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�μ£¤ ´μ¢  �. �., ’μ¤μ·μ¢ ‘.’., �¸μ¸±μ¢ ƒ. �. E10-2015-67
ˆ¸¶μ²Ó§μ¢ ´¨¥ ³¥Éμ¤  · §²μ¦¥´¨Ö ¶μ μ·Éμ´μ·³¨·μ¢ ´´Ò³ ¶μ²¨´μ³ ³
¤²Ö μ¶¨¸ ´¨Ö Ô´¥·£¥É¨Î¥¸±¨Ì ¸¶¥±É·μ¢ ¡¨μ²μ£¨Î¥¸±¨Ì ¦¨¤±μ¸É¥°

Œ¥Éμ¤ · §²μ¦¥´¨Ö ¶μ μ·Éμ´μ·³¨·μ¢ ´´Ò³ ¶μ²¨´μ³ ³ ¶·¨³¥´Ö¥É¸Ö ¤²Ö μ¶¨-
¸ ´¨Ö ¤ ´´ÒÌ, ¶μ²ÊÎ¥´´ÒÌ ³¥Éμ¤μ³ Ô´¥·£¥É¨Î¥¸±¨Ì ¸¶¥±É·μ¢ ¤²Ö ¦¨¤±¨Ì ¡¨μ-
³ ¸¸, ¢Ò· Ð¥´´ÒÌ ¸ ¨¸¶μ²Ó§μ¢ ´¨¥³ £¥·¡¨Í¨¤μ¢. ’ ± ± ± ¡¨μ³ ¸¸  ¡¨μ²μ£¨-
Î¥¸±¨Ì μ¡Ñ¥±Éμ¢ ¸μ¤¥·¦¨É ¦¨¤±μ¸É¨, ¸μ¸ÉμÖÐ¨¥ ¢ μ¸´μ¢´μ³ ¨§ ¢μ¤Ò, ³¥Éμ¤
¢μ¤´ÒÌ ¸¶¥±É·μ¢ ³μ¦¥É ¡ÒÉÓ ¶·¨³¥´¥´ ¨ ¢ ÔÉμ³ ¸²ÊÎ ¥. � ¸¸³ É·¨¢ ÕÉ¸Ö É ±¦¥
¶μÌμ¦¨¥ ¤ ´´Ò¥, ¶μ²ÊÎ¥´´Ò¥ ´  ±μ´É·μ²Ó´μ³ μ¡· §Í¥, ¸μ¸ÉμÖÐ¥³ ¨§ ¦¨¤±μ¸É¨
¶Ï¥´¨ÍÒ, ¢Ò· Ð¥´´μ° ¡¥§ ¶·¨³¥´¥´¨Ö £¥·¡¨Í¨¤μ¢. „²Ö μ¶¨¸ ´¨Ö ¸¶¥±É·μ¢ ¡Ò²
¨¸¶μ²Ó§μ¢ ´ ³¥Éμ¤ μ·Éμ´μ·³¨·μ¢ ´´ÒÌ ¶μ²¨´μ³μ¢, μ¸´μ¢ ´´Ò° ´  ¶μ²´μ° (ÔË-
Ë¥±É¨¢´μ°) ¤¨¸¶¥·¸¨¨, ÊÎ¨ÉÒ¢ ÕÐ¥° μÏ¨¡±¨ ¶μ μ¡¥¨³ (§ ¢¨¸¨³μ° ¨ ´¥§ ¢¨¸¨-
³μ°) ¶¥·¥³¥´´Ò³. �Ò²¨ ¶·¨³¥´¥´Ò ¸¶¥Í¨ ²Ó´Ò¥ ±·¨É¥·¨¨ μÍ¥´±¨ μ¶É¨³ ²Ó´μ°
¸É¥¶¥´¨ ¶μ²¨´μ³  ¨ Î¨¸²  ¨É¥· Í¨°. �¥§Ê²ÓÉ ÉÒ · ¸Î¥É  Ìμ·μÏμ μ¶¨¸Ò¢ ÕÉ Ô±¸-
¶¥·¨³¥´É ²Ó´Ò¥ ¤ ´´Ò¥ ¢ Ëμ·³¥, Ê¤μ¡´μ° ¤²Ö ¤ ²Ó´¥°Ï¥£μ  ´ ²¨§  ¢ μ¡² ¸É¨
É¥μ·¥É¨Î¥¸±μ° Ô±μ²μ£¨¨.

� ¡μÉ  ¢Ò¶μ²´¥´  ¢ ‹ ¡μ· Éμ·¨¨ ¨´Ëμ·³ Í¨μ´´ÒÌ É¥Ì´μ²μ£¨° �ˆŸˆ.

‘μμ¡Ð¥´¨¥ �¡Ñ¥¤¨´¥´´μ£μ ¨´¸É¨ÉÊÉ  Ö¤¥·´ÒÌ ¨¸¸²¥¤μ¢ ´¨°. „Ê¡´ , 2015

Bogdanova N. B., Todorov S. T., Ososkov G.A. E10-2015-67
Use of Orthonormal Polynomial Expansion Method
to the Description of the Energy Spectra of Biological Liquids

Orthonormal polynomial expansion method (OPEM) is applied to the data ob-
tained by the method of energy spectra to the liquid of the biomass of wheat in
the case when herbicides are used. Since the biomass of a biological object con-
tains liquid composed mainly of water, the method of water spectra is applicable to
this case as well. For comparison, the similar data obtained from control sample
consisting of wheat liquid without the application of herbicides are shown. The
total variance OPEM is involved including errors in both dependent and independent
variables. Special criteria are used for evaluating the optimal polynomial degree and
the number of iterations. The presented numerical results show good agreement with
the experimental data. The developed analysis frame is of interest for future analysis
in theoretical ecology.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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1. EXPERIMENTAL DATA

The method of liquid spectra uses a liquid drop taken from a particular liquid
probe (or liquid on which some treatment was applied) to measure the probe's
state spectrum. For this purpose the drop is placed on a substrate (hostaphan).
During the process of evaporation of the drop, one measures at equal time in-
tervals the drop contact angle with the substrate. In this way one gets the
following graph. On X-axis one has the contact angle values and on Y -axis Å
the numbers proportional to the frequency of measurements of the given con-
tact angle lying within a ˇxed angular interval. Simultaneously with the probe
measurement F , one measures a probe of similar but untreated sample (control
sample) F0, see Fig. 1. The arithmetic difference between the two spectra is
called ©differential spectrumª, which is independent of external in�uences on
the spectrum of the probe. Various applications of this approach are described
in [1Ä3].

Fig. 1. Experimental data F with their errors in both variables and control curve F0
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One can change the variable on the X-axis from angle variable to energy
variable, according to Antonov's transformation given by the formula:

F (E) = F (θ)/
√

1 − (1 + bE)2, (1)

where
b = I(1 + cos θ0)/γ. (2)

Here I = 5.031018m−2 is the density of the liquid molecules, γ is the surface
tension, θ0 is the initial contact angle. The graph obtained this way is referred to
as energy spectrum of the sample. In these variables the X range of the obtained
spectrum contains the value of the liquid hydrogen bond energy. The method of
energy spectra is described in some details in [1]. The method is sensitive to
discovering external in�uences on the sample [2].

The method of water spectra is applicable not only to water samples. Since
the biomass of a biological object contains biological liquid composed mainly
of water, the method of water spectra is applicable to this case as well. In
our case we apply the OPEM to energy spectrum of wheat liquid treated with
herbicides [3]. The wheat liquid is taken from the plant in its initial period of
development.

2. MATHEMATICAL APPROACH

Here one deˇnes new variance at ith given point (Ei, Fi) using the expres-
sion [4,5]

S2
i = σFi

2 +
(

∂Fi

∂Ei

)2

σEi

2, (3)

where σFi and σEi are the given standard deviations in both variables, (Ei, Fi).
In the formula (3) Bevington's [4] proposal to combine both variable uncertainties
and assign them to the dependent variable is used.

2.1. The Generalized OPEM. The basic recurrence for one-dimensional
generation of orthonormal polynomials by Forsythe [6] {P (0)

i , i = 1, 2, . . .} and

their derivatives {P (m)
i , m = 1, 2, . . .} in the OPEM is

P
(m)
i+1 (E) = 1/νi+1[(E − μi+1)P

(m)
i (E)−

− (1 − δi0)νiP
(m)
i−1 (E) + mP

(m−1)
i (E)]. (4)

The generalization of the Forsythe procedure in the one-dimensional case assumes
arbitrary weights at every point, evaluating derivatives (m > 0) or integrals
(m < 0) and normalizing polynomials. Here the normalization coefˇcient 1/νi

and the recurrence coefˇcients μi, νi are given as scalar products of the poly-
nomials in the given data in M points [7]. We developed some features of
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our algorithm [8Ä13]. One can generate P
(m)
i (E) recursively. The polynomials

satisfy the following orthogonality relations:

M∑
i=1

wiP
(0)
k (Ei)P

(0)
l (Ei) = δkl

over the discrete point set {Ei, i = 1, 2, . . .M}, where wi = 1/(σ2
Fi

) are the

corresponding weights. The approximation function F (0)ap and its derivatives
F (m)ap are constructed as follows with orthonormal coefˇcients ak:

F (m)ap(E) =
L∑

k=0

akP
(m)
k (E). (5)

The coefˇcient matrix in the least square method becomes an identity matrix, and
due to orthogonality conditions the coefˇcients ak are easily computed by

ak =
M∑
i=1

FiwiP
(m)
k (Ei). (6)

The approximation function F ap is presented in orthonormal and usual (ordinary)
expansion:

F ap(E) =
L∑

k=0

akPk(E) =
L∑

k=0

ckEk. (7)

Let us write polynomials in the ordinary basis:

Pk =
k∑

j=0

c
(k)
j Ej , k = 0, . . . , L. (8)

Here the superscript in c
(k)
j indicates the order of polynomials. Then we have the

relation:

cj =
L∑

i=j

aic
(i)
j , j = 0, 1, 2, . . . , L. (9)

The knowledge of ak enables one to calculate ck with the help of the coefˇcients
μi, νi from formula (5). They are explicitly constructed by recurrence [9,11Ä13].
We remark that, for the sake of uniformity, all the calculations are carried out for
E in [−1, 1], i.e., after the input data Ei in the interval [E1, EM ], E1 � Ei � EM

are mapped onto the unit interval [−1, 1]. The inherited errors in usual coefˇcients
are given by the inherited errors in orthogonal coefˇcients:

Δcj =

⎛
⎝ L∑

i=j

(c(i)
j )2

⎞
⎠

1/2

Δai, j = 0, 1, 2, . . . , L. (10)
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And the inherited errors in orthonormal coefˇcients are expressed by

Δai =

[
M∑

k=1

P 2
i (Ek)wk(Fk − F ap

k )2
]1/2

, i = 0, . . . , L. (11)

It is worth noting the following advantages of the OPEM:
a) It avoids recomputing the coefˇcients in Eq. (6) for evaluating approximation
with higher degree polynomials Å the coefˇcients got at the lower-order polyno-
mials remain unchanged.
b) It avoids the usual matrix inversion to obtain the solution. This shortens the
computing time and the memory storage. Case study solutions point to a signiˇ-
cant decrease in the number of iterations required to reach a prescribed numerical
precision.

The development now is carried out to solve the given approximation task
with errors in both variables. Two criteria are used here to select the optimum
series length in Eq. (5).

2.1.1. First Criterion. (i) Here one neglects the errors in E variable, the
graph of the ˇtting curve lies inside the ©oldª error corridor [F − σ, F + σ].
(ii) After calculating the derivatives at any point Ei using Eqs. (4) and (5), the
ˇtting curve has to lie inside the total error corridor [F − S, F + S].

2.1.2. Second Criterion. We extend the above algorithm to include S2
i in

the OPEM in two stages:
(i) The following χ2 is minimized:

χ2 =
M∑
i=1

wi[F ap(Ei) − F (Ei)]2/(M − L − 1),

where the weights are wi = 1/σ2
Fi

.
(ii) The next approximation is calculated with the weight function wi = 1/S2

i .
The results of calculations in (i) give the ˇrst approximation. The procedure

is iterative and the result of the kit-th iteration, kit > 1, is called below the kit-th
approximation.

We have to note the third advantage:
c) At every iteration step the algorithm chooses automatically the optimal degree
using the two criteria of above simultaneously. The preference is given to the
ˇrst criterion, and when it is satisˇed, the search for the minimal chi-squared
stops. Based on the above features, the algorithm selects the optimal solution for
a given set {E, F}.

2.1.3. Criterion for Ordinary Expansion. After evaluating automatically an
optimal number of polynomials in orthonormal expansion, we ˇnd the best result
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of the usual expansion at every step of iteration by minimization of

max |Eap
a − Eap

c | = max M
i=1|F ap

a (Ei) − F ap
c (Ei)|. (12)

Now the algorithm is called the total (effective) OPEM.

3. APPROXIMATION RESULTS

The iterations are carried out till the tenth one. The optimal number of
polynomials is chosen between 2 and 7. Table 1 shows in every step iteration
the optimal degree L with corresponding χ2 and maximal absolute difference
between orthonormal and usual approximating values max |Eap

a − Eap
c |.

In Table 2 and Figs. 2, 3, the best results with the L = 6 and kit = 6 are
given. The approximating values in two expansions for kit = 6 and L = 6 are
shown explicitly in Table 2.

Table 1. OPEM approximation results for energy spectra with every step approximation

kit 2 3 4 5 6 7 8 9 10

L(2 ÷ 7) 7 6 6 6 6 6 6 6 6
√

χ2 · 10−1 8.68 8.19 7.74 7.59 7.56 7.56 7.56 7.56 7.56

max |(F ap
a − F ap

c )| 24.12 4.4 7.69 6.27 3.58 7.49 9.95 6.60 4.75

Table 2. Experimental and OPEM approximating values of contact energy spectra

No. E F σE σF F ap,6,6
a F ap,6,6

c |F ap,6,6
a − F ap,6,6

c |
1 0.091 1.8 0.002 1.1 2.2681 1.5791 0.6892
2 0.093 2.6 0.002 1.3 2.6079 1.7609 0.8478
3 0.096 2.9 0.002 1.5 2.3735 1.3030 1.0709
4 0.098 3.8 0.002 1.3 3.5273 2.6941 0.8329
5 0.101 5.3 0.002 1.25 6.3619 5.6700 0.6913
6 0.103 5.7 0.002 1.4 10.1895 8.8068 1.3820
7 0.106 13.9 0.002 1.4 13.9053 12.3100 1.5943
8 0.108 17.4 0.002 1.5 16.4263 14.4264 1.9999
9 0.111 19.9 0.002 2.3 17.0048 15.6354 1.3696
10 0.113 11.4 0.002 2.8 15.4168 14.4860 0.9312
11 0.116 9.2 0.002 1.7 12.1598 10.7609 1.2646
12 0.118 5.5 0.002 1.6 7.7174 6.7466 0.9710
13 0.121 3.3 0.002 1.6 3.7186 1.4054 2.3133
14 0.123 2.7 0.002 1.4 1.2793 1.0626 0.2168
15 0.126 1.1 0.002 0.8 1.2377 Ä0.4110 1.6493
16 0.128 1.8 0.002 0.9 3.4573 Ä0.1287 3.5869
17 0.131 7.2 0.002 1.7 6.1386 7.8103 1.6706
18 0.133 2.9 0.002 1.5 5.0068 2.0849 2.9220
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In Fig. 2 we present the given data with errors in both variables and the
obtained approximated values for L = 6 and kit = 6 with orthonormal polyno-
mials. One can see good agreement for curves in more points, following a new
corridor [F − S, F + S]. And in Fig. 3 we have compared the given curve and
two approximated curves by two expansions. The good agreement between the
three curves is obvious.

Fig. 2. Experimental data F with their errors and approximated by sixth degree's ortho-
normal coefˇcients Fa values

Fig. 3. Experimental data F with their orthonormal F ap,6,6
a and usual F ap,6,6

c expansions

6



CONCLUSIONS

• The results given in tables and ˇgures demonstrate the appropriateness of
the selection criteria following from orthonormal and ordinary expansion approx-
imation.

• The best accuracy of ˇtting results from Tables 1 and 2 is got at L = 6
and kit = 6.

• The new ˇtting curves in both expansions are close enough to each other
(see the last column in Table 2).

• The present version of the total OPEM approximation gives good results
for further interpretations and comparisons in theoretical ecology.
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