В. Б. Злоказов, В. А. Морозов, Н. В. Морозова

ПРОГРАММА VMRIA ДЛЯ ОПРЕДЕЛЕНИЯ ВРЕМЕНИ ВЫСВЕЧИВАНИЯ СЦИНИТЛЯТОРОВ ПРИ ОБРАБОТКЕ 3D (E−T−N)-РАСПРЕДЕЛЕНИЙ
Злоказов В.Б., Морозов В.А., Морозова Н.В. П10-2015-63
Программа VMRIA для определения времени высвечивания сцинтилляторов при обработке 3D (E−T−N)-распределений

Представлена программа определения времени высвечивания сцинтилляторов с использованием автокорреляционного временного спектрометра задержанных совпадений. Приведен результат измерения времени высвечивания сцинтиллятора LaBr₃:Ce — $\tau = 22,5(2)$ нс.

Работа выполнена в Лаборатории ядерных проблем им. В.П.Джелепова ОИЯИ.

Злоказов В.Б., Морозов В.А., Морозова Н.В. П10-2015-63
VMRIA — Program for Definition of the Scintillator Decay Times at Processing 3D (E−T−N) Distributions

The program of determination of the scintillator decay time with use of an autocorrelated time spectrometer is submitted. The result of measurement of the LaBr₃:Ce decay time is given — $\tau = 22,5(2)$ ns.

The investigation has been performed at the Dzhelepov Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 2015
Данная работа связана с созданием нового метода определения времени высвечивания сцинтилляторов в области от нескольких наносекунд до микросекунд. Для решения этой задачи был применен автокорреляционный метод задержанных совпадений [1] с использованием одного фотодетектора и стандартного комплекса наносекундной электроники (рис. 1). Основные элементы временного спектрометра включали в себя фотоумножитель XP2020, работающий в токовом режиме, дискриминатор CANBERRA-2126, временной-амплитудный конвертер TRHS-467. Принцип реализации этого метода заключается в регистрации временных интервалов, соответствующих определенным энергиям и определяемых разностью времени возбуждения сцинтиллятора и временем регистрации первого одиночного импульса, появляющегося после окончания процесса накопления одноэлектронных импульсов в начальный момент регистрации в соответствии с экспоненциальным распадом возбужденных состояний центров люминесценции исследуемых сцинтилляторов. Детальное описание метода определения времени высвечивания сцинтиллятора автокорреляционным способом представлено в работе [2].

Определение времени высвечивания сцинтилляторов при использовании автокорреляционного метода решается переходом от одномерного анализа изменения скорости счета задержанных совпадений во времени к двумерному анализу $(E-T)$-распределений. Задача заключается только в выделении

Рис. 1. Блок-схема автокорреляционного однокристального временного спектрометра. $R_1 = 100$ кОм, $R_2 = 50$ Ом
Рис. 2. 3D \((E-T-N)\)-распределение, полученное при определении времени высвечивания сцинтиллятора LaBr3:Ce при его возбуждении источником \(^{60}\)Co

Рис. 3. 2D \((E-T)\)-распределение, сформированное из трехмерной матрицы
на временной шкале участков, соответствующих регистрации одноэлектронных событий после прекращения блокировки дискриминатора из-за увеличения длительности импульсов вследствие наложения одноэлектронных импульсов, и осуществлении перехода от анализа временных распределений типа \(N(t) = N_0 \exp (-t/\tau) \) к анализу распределений \(E(t) = E_0 \exp (t/\tau) \), где \(\tau \) — время высвечивания сцинтиллятора. Задача вычисления времени высвечивания сцинтиллятора сводилась к трансформации 3D \((E-T-N)\)-матрицы, где \(N \) — число отсчетов в каждом бине (рис. 2), в 2D \((E-T)\)-матрицу (рис. 3).

Проблема определения времени высвечивания сцинтиллятора решается построением свертки распределений:

\[
u(E) = \sum_{t} s(t,E) t/N,\]
\[
E(t) = \sum_{E=1}^{n} s(t,E) E/N,
\]

где \(N \) — общий интеграл распределения (сумма всех событий). Функция \(u(E) \) — это приближение среднее время (временной канал) событий для данного \(E \); функция \(E(t) \) — это приближение средняя энергия (канал энергий) событий для данного \(t \).

Распределение (точнее, эмпирическая плотность распределения) \(u(t) \) инвариантна относительно преобразования \(t \rightarrow kt \), если при этом \(\tau \rightarrow k\tau \) (т. е. при одинаковом временном смеще \(t \) и \(\tau \) речь идет лишь о выборе единиц времени).

Полезная информация распределения заключена в тех событиях, координаты \(t, E \) которых связаны зависимостью \(E = A \exp (t/\tau) \).

Грубое приближение мы можем выделить эмпирическое соответствие «энергия–время» \(E \approx t_E \), где в качестве времени \(t_E \) берется \(u(E) \). Это множество пар можно использовать для построения оценок параметров \(A, \tau \), т. е. подгоняя данные \((E, t_E)\) к модели \(A \exp (t/\tau) \) минимизацией выражения

\[
\sum_{E=1}^{n} \omega(E)(E - A \exp (t_E/\tau))^2, \tag{1}
\]

где \(\omega(E) \) — весовая функция, обычно обратно пропорциональная \(d(t)\)-квадрату ошибки \(E \) (зависящей от ошибки \(t_E \)).

Это нелинейный по параметрам \((A, \tau)\) фитинг. Выражение (1) можно линеаризовать по параметрам преобразованием

\[
E \rightarrow \ln (E), \quad A \exp (t_E/\tau) \rightarrow \ln (A) + t_E/\tau.
\]

3
Переопределив параметры $A_n \rightarrow \ln (A); \quad T_n = 1/\tau$, мы преобразуем (1) в задачу, линейную по параметрам A_n, T_n.

$$
\sum_{E=1}^{n} \omega(E)(\ln (E) - A_n - tET_n)^2. \quad (2)
$$

Решение задачи (2) даёт нам оценки A_n, T_n, из которых мы легко получим оценки A и τ, используя которые в качестве начальных оценок, мы с помощью нелинейного фитинга получим уточнённые искомые оценки.

К сожалению, ситуация осложнена присутствием в plane distribution многочисленных посторонних событий, что приводит к неустойчивой и ненадежной работе фитинга. Поэтому к (1) применяется прием робастности, который в данном случае заключается в следующем. В качестве весовой функции $\omega(E)$ в (1) выбирается выражение, зависящее от априорной оценки параметров A_0, τ_0 (например, решение логарифмической задачи или данные, полученные на предыдущей итерации):

$$
\omega(t, A_0, \tau_0) = \begin{cases}
1/d(t), & \text{если } |h(t)| < c, \\
(1 + \beta)/(d(t)((h(t)/c)^2 + \beta)), & \text{в противном случае},
\end{cases}
$$

где $d(t)$ — дисперсия, а $h(t) = E - A_0 \exp (t_E/\tau_0)$; c и β являются заданными константами, определяющими стратегию робастной подгонки. Достоинством таких весов является то, что посторонние промеси значительно подавляются автоматически, т.е. в тех точках t, где E явно не подгоняется функцией $A \exp (t_E/\tau)$, ее влияние на ход процесса минимизации подавляется, так что возникает шанс правильно аппроксимировать E, по крайней мере, на части множества $\{t_E\}$. Механизм фильтрации правильного решения при таком подходе в отличие от метода штрафных функций, где большие отклонения от истинных функций наказываются, здесь поощряет большие отклонения от подгоняемой функции, нейтрализуя однако их там, где фитинг явно не работает. Формализм квадратичного фитинга позволяет, кроме того, оценить хотя бы частично статистическую точность найденных параметров. Более подробное изложение как физического, так и математического содержания можно найти в [2, 3].

При использовании программы VMRIA последовательно открываются два диалоговых окна (рис. 4, 5). После первой установочной команды Graph — Plane Distribution во втором диалоговом окне вводится последовательно все другие параметры в соответствии с оптимизацией решения задачи. Заметим, что чувствительность — это амплитуда в распределении $s(t, E)$, ниже которой события в ячейке считаются фоновыми и ячейка зануляется (при условии, что в окружающих ячейках событий нет).

1. Set the bounds of the event distribution (N in $t < 121$, N in $E < 121$).

Преобразуется матрица от 4000×4000 к графической матрице 120×120.

4
Установить границы координат событий — t (время) и E (энергия). Действует ограничение — обе границы не более 120.

2. Set the sizes.

X_{phys} — диапазон X-координат на плоскости (t вдоль абсцисс); Y_{phys} — диапазон Y-координат на плоскости (E вдоль ординат); N in t, N in E — максимальное число событий по t и E в зависимости $A \exp (t/\tau)$; Pos.weights for — диапазон весов для кривой $A \exp (t/\tau)$; Sens−Chanwidth — чувствительность (ширина канала в единицах t).

3. Specify column combination in the event file комбинируется из 2D-, 3D- или 4D-матрицы 1,2 1,3 1,4 2,3 2,4 3,4. Пара номеров указывает, какая комбинация описывает 1 событие.

4. Specify the scale.

Указывает стиль и тип масштабов на плоскости

X axis logarithmic

Y axis logarithmic

XY axes reversed — перевернуть оси X и Y. thick point — число пикселей на графе 1 или 5 на 1 точку-событие.
Рис. 5. Второе диалоговое окно программы VMRIA

Рис. 6. Результаты определения времени высвечивания сцинтиллятора LaBr3:Ce по программе VMRIA
5. Execute the command.
Выполнить команду Toggle Fit Graph Key — включить (выключить) построение графика; Enter the events — ввести массив данных и отобразить его на плоскости; Execute the fitting — выполнить фитинг кривой $A \exp \left(\frac{t}{\tau} \right)$; Exit — выход.

На рис. 6 представлен результат определения времени высвечивания сцинтиллятора LaBr3:Ce. Кристалл фирмы «Saint-Goben B380» имел размеры 38×38 мм (содержание примеси Ce неизвестно). Полученный результат $\tau = 22,5(2)$ не подтверждает известные данные [4], соответствующие в зависимости от процентного содержания Ce (от 5 до 0,5%) значениям τ от 15 до 26 ис.

Авторы признательны В. Б. Бруданину за постоянную поддержку работы.

Литература

Получено 21 июля 2015 г.