right-hand panel) at different baryon
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Fig. 6 (color online). Left-hand panel: the temperature dependence of the dimen-
sionless quark number density nq/T 3 calculated from PLSM at different baryon
chemical potentials, μ = 0 (solid), 150 (dot-dashed), and 250 MeV (dotted curve)
is compared with the StefanÄBoltzmann limits (dashed curves diverging at low T )
at the same values of μ. Right-hand panel: the same as in the left-hand panel but
for the dimensionless quark number susceptibility, χ/T 2

chemical potential μ = 0, 150 and 250 MeV is shown in Fig. 6. Both quan-
tities are compared with the thermal dependence of the Stefan-Boltzmann limits
at the same values of the baryon chemical potential. It is conjectured that this
comparison re
ects the change in the number of quarks and antiquarks leav-
ing/entering the system of interest. Increasing chemical potential seems to reduce
the idealization of the system with massless gluonic or fermions, i. e., brings the
system closer to the StefanÄBoltzmann limits. Furthermore, it is obvious that in-
creasing μ increases both nq(T, μ)/T 3 and χq(T, μ)/T 2 and enhances the peaks
in both quantities. The quark-number susceptibility corresponding to large μ
approaches idealization with massless gluonic or fermions faster than the one at
smaller μ.

D. Transport Coefˇcients. QGP properties represent theoretical, experi-
mental and even numerical challenge. In high-energy experiments, detectors are
designed to register hadron-, lepton-, and electromagnetic signals. Partons are
not detectable, at least directly. This explains why the properties of QGP are still
not tackled, experimentally. Nonperturbative QCD is very sophisticated. Further-
more, lattice QCD at ˇnite baryon chemical potential suffers from the so-called
sign-problem, which breaks down the MC computational techniques. Effective
models, such as LSM and NJL, in which some QCD dof, symmetries, dynamics,
etc., are included, play an essential role. In the present work, we discuss main
lines in determining the transport coefˇcients including conductivities and viscous
properties of QGP. We compare the PLSM results with the available results of
lattice QCD simulations.

1. Electric and Heat Conductivity. Due to deconˇnement of color charges,
one may expect that QGP is a quite good conductor [28]. We shall see that this
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guess is related to the electrical but to the thermal conductivity. The electrical
conductivity σe is a key transport coefˇcient, which recently gains an increasing
interest among particle physicists. This physical property is related to the 
ow
of the charge carriers, especially in presence of an electric ˇeld and can be
measured by various methods. The ˇrst one applies an empirical methodology,
where an external electric ˇeld is applied on the system of interest. The induced
electric current 
j = σe


E, with σe being the proportionally constant, can be
evaluated [28]. The second one refers the self-interaction between quarks and
gluons, i. e., no external electric ˇeld is needed. This is known as GreenÄKubo
corrector [28,53,54].

Analogously to classical gasses, i. e., DurdeÄLorentz conductivity [53],

σe(T, μ) =
∑

k

4π

137
q2
k

nk(T, μ)τk(T, μ)
mk(T, μ)

, (23)

where k runs over quarks u, d, s, and antiquarks ū, d̄, s̄, and gluons g, while q
are their electric charges, the electric conductivity of QCD can be estimated [54].
Accordingly, the functions nk, τk , and mk, which stand for number density,
relaxation time and mass in dependence on T and μ, respectively, are to be
directly implemented in the strong interaction system. The factor 4π/137 counts
the electromagnetic ˇne structure constant and the summation over fractional
electric charges.

The heat conductivity κ(T, μ) is related to the heat 
ow in the relativistic

uid [55Ä58] and gives an indicator about the rate of the energy change taking
place in the system of interest. A simple way to estimate the evolution of heat
conductivity is simulating the likely irradiation occurring in the system of interest
by means of energetic ions [59]. From speciˇc heat cv and relaxation time τ , the
heat conductivity reads [60]

κ(T, μ) =
1
3
νrelcV (T, μ)

∑
k

τk(T, μ), (24)

where νrel are the relative velocities. For simplicity, it was assumed that νrel ∼ 1.
For two quarks with masses m1 and m2, the center-of-mass collisions result
in relative velocity νrel =

√
(p1p2)2 − (m1m2)2/E1E2 [61]. In the relativistic

limit, the quark masses are negligibly small relative to the momentum, where
the quark masses decrease with increasing T according to the chiral condensate,
Fig. 1, while the mean momentum increases remarkably, νrel ∼ 1.

The left-hand panel of Fig. 7 shows the temperature dependence of the electric
conductivity σe/T at vanishing baryon chemical potential. The PLSM calcula-
tions are compared with various lattice results [62Ä65] and with some QCD-like
effective models such as PHSD [27], NJL and DQPM [24].

The electric conductivity, which effectively depends on the temperature and
the chemical potential, Eq. (23) is strongly related to the decay constant or the
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Fig. 7 (color online). Left-hand panel: electric conductivity given as a function
of temperature at vanishing baryon chemical potential is calculated from PLSM
(solid curve) and compared with the NJL [24] (dotted dash) and DQPM [24]
(double dotted) and lattice QCD simulations [63] (circle points, square points),
[65] (closed circle points), [64] (cross point) and [81] (open triangle). Right-
hand panel: the heat conductivity normalized to T 2 is calculated as a function of
temperature at vanishing baryon chemical potential from PLSM (solid curve) and
compared with NJL [24] (dotted dash) and DQPM (double dotted) [24]

relaxation time of the quarks. Because of the interaction between quarks and
gluons, the increase in the baryon chemical potential increases the quark and
antiquark numbers, (see the left-hand panel of Fig. 6). The PLSM results of the
dimensionless quantity σe/T are compared with different QCD-like models, NJL
and DQPM [24] and lattice QCD simulations [63], where the circles denote the
lattice size Ns = 243, and the square symbols represent calculation on Ns = 323

lattice. In both calculations 2+ 1 quark obtained numberot 
avors are used. Fur-
thermore, the lattice QCD results given as closed circles [65] and crosses [64] are
with ˇnite quark 
avors, while the open triangles are lattice QCD calculations [81]
with out 
avor.

In neutral units and in free space, the electric conductivity is multiplied by
e2 = 4πα and quark electric charges

∑
qk, where the electromagnetic coupling

or the ˇne-structure constant at zero energy α = 1/137 [63]. The lattice QCD
simulations are normalized by the quark charges 5/9 for Nf = 2 and electron
charge e [63]. The PLSM results agree well with the lattice calculations [63],
especially up to T > Tc. From the temperature dependence of the electric con-
ductivity calculated from PLSM and compared with some other QCD-like models,
such as NJL and DQPM [24], we conclude that the PLSM results are most com-
parable with the lattice QCD simulations [63]. The PLSM electric conductivity
curve, which is calculated from Eq. (23), refers to a combination between the
quark-number multiplicity and their masses. Despite the quark relaxation time
was estimated from DQPM, the DQPM and NJL results [24] fairly agree with the
lattice QCD [63], especially at T < Tc.
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Fig. 8 (color online). The numerical estimation for the ratio of heat-to-electric
conductivities as a function of temperature at vanishing baryon chemical potential
is compared with PLSM (solid curve), NJL (dotted dash), and DQPM (double
dotted) [24]

The right-hand panel of Fig. 7 shows the heat conductivity normalized to T 2

as a function of temperature at vanishing baryon chemical potential. The PLSM
calculations are compared with NJL and DQPM [24]. It is worthwhile to highlight
that these different models have different critical temperatures, Tc ∼ 240 MeV
from PLSM, Tc ∼ 200 MeV from NJL, and Tc ∼ 158 MeV from DQPM. The
temperature dependence of NJL heat conductivity normalized to T 2, Eq. (24),
decreases faster than the one from PLSM [24]. From DQPM, the temperature
dependence is the opposite. Here, increasing temperature increases the heat
conductivity. There are no lattice QCD calculations to compare with it.

Figure 8 presents the numerical estimation for the ratios κ/T 2-to-σe/T cal-
culated from different effective models. From PLSM, this ratio rapidly decreases.
It is faster than the ones calculated from NJL and DQPM [24], especially at tem-
peratures exceeding the critical one Tc. This no longer depends on the relaxation
time. There are no lattice QCD calculations to be compared with. At T > Tc,
the ratios from the different models are distinguishable by about one order of
magnitude.

2. Bulk and Shear Viscosity. The discussion about the transport coefˇcients
would not be entirely without the viscosity, which is strongly related to the
hydrodynamical 
ow of the relativistic 
uid, the hadron and parton phases in
our case, and the transverse motion of the particles during the expansion of the
strongly interacting system [66,67]. In other words, the estimation of viscosity is
very essential to check out the evaluation of the physical observables such as the
elliptic 
ow v2 [66,67] and the correlation functions [66,67].

Also, the viscosity is related to thermodynamical quantities such as trace
anomaly, speciˇc heat and speed of sound [68]. According to Kubos formula, the
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bulk viscosity is related to the correlation functions of the trace of the energy-
momentum tensor T ν

μ [68],

ξ = lim
ω→0

1
9ω

∞∫
0

dt

∫
dr3〈[T ν

μ (x), T ν
μ (0)]〉 eiωt, (25)

where ω is the frequency of quark and gluon vibration [68]. For a narrow
frequency region, ω → ω0 ≡ ω0(T ) ∼ T [68]. Thus, the bulk viscosity reads

ξ =
1

9T

[
T 5 ∂

∂T

(
ε − 3p

T 4

)
+ 16|εv|

]
=

1
9T

[−16ε + 9TS + TcV + 16|εv|] ,
(26)

with εv being the vacuum energy density, which is to be estimated from the
lattice QCD calculations and related to the critical temperature [68].

From the expressions of the speed of sound and the bulk viscosity [72], a
relation between bulk and shear viscosities and the speed of sound [72] can be
deduced as

η ∼ ξ

−0.45(c2
s − 1

3 )
. (27)

Expression (27) results in a behavior similar to the one introduced in [73,74],

η ∼ ξ

(c2
s − 1

3 )2
. (28)

In the left-hand panel of Fig. 9, the temperature dependence of the ratio
of bulk viscosity ξ on the thermal entropy s(T ) at vanishing baryon chemical
potential is presented. The ratio of shear viscosity to the thermal entropy η/s as
a function of temperature at vanishing baryon chemical potential is given in the
right-hand panel. At temperatures close to the critical one, the ratio ξ/s shows
a good agreement with the lattice QCD results [68Ä71]. The agreement with
LSM [14,75], DQPM and NJL models [24] are good, as well. The entropy tends
to vanish in order to decrease temperature.

The ratio ξ/s can be estimated from the energy density and trace anomaly,
Eq. (26). Around Tc, the energy density has a sudden change. Accordingly,
ξ/s rapidly decreases and a ˇrst-order phase-transition turns to be likely. The
sharp increase in the bulk viscosity nears to the phase transition or induces
instability in the hydrodynamic 
ow of the plasma. This is responsible for some
RHIC observables [76]. Thus, investigating ξ/s would have great impact on
experimental observables.

From PLSM, the shear viscosity is very strongly related to the behavior of the
speed of sound and the bulk viscosity, Eq. (27). A good agreement with the lattice
QCD calculations [68Ä71] and other effective models [24,27] is observed. In par-
ticular, the lower values of the ratio shear viscosity over entropy refers to low QGP
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Fig. 9 (color online). Left-hand panel: the ratio of bulk viscosity and the thermal
entropy ξ/s calculated from PLSM (solid curve) and compared with lattice QCD
simulations [69] (cross points) and [70] (circle points and square points) is given
as a function of temperature vanishing baryon chemical potential. The right-hand
panel shows the ratio of shear viscosity to the thermal entropy η/s calculated
from PLSM (solid curve) with the available lattice QCD simulations [69] (cross
points), [70] (circle points and square points) and [71] (triangle points). The
KovtunÄSonÄStarinets (KSS) bound is shown. In both panels the results are
compared with NJL (dotted dash) and DQPM (double dotted) [24]

Fig. 10 (color online). The ratio of bulk to shear viscosities at vanishing baryon
chemical potential is compared with lattice QCD results [69]

viscosity in the partonic phase [77]. This decrease is caused by the stronger inter-
actions and released degrees of freedom. It is supported by the experimental de-
scription of the collective 
ow in heavy-ion collisions [78,79]. It is worthwhile to
notice that the numerical estimation of the ratio of viscosity over thermal entropy
from PLSM is higher than KSS bound [80]. The latter is T -independent, ∼ 1/4π.

Figure 10 shows the ratio of bulk to shear viscosities as a function of temper-
ature. When T approaches the critical value, a sudden drop takes place and the
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Fig. 11 (color online). In a log-scale, the thermal dependence of ξ/s-to-σe/T
(left-hand panel) and η/s-to-σe/T (right-hand panel) is calculated as a function
of temperature at vanishing baryon chemical potential from PLSM. In the left-
hand panel, the results are confronted to the available results of lattice QCD
simulations [81]

ratio tends to be T -independent. There is a maximum around the phase transition.
This behavior is conˇrmed by the lattice QCD calculations [69].

In Fig. 11, the ratio of bulk and shear viscosities (normalized to the entropy)
with the electric conductivities, (ξ/s)/(σe/T ) and (η/s)/(σe/T ), respectively,
is calculated from PLSM as a function of temperature. All these quantities are
dimensionless. This should allow checking the possible scenarios when QGP
approaches the phase transition and when the conˇnement dynamics becomes
dominant. There is an independent behavior, when the quarks and gluons be-
come deconˇned and deform the new-state-of-matter, the QGP. Both quantities
(ξ/s)/(σe/T ) and (η/s)/(σe/T ) are conjectured to give estimation for the de-
viation from the predicted values, which would be utilized as signatures of the
unknown properties of QGP [28].

In [28], it is found that the temperature dependence of the ratio (η/s)/(σe/T )
is independent of the strong running coupling, αs [28]. As the gluons are not
electrically charged, the ratio could be regulated by relative strength and chemical
composition of QGP [28] at very high temperature (5−10) Tc [28]. To the
authors' best knowledge, not like (η/s)/(σe/T ) [81], the (ξ/s)/(σe/T ) is not
yet calculated in lattice QCD.

IV. CONCLUSIONS AND OUTLOOK

The studying of transport properties is an effective aspect of characterizing the
strongly interacting matter. When the system is perturbed from its equilibrium,
the transport properties, such as bulk viscosity ξ, shear viscosity η, electric
conductivity σe and thermal conductivity κ, play an essential role in deˇning the
system of interest. For completeness, we mention that another transport coefˇcient

19



which plays an important role in the hydrodynamical evolution of the strongly
interacting QCD matter especially around phase transition, is the ratio of bulk
viscosity to the thermal entropy, η/s.

We have employed PLSM in order to study the transport coefˇcients in
hadronic and partonic systems. In doing this, we have introduced various ther-
modynamical quantities such as trace anomaly, speed of sound and speciˇc heat.
Also, the ˇrst two higher-order moments, the particle number multiplicity and
the particle number susceptibility contribute to the estimation of the transport
coefˇcients. The quark decay widths and their relaxation time are estimated from
DQPM. All these quantities are needed in describing the fundamental transport
coefˇcients.

We ˇnd that the PLSM ˇts well with the results of lattice QCD calculations,
especially from Hot-QCD collaboration. The subtracted chiral condensates and
the deconˇnement order parameters are in good agreement with each other. For
instance, they conˇrm the steeper drop around the phase transition. Pure gluonic
potential and the absence of gluon interaction are two characteristics of LSM.
With introducing Polyakov-loop corrections to the LSM approach, we are able
to compare the results with the same lattice data for trace anomaly at different
quark 
avor blind Yukawa coupling g = 6.5 and 10.5.

Also, the temperature dependence of the speed of sound and the speciˇc heat
downward the StefanÄBoltzmann limit are compared with the lattice results. The
peaks in both curves refer to a fast change in the thermal rate in the energy
density. The particle number multiplicity and particle number susceptibility at
ˇxed different baryon chemical potential are compared with the corresponding
StefanÄBoltzmann limits. We conclude that an increase in the baryon chemical
potential seems to reduce the idealization of the system as the one with massless
gluonic or fermions. We also ˇnd that the PLSM is not able to reproduce the
lattice QCD equations of state. This is because of the degrees of freedom, which
should not be sufˇcient near Tc. Furthermore, there is no explicit control on
the color degrees of freedom and on their contributions to the thermodynamical
potential. The ˇt parameters likely change according to the degrees of freedom.
Here, we focus the discussion to the estimation of the transport coefˇcients, only.
In a future work, we plan to update the model's parameters according to the most
recent lattice QCD simulations.

We have estimated the electric conductivity for a system, in which quarks
and gluons are conjectured to scatter elastically and inelastically. This allows
estimating their relaxation time and decay width. We ˇnd a good agreement
with a relativistic version of the Drude formula for the electric conductivity.
We have deduced the dimensionless electric conductivity and confronted it with
the recent lattice QCD and found a good agreement. An irradiation occurring
in the system has been considered. In calculating the heat conductivity, an
irradiation is conjectured to take place in the system. This has been taken into
consideration. The results are comparable with the QCD-like models. The gap
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difference between the ratio of electric and thermal conductivities increases with
increasing temperature, especially at T > Tc. There are no lattice QCD results to
compare with.

The bulk viscosity which is related to various thermodynamical quantities,
is calculated from the Kubo's formula. This quantity is strongly related to the
phase transition and response to the instability in the hydrodynamic 
ow of the
system. The shear viscosity has been estimated from the speed of sound and
the bulk viscosity. The ratio of shear viscosity to the electric conductivity was
compared with the available results of lattice QCD calculations. The agreement
is very convincing. We conclude that PLSM is able to reproduce the lattice QCD
calculations.

We have argued that the ratio of bulk and shear viscosities (normalized to the
thermal entropy) and the electric conductivity, (ξ/s)/(σe/T ) and (η/s)/(σe/T ),
would favor or disfavor the possible phenomenological scenarios from PLSM
(present work) or PNJL or DQPM, especially QGP cools down to Tc. There are
different independent behaviors referring to essential properties of QGP. These
are regulated by relative strength and chemical composition of the QGP. The
transport coefˇcients for different QCD-like models show a clear dependence on
temperature and baryon chemical potential. The results of the transport properties
are basic ingredients on studying hot and dense matter.
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