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Variational Master Equation Approach to Dynamics of Magnetic Moments

Non-equilibrium properties of a model system comprised of a subsystem of mag-
netic moments strongly coupled to a selected Bose ˇeld mode and weakly coupled
to a heat bath made of a plurality of Bose ˇeld modes were studied on the ba-
sis of non-equilibrium master equation approach combined with the approximating
Hamiltonian method. A variational master equation derived within this approach is
tractable numerically and can be readily used to derive a set of ordinary differen-
tial equations for various relevant physical variables belonging to the subsystem of
magnetic moments. Upon further analysis of the thus obtained variational master
equation, an in	uence of the macroscopic ˇlling of the selected Bose ˇeld mode
at low enough temperatures on the relaxation dynamics of magnetic moments was
revealed.
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INTRODUCTION

An approximating Hamiltonian method [1] proved efˇcient when it comes to
study in a mathematically rigorous way the thermodynamic properties of several
broad enough classes of quantum model systems. It is based on the idea that
in some cases the original model Hamiltonian of a many-body system can be
simpliˇed by replacing some operator complexes, standing for intensive variables,
by complex numbers (C-numbers). As a result, one arrives at the exactly solvable
Hamiltonian in the sense that the thermodynamically equilibrium free energy or
free energy density, associated with this Hamiltonian, can be derived analytically
as a function of the temperature, all the model parameters entering the Hamiltonian
in question, and the above-mentioned c-numbers. For some classes of physically
relevant models it was shown possible to choose the values of these c-numbers
in such a way that the thermodynamic behavior of this simpliˇed Hamiltonian
becomes totally equivalent to the one of the original Hamiltonian, in which
case the simpliˇed Hamiltonian is called the approximating Hamiltonian. By
construction, all the thermodynamic properties of the approximating Hamiltonian
coincide precisely with the properties spawned by the initial quantum model
Hamiltonian. As a consequence, collective phenomena in many-body systems,
such as, for example, thermodynamically equilibrium phase transitions, can be
studied rigorously within this approach. The purpose of the present contribution
is to show that approximating Hamiltonians are useful not only in studies of
thermodynamically equilibrium properties but may give insight into their non-
equilibrium behavior too.

1. MODEL HAMILTONIAN

The model under consideration is represented by the following Hamiltonian:

H = H0(B) + H0(C) + H0(S) + HBS + HCS , (1)

where

H0(B) = ωb+b, H0(C) =
N∑

i=1

∑
k

ωi,kc+
i,kci,k, H0(S) = εSz = ε

N∑
i=1

sz
i ,
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HBS =
λ√
V

(bS+ + b+S−) =
λ√
V

(
b

N∑
i=1

s+
i + b+

N∑
i=1

s−i

)
, (2)

HCS =
N∑

i=1

∑
k

gi,k(ci,ks+
i + c+

i,ks−i ),

and

Sz =
N∑

i=1

sz
i , S± =

N∑
i=1

s±i , sz
i =

1
2
σz

i , s±i = σ±
i =

1
2
(σx

i ± iσy
i ), (3)

with the Pauli matrices σz
i , σx

i and σy
i . The operators c+

i,k, ci,k and b+, b are the
Bose operators obeying usual commutation rules

[ci,k, c+
i,k′ ] = δi,jδk,k′, [ci,k, ci,k′ ] = 0, [b, b+] = 1,

[b, b] = 0, [b, ci,k] = 0, [b+, ci,k] = 0.

So, the Hamiltonian (4) can be interpreted in terms of a subsystem S of N two-
level quantum objects, for example, magnetic moments, contained in a cavity of
volume V , strongly interacting with some selected Bose-mode b and, at the same
time, weakly interacting with a plurality of Bose modes ci,k comprising a heat
bath.

2. BASICS OF THE APPROXIMATING HAMILTONIAN METHOD

Let us illustrate the workings of the approximating Hamiltonian method by
considering a model Hamiltonian (� = 1)

H = ωb+b + εSz +
λ√
V

(bS+ + b+S−), (4)

which is actually a part

H = H0(B) + H0(S) + HBS (5)

of the total Hamiltonian (4) under consideration. Let us rewrite Eq. (4) by adding
inˇnitesimal symmetry breaking sources ν, ν∗:

H(ν) = ωb+b + HS +
λ√
V

(bS+ + b+S−) −
√

V λ(bν∗ + b+ν) (6)

and build a form for the approximating Hamiltonian Ha(ν, η):

H(ν) = Ha(ν, η) + HIBS(ν, η), (7)
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Ha(ν, η) = Ha(B, η, ν) + Ha(S, η, ν) =

= H0(S) + V ω

(
b+

√
V

− ν∗

ω
+

λ

ω
η∗
)(

b√
V

− ν

ω
+

λ

ω
η

)
−

− V

{
λ2

ω

(
η
S+

V
+ η∗S−

V

)
− λ2

ω
|η|2 − λ

ω

(
ν∗S−

V
+ ν

S+

V

)
+

|ν|2
ω

}
, (8)

HIBS(ν, η) = V λ

{(
b+

√
V

− ν∗

ω
+

λ

ω
η∗
)(

S−

V
− η

)
+ h.c.

}
, (9)

where η is a complex parameter. It can be easily proved that

−
〈

b√
V

〉
H(ν)

=
λ

ω

〈
S−

V

〉
H(ν)

− ν

ω
, (10)

−
〈

b+

√
V

〉
H(ν)

=
λ

ω

〈
S+

V

〉
H(ν)

− ν∗

ω
, (11)

where

〈. . .〉H =
Tr
(
. . .e−βH

)
Tr (e−βH)

. (12)

It is seen from (8) that parameters η and
λ

ω
η stand for the operators S−/V and

b/
√

V respectively as the correspondent c-numbers. It was proved in [1] that
serial inequalities hold for models of the type (4)

−λ

⎧⎨
⎩
〈(

b+

√
V

−
〈

b+

√
V

〉
Ha(ν,η)

)(
S−

V
−
〈

S−

V

〉
Ha(ν,η)

)
+ h.c.

〉
Ha(ν,η)

⎫⎬
⎭ ≤

≤ fV [Ha(ν, η)] − fV [H(ν)] ≤ fV

[
Ha

(
ν,

〈{
S±

V

}〉
H(ν)

)]
− fV [H(ν)] ≤

≤ −λ

⎧⎨
⎩
〈(

b+

√
V

−
〈

b+

√
V

〉
H(ν)

)(
S−

V
−
〈

S−

V

〉
H(ν)

)
+ h.c.

〉
H(ν)

⎫⎬
⎭, (13)

where

fV [H ] = − 1
βV

ln (Tr (e−βH)) (14)

is the free energy density.
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Therefore,

0 ≤ min
{η}

fV [Ha(ν, η)] − fV [H(ν)] ≤

≤ fV

[
Ha

(
ν,

〈{
S±

V

}〉
H(ν)

)]
− fV [H(ν)] ≤

≤ −
M∑
i=1

λ

⎧⎨
⎩
〈(

b+

√
V

−
〈

b+

√
V

〉
H(ν)

)(
S−

V
−
〈

S−

V

〉
H(ν)

)
+ h.c.

〉
H(ν)

⎫⎬
⎭.

(15)

Here

fV [Ha(η)] =
1

βV
ln (1 − e−βω) − N

βV
ln
(

2 cosh
(

1
2
E({η, η∗})

))
+

λ2

ω
|η|2,
(16)

E({η, η∗}) =

{
ε2 + 4

[
λ2

ω
Re (η)

]2
+ 4
[
λ2

ω
Im (η)

]2}1/2

, (17)

and the absolute minimum for the density of the free energy fV [Ha(ν, η)] is to
be searched for over the whole range of parameter η and is provided by solution
of the following equation:

η =
1

E(|η|)
λ2

ω
η tanh

(
βE(|η|)

2

)
. (18)

Equation (18) has non-trivial solution if

2
|ε|

λ2

ω
> 1, (19)

and this non-trivial solution provides the absolute minimum to (16) if the tem-
perature θ = 1/β = kT is smaller than the critical temperature θc:

θ < θc =
1
4
|ε|
{
Arth

( ωε

2λ2

)}−1

. (20)

It was proved [1] that in the so-called thermodynamic limit (t-lim): N → ∞,
V → ∞, N/V = 1/v = const, the absolute minimum of the free energy density
(16) for the approximating Hamiltonian equals the free energy density for the
original model for the whole range of model parameters (4).
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3. TIME-CONVOLUTIONLESS MASTER EQUATION

As usual, the complete dynamics of the whole system S +B +C is governed
by the LiouvilleÄvon Neumann equation for the density matrix ρ(t)

∂

∂t
ρ(t) = −i[H0(η) + HI(η), ρ(t)], TrS,B,C(ρ(t)) = 1, (21)

where

H0 = Ha(η) + H0(C), HI(η) = HISB(η) + HSC ,

or, in the interaction picture

ρ̃(t) = eiH0tρ(t) e−iH0t = eiHateiH0(C)tρ(t) e−iH0(C)te−iHat, (22)

H̃I(t) = eiH0tHIe−iH0t = eiHateiH0(C)tHI(η) e−iH0(C)te−iHa(t−t0), (23)

∂

∂t
ρ̃(t) = −i[H̃I(t), ρ̃(t)]. (24)

To study the explicit dynamics of open quantum subsystem S, we take recourse
to the master equation methods as being more universal and numerically tractable.
In our particular case, this technique provides an equation of motion for the re-
duced density matrix of the subsystem S only, ρS(t) = TrB,C(ρ(t)), without any
necessity to account for the behavior of the environment represented by the sub-
systems B and C. There are several ways to derive master equations for ρS(t),
and any such method provides formally exact closed master equation. Unfortu-
nately, none of these equations allow either for explicit analytical solution or for
direct numerical analysis in the general case. Thus, all these equations only serve
as a starting point for derivation of much more tractable approximate equations.
And, as a rule, any such approximation includes some kind of perturbative expan-
sion in a small parameter, such as the system-environment coupling strength, par
excellence. Normally, this expansion is truncated at the second order. However,
this practice relies on the system-environment coupling in the initial Hamiltonian
being small, which is not always the case. Moreover, this approach totally ignores
the in	uence of temperature on the subsystem evolution; i.e., it does not account
for possible occurrence of collective effects. Below we will show that the ap-
proximating Hamiltonian approach may help ameliorate these drawbacks to some
extent.

When choosing between different varieties of master equation, we would
prefer to derive here the so-called time-local master equation [2], also known as
time-convolutionless master equation. This equation does not contain any time-
convolution kernel and, as a consequence, can be solved numerically relatively
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easy. At the second truncation order this time-convolutionless master equation
reads as

∂

∂t
ρ̃S(t) = −

t∫
t0

dsTrB[H̃I(t), [H̃I(s), ρ̃S(t)ρBC(t0)]], (25)

where
ρ̃S(t) = TrB,C(ρ̃(t)), ρ̃BC(t0) = TrS(ρ̃(t0)), (26)

and, as usual, we chose separable initial condition for the full density matrix

ρ(t0) = ρS(t0) ⊗ ρBC(t0) = ρS(t0) ⊗ ρB(t0) ⊗ ρC(t0);

i.e., ρBC(t0) = ρB(t0) ⊗ ρC(t0),
(27)

to eliminate inhomogeneous term in Eq. (25). Returning back into the Schréodinger
picture, the master equation takes the form

∂

∂t
ρS(t) = −i[Ha(S), ρS(t)]−

−
t∫

t0

dsTrBC [H̃I(0), [H̃I(s − t), ρS(t)ρB(t0)ρC(t0)]]. (28)

Equation (25) can be transformed by writing the system-bath interaction Hamil-
tonian in a very general form

HI =
∑

n

SnEn, (29)

which reads in the interaction picture as

H̃I(t) =
∑

n

S̃n(t)Ẽn(t), (30)

where Sn and En are some system S and environment B, C operators only
acting on the Hilbert space of the system and environment, respectively. As a
consequence,

∂

∂t
ρS(t) = −i[Ha(S), ρS(t)]−

−
∑
n,m

t−t0∫
0

dτ [S̃n(0)S̃m(−τ)ρS(t) − S̃m(−τ)ρS(t)S̃n(0)]×

× TrB,C{Ẽn(0)Ẽm(−τ)ρB(t0)ρC(t0)}+
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+
∑
n,m

t−t0∫
0

dτ [S̃n(0)ρS(t)S̃m(−τ) − ρS(t)S̃m(−τ)S̃n(0)]×

× TrB,C{Ẽm(−τ)Ẽn(0)ρB(t0)ρC(t0)}. (31)

∂

∂t
ρS(t) = −i[H0(S), ρS(t)] − i

λ2

ω
[η∗eiω(t−t0)S− + η e−iω(t−t0)S+, ρS(t)]−

− λ2

V

{ t−t0∫
0

dτ [S̃−(0)S̃+(−τ)ρS(t) − S̃+(−τ)ρS(t)S̃−(0)]×

× TrB{˜̂b+(0)˜̂b(−τ)ρB(t0)}−

−
t−t0∫
0

dτ [S̃−(0)ρS(t)S̃+(−τ) − ρS(t)S̃+(−τ)S̃−(0)]×

× TrB{˜̂b(−τ)˜̂b+(0)ρB(t0)}+

+

t−t0∫
0

dτ [S̃+(0)S̃−(−τ)ρS(t) − S̃−(−τ)ρS(t)S̃+(0)]×

× TrB{˜̂b(0)˜̂b+(−τ)ρB(t0)}−

−
t−t0∫
0

dτ [S̃+(0)ρS(t)S̃−(−τ) − ρS(t)S̃−(−τ)S̃+(0)]×

× TrB{˜̂b+(−τ)˜̂b(0)ρB(t0)}+

+

t−t0∫
0

dτ [S̃−(0)S̃−(−τ)ρS(t) − S̃−(−τ)ρS(t)S̃−(0)]×

× TrB{˜̂b+(0)˜̂b+(−τ)ρB(t0)}−

−
t−t0∫
0

dτ [S̃−(0)ρS(t)S̃−(−τ) − ρS(t)S̃−(−τ)S̃−(0)]×

× TrB{˜̂b+(−τ)˜̂b+(0)ρB(t0)}+

+

t−t0∫
0

dτ [S̃+(0)S̃+(−τ)ρS(t) − S̃+(−τ)ρS(t)S̃+(0)]×

× TrB{˜̂b(0)˜̂b(−τ)ρB(t0)}−

−
t−t0∫
0

dτ [S̃+(0)ρS(t)S̃+(−τ) − ρS(t)S̃+(−τ)S̃+(0)]×

× TrB{˜̂b(−τ)˜̂b(0)ρB(t0)}
}
−
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−
t−t0∫
0

dτ

N∑
i=1

∑
k

g2
i,k[s̃−i (0)s̃+

i (−τ)ρS(t) − s̃+
i (−τ)ρS(t)s̃−i (0)]×

× TrC{c̃+
i,k(0)c̃i,k(−τ)ρC(t0)}+

+

t−t0∫
0

dτ

N∑
i=1

∑
k

g2
i,k[s̃−i (0)ρS(t)s̃+

i (−τ) − ρS(t)s̃+
i (−τ)s̃−i (0)]×

× TrC{c̃i,k(−τ)c̃+
i,k(0)ρC(t0)}−

−
t−t0∫
0

dτ

N∑
i=1

∑
k

g2
i,k[s̃+

i (0)s̃−i (−τ)ρS(t) − s̃−i (−τ)ρS(t)s̃+
i (0)]×

× TrC{c̃i,k(0)c̃+
i,k(−τ)ρC(t0)}+

+

t−t0∫
0

dτ

N∑
i=1

∑
k

g2
i,k[s̃+

i (0)ρS(t)s̃−i (−τ) − ρS(t)s̃−i (−τ)s̃+
i (0)]×

× TrC{c̃+
i,k(−τ)c̃i,k(0)ρC(t0)}, (32)

where

b̂+ = b+ +
√

V
λ

ω
η∗, b = b +

√
V

λ

ω
η

are shifted Bose operators. Time dependence of the operators S̃z(τ), S̃+(τ) and
S̃−(τ) in (32) can be found explicitly by means of the following relations derived
in [3, 4]:

ei(b1Sz+b2S−+b∗2S+)Sze−i(b1Sz+b2S−+b∗2S+) =
|b1|2 + 4|b2|2 cos b

b2
Sz+

+
{

(1 − cos b)
b1b2

b2
+ i

b2

b
sin b

}
S−+

+
{

(1 − cos b)
b1b

∗
2

b2
+ i

b∗2
b

sin b

}
S+, (33)

ei(b1Sz+b2S−+b∗2S+)S−e−i(b1Sz+b2S−+b∗2S+) =

=
{

2(1 − cos b)
b1b

∗
2

b2
+ 2i

b∗2
b

sin b

}
Sz+

+
{
|b1|2 cos b + 2|b2|2(1 + cos b)

b2
− i

b1

b
sin b

}
S−+

+ 2
(b∗2)2

b2
(1 − cos b)S+, (34)

8



ei(b1Sz+b2S−+b∗2S+)S+e−i(b1Sz+b2S−+b∗2S+) =

=
{

2(1 − cos b)
b1b2

b2
− 2i

b2

b
sin b

}
Sz+

+
{
|b1|2 cos b + 2|b2|2(1 + cos b)

b2
− i

b1

b
sin b

}
S−+

+ 2
b2
2

b2
(1 − cos b)S+, (35)

b2 = |b1|2 + 4|b2|2, b1 = ετ, b2 = −2
λ2

ω
η∗τ, (36)

and all the thermodynamically equilibrium correlation functions of the kind

TrB{˜̂b+(0)˜̂b(−τ)ρB(t0)}, TrB{˜̂b+(0)˜̂b+(−τ)ρB(t0)},

TrC{c̃+
i,k(0)c̃i,k(−τ)ρC(t0)}

(37)

belonging to subsystems B and C can be calculated explicitly too, so that all the
integrations over τ can be carried out analytically.

4. DYNAMICS OF EXCITED MAGNETIC MOMENTS

As to the initial condition (26), ρB(t0 = 0) and ρC(t0 = 0) can be, formally,
an arbitrary density operator pertaining to the subsystems B and C. It is justiˇed,
for example, to take them in the form of the thermodynamically equilibrium
density operators

ρC(t0) =
e−βH0(C)

TrC(e−βH0(C))
, (38)

ρB(t0) =
e−βH0(B)

TrB(e−βH0(B))
, or (39)

ρB(t0) =
e−βHa(B)

TrB(e−βHa(B))
. (40)

This initial condition corresponds to the situation when all subsystems, S, B and
C, were originally in thermodynamic equilibrium characterized by the common
temperature θ = 1/β, and then the subsystem S was excited to some initial
state ρS(t0), while the environment B, C remained in its initial equilibrium state
ρB(t0) ⊗ ρC(t0) due to its signiˇcant inertia. The choice (39) corresponds to
the original Bose mode b being in the initial state of thermal equilibrium, while
the choice (40) describes thermally equilibrium Bose ˇeld (36) shifted due to the
interaction with magnetic moments.
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The last four lines in Eq. (32) are rather trivial. They describe the process of
steady exponential relaxation of excited magnetic moments to the state of thermal
equilibrium due to interaction with the heat bath C and can be handled as usual
(see, for example, [5]).

The second term on the right-hand side of Eq. (32) is much more interesting
because it shows that for T < Tc, i.e., when η 	= 0, a kind of an external pumping
ˇeld arises in the x−y plane. This ˇeld drives excited magnetic moments forcing
them to 	ip fro and back along the z-axis with the so-called Rabi frequency:

Ω =

√
(ε − ω)2 +

(
λ2|η|

ω

)2

. (41)

Of course, this ˇeld is transient in reality and this driving cannot last forever,
because the Bose ˇeld mode b is always damped to some extent due to the
cavity imperfections. This damping may be accounted for by inclusion of the
damping factor e−τ/τb into the correspondent correlation functions (37). Here we
intentionally omitted an additional interaction of the ˇeld mode b with its own
heat bath.

The lines from 6th to 9th containing anomalous bosonic correlation functions
may only be present in Eq. (32) if the initial density operator ρB(t0) was chosen
in the form (39) and only for T < Tc when η 	= 0. But even in this case all these

terms are proportional to
λ4

ω2(ε + ω)
|η|2 and, in addition, they are fast oscillating

terms and can be averaged out.
The lines from 2nd to 5th containing normal bosonic correlation functions

represent usual behavior of magnetic moments under the in	uence of thermal
Bose ˇeld mode b for both choices (39), (40) of ρB(t0) if T > Tc and η = 0.
The same situation persists even for T < Tc for the choice (40). These lines are
proportional to 1/V so that the contribution of these terms is not large in the
thermodynamic limit. But for the choice (39) and T < Tc, η 	= 0 a new factor

V
λ2

ω2
|η|2 arises from the bosonic correlation functions which compensates this

1/V multiplier and makes the contribution of these terms more or less tangible.
Also, as it follows from relations (33)Ä(35), the time dependence of the

operators S̃±(τ) is altered for T < Tc, η 	= 0. But new additional terms in (33)Ä

(35) will be proportional to
(λ2

ω
|η|2
)2

so that their effect is not very pronounced.

Therefore, the most pronounced, and possibly experimentally observable,
phenomenon would be an appearance of effective transient driving oscillating
ˇeld resulting in deviation of the excited magnetic moments relaxation from the
exponential law in the form of Rabi oscillation superimposed onto their usual
relaxational behavior.
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SUMMARY

It was shown that, when it comes to investigating non-equilibrium properties
of a physical system, it may be advantageous to decompose the original total
Hamiltonian of the system into two parts by means of the identity transformation
in order to capture some speciˇc features of the system dynamics in a more
transparent way. Of course, from the strictly mathematical point of view, any
formally precise master equation must provide one with correct description of the
dynamics of the system and its subsystems notwithstanding any partition of the
total system Hamiltonian into the so-called ªfreeª and ªinteractionª Hamiltonians.
Unfortunately, precise solutions of master equations are almost never available in
practice. To overcome this difˇculty, one has to deal with some approximations to
the original master equation and the outcome of this approximations is dependent
signiˇcantly upon the above-mentioned partition of the original Hamiltonian. The
way of partitioning is not formal and unique, so that one has to rely on some a
priori physical ideas and understanding. Here we presented one possible way of
such a partitioning based on the ideas of the approximating Hamiltonian method,
which has already proved itself useful in the studies of equilibrium properties of
various many-particle systems.
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