E18-2016-88

S. O. Dmitrieva^{1,*}, M. V. Frontasyeva, A. A. Dmitriev², A. Yu. Dmitriev

DETERMINATION OF THE ORIGIN OF THE MEDIEVAL GLASS BRACELETS DISCOVERED IN DUBNA (MOSCOW REGION, RUSSIA), USING THE NEUTRON ACTIVATION ANALYSIS

Submitted to «Particles and Nuclei, Letters»

¹ Dubna State University, Dubna, Russia

² Municipal Budget Educational Institution of Additional Education of Children «Center for Children's and Youth Tourism and Excursions of Dubna, Moscow Region», Dubna, Russia

^{*} E-mail: ru-ds@list.ru

Дмитриева С.О. и др. E18-2016-88 Определение происхождения средневековых стеклянных браслетов, найденных в Дубне (Московская обл., Россия), с использованием нейтронного активационного анализа

Работа посвящена определению происхождения средневековых стеклянных браслетов посредством использования метода нейтронного активационного анализа (НАА). В процессе раскопок на месте древнерусских городов среди подобных археологических артефактов находят изделия как созданные в древнерусских мастерских, так и привезенные из Византии. Авторы статьи доказывают древнерусское происхождение стеклянных браслетов домонгольского периода, найденных на городище Дубна. Выводы авторов основаны на анализе данных о химическом составе избранной группы из 10 фрагментов браслетов, подвергнутых НАА на реакторе ИБР-2 (ЛНФ ОИЯИ).

Работа выполнена в Лаборатории нейтронной физики им. И. М. Франка ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 2016

Dmitrieva S.O. et al.

E18-2016-88

Determination of the Origin of the Medieval Glass Bracelets Discovered in Dubna (Moscow Region, Russia), Using the Neutron Activation Analysis

The work is dedicated to the determination of the origin of archaeological finds from medieval glass using the method of neutron activation analysis (NAA). Among such objects we can discover things not only produced in ancient Russian glassmaking workshops but also brought from Byzantium. The authors substantiate the ancient Russian origin of the medieval glass bracelets of pre-Mongol period, found on the ancient Dubna settlement. The conclusions are based on the data about the glass chemical composition obtained as a result of NAA of ten fragments of bracelets at the IBR-2 reactor, FLNP, JINR.

The investigation has been performed at the Frank Laboratory of Neutron Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2016

In the work process, the first comprehensive study of glass bracelets of pre-Mongol period, found on the territory of ancient Russian settlement Dubna, was carried out. The Dubna fortress was founded in the first half of the XII century on the border of the Rostov-Suzdal principality and survived until Mongol invasion in 1238. Two types of archaeological objects of ancient Dubna can be distinguished: imported things, which came to Dubna from other countries, and objects created in Russia, as a rule, using Byzantine models (crosses-enkolpion, stamps-molybdoboyllon, trading seals). Glass bracelets are significant and not yet explored group of these finds. These are glass bracelets of pre-Mongol period, found during excavations of Dubna's horizon of XII–XIII centuries [1] (see Fig. 1).

The comparative-stylistic analysis of the external characteristics of the medieval glass bracelets allows only to determine approximately their origin. While the study of the glass chemical composition allows making valid conclusions about Byzantine or the ancient Russian origin, as well as making assumptions about the peculiarities of trading and social relations of Dubna's settlement.

Fig. 1. Glass bracelets from the exposition of the Museum of Archaeology and Local History of Dubna. The photos are provided by the Museum of Archaeology and Local History of Dubna

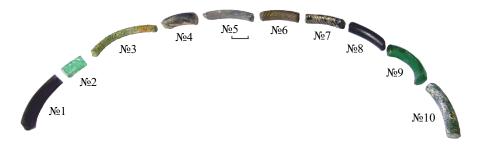


Fig. 2. The fragments of glass bracelets from the Dubna settlement

The "Nasledie" Moscow Regional Public Fund of Historical and Local Historical Researches and Humanitarian Initiatives provided a special group of ten pieces of bracelets to study the chemical composition of glass (see Fig. 2). The elemental composition was determined using the reactor neutron activation analysis. NAA is widely used in archaeology [2] and in the analysis of medieval glass [3]. As a result of the experiment, the data on the qualitative and quantitative composition of the elements in the investigated group were obtained.

The concentrations of these elements have been recalculated as oxides for comparison with data about the chemical composition of the Russian and Byzantine glass bracelets found in the cities of Vladimir-Suzdal Rus' [4] (ancient Russian Dubna was located on the border of the Rostov-Suzdal principality), as well as Byzantine bracelets found in Romania [5].

As a result of the NAA, 45 elements were found: Na, Mg, Si, S, Cl, K, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Co, Zn, Se, As, Br, Rb, Sr, Zr, Nb, Mo, Ag, In, Sb, Ba, Cs, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Tm, Yb, Hf, Ta, W, Au, Hg, Th, U. The elements with the most significant concentrations were selected to analysis: Na, Mg, Si, K, Ti, Mn, Fe, Ca [6].

Modern researchers distinguish several types of medieval glass, depending on the main glass-forming substances (see Table 1).

N⁰	Origin	Type of glass composition	Na ₂ O, %	CaO, %	K ₂ O, %	PbO, %		
1	Byzantine	Na-Ca-Si	14–20, 4	10–20, 5	2–3, 7	0–0.9		
2	West-European	K-Ca-Si	0–2	19–32	7–9, 4	0-0.17		
3	Ancient Russian	K-Pb-Si	0-0.4	0–3	4–20	10–44		
4	Ancient Russian	Pb-Si	0-0.1	0.1–3.3	0–1.5	36–60		

Table 1. The chemical composition of the Byzantine, West-European, and ancient Russian bracelets found on the territory of the Vladimir-Suzdal principality. The table is based on A.V. Liadova's research data

PbO _{theor}	$o_{lo}^{\prime \prime}$	22	11	78	14	15	LL	31	75	82	81		Continuation		CaO	19800	13100	1080	6590	18900	1280	12000	1120	1010	1030
Sum of oxides	$o_{lo}^{\prime \prime}$	78	89	22	86	85	23	69	25	18	19				Ca	14200	9350	775	4720	13500	920	8600	800	720	740
CaO	%	2.0	1.3	0.1	0.7	1.9	0.1	1.2	0.1	0.1	0.1				FeO	2170	6680	1720	34560	1810	13360	2530	15800	840	1840
FeO	%	0.2	0.7	0.2	3.5	0.2	1.3	0.3	1.6	0.1	0.2				Fe	1690	5200	1340	26900	1410	10400	1970	12300	650	1430
MnO	η_{o}	0.006	0.335	0.005	0.022	0.005	0.003	0.004	0.004	0.001	0.003					MnO	61	3350	51	220	47	32	37	44	14
TiO_2	%	0.09	0.14	0.06	0.11	0.08	0.05	0.08	0.05	0.06	0.05				Mn	47	2600	40	170	36	25	28	34	11	25
K_2O	%	41	53	0	51	46	1	36	1	1	2			53	TiO_2	930	1350	570	1100	780	530	820	470	600	500
SiO_2	%	34	33	19	30	36	20	31	22	16	17			, mg/k	Ti	560	810	340	660	470	320	490	280	360	300
MgO	%	0.10	0.15	0.07	0.06	0.09	0.08	0.08	0.07	0.03	0.07			Mass fraction, mg/kg	K_2O	409100	20000 529500	24800	507800	464500	13700	361000	13500	9820	15100
Na ₂ O	%	0.10	0.34	0.21	0.27	0.10	0.17	0.09	0.15	0.32	0.19				К	170000	220000	10300	211000	193000	5710	150000	5620	4080	6260
(Na ₂ O+ +CaO)/K ₂ O		0.05	0.03	0.13	0.02	0.04	0.22	0.04	0.20	0.42	0.19				SiO_2	343300	330500	188500	302800	362500	199200	307100	215400	164400	168900
CaO/ Na ₂ O		19.4	3.9	0.5	2.4	18.2	0.7	14.1	0.7	0.3	0.5				Si	161000	155000	88400	142000	170000	93400	144000	101000	77100	79200
R ₂ O/ K ₂ O/ RO Na ₂ O		401	157	12	187	447	8	425	6	ю	8				MgO	968	1489	744	596	869	827	761	728	265	736
R ₂ O/ RO		20	37	15	71	24	7	28	8	10	10				Mg	585	900	450	360	525	500	460	440	160	445
RO	mg/kg	20800	14600	1820	7190	19800	2110	12800	1850	1270	1770				Na_2O	1020	3370	2080	2720	1040	1710	850	1520	3150	1900
R_2O	mg/kg	410100	532900	26900	510500	465500	15400	361900	15000	13000	17000				Na	378	1250	773	1010	386	633	314	564	1170	705
Type of glass	compo- sition		ŝ	4	б	б	4	б	4	4	4		Type of	glass	sition	3	б	4	ю	ю	4	ю	4	4	4
Sample,	å	1	2	б	4	5	9	7	8	6	10			Sample,	2	1	7	б	4	S	9	7	8	6	10

Table 2. The chemical composition of the pre-Mongol bracelets from Dubna

3

A large difference in the values of Na_2O and CaO is caused by the fact that the first type of glass may be either with Na_2O or CaO predominance or with approximately equal percentage values for both oxides.

A comparison with the Byzantine (Na-Ca-Si) type and two ancient Russian types (K-Pb-Si and Pb-Si) was actual for this study. Presence or absence of lead in a glass is important in determining the type of glass. Lead (Pb) is not determined using NAA. However, since PbO is one of the major oxides of the continental crust [6], we can find the value of possible content PbO_{theor} in percentages by summing the values of percentages of the remaining major detected oxides: Na₂O, MgO, SiO₂, K₂O, TiO₂, MnO, FeO, CaO and subtracting the received amount from 100%.

The calculation results are shown in Table 2.

Finally, we can summarize the following results:

1. The K₂O:Na₂O ratio is always greater than three in all the bracelets; the K₂O:CaO ratio is always greater than nine; even the K₂O/(Na₂O + CaO) ratio is greater than two in all cases. In addition, the PbO_{theor} value is very large (11–82%) too. It may safely be said that the analyzed fragments of bracelets do not belong to the Byzantine glass type (Na-Ca-Si).

2. The R_2O :RO ratio of the prescribed norms of the main alkaline and alkaline-earth oxides ((Na₂O + K₂O)/(MgO + CaO)) is more than seven in all cases. This clearly indicates that no Byzantine prescribed norms were used.

3. Recalculation of oxide mass fraction values in percentages allows one to distribute the analyzed bracelets by types:

• Bracelets No1, No2, No4, No5, No7 belong to the ancient Russian potassiumlead-siliceous (K-Pb-Si) type, because the K₂O percentage in these bracelets is more than 36% in all cases. Researchers consider that such glass composition was used in the metropolitan workshops of ancient Rus' in Kiev, as well as in Novgorod [4]. It is also interesting that the K₂O percentage in Dubna bracelets is much higher than the values that are common to similar bracelets in other cities of Vladimir-Suzdal Rus' (see Table 1).

• Bracelets No3, No6, No8, No9, No10 belong to the ancient Russian leadsiliceous type (Pb-Si) of glass. The K₂O content in these bracelets does not exceed 2.5%. But the value of Na₂O and CaO is also very small (the Na₂O value is less than 0.35%, CaO is less than 2%). And as the theoretical percentage of lead oxide is very high — PbO_{theor} (75–82%), it allows one to affirm that these bracelets belong to Pb-Si type. According to Liadova [4], lead-siliceous glass was produced only in the provincial workshops in Novgorod, Smolensk, and Polotsk.

During the research the main elements responsible for the colors of the pieces of bracelets also were identified — iron oxide II (the fragments of green bracelets) and iron oxide III (dark brown and black ones), see Fig. 3. The complete absence of such popular element for glass coloring in Byzantium as copper among the

Fig. 3. Bracelets №2, №4, №9 from Dubna

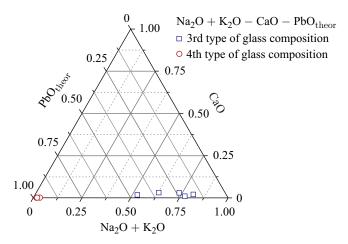


Fig. 4. Ternary diagram Na_2O + K_2O - CaO - $PbO_{\rm theor}$

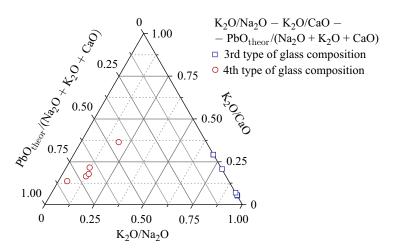


Fig. 5. Ternary diagram K_2O/Na_2O - K_2O/CaO - PbO_{\rm theor}/(K_2O + Na_2O + CaO)

results of NAA (although the NAA can determine its presence), confirms the ancient Russian origin of the studied samples once again.

Thus, it can be concluded that the selected group of bracelets was created in the ancient Russian workshops. Half of the bracelets belongs to the potassiumlead-siliceous type and was created in the workshops of Kiev or Novgorod. Another part of the bracelets belongs to the type of lead-siliceous glass and was created in the provincial ancient Russian workshops, see Figs. 4 and 5.

Acknowledgements. The authors acknowledge the "Nasledie" Moscow Regional Public Fund of Historical and Local Historical Researches and Humanitarian Initiatives and I. A. Zinin personally, as well as the Museum of Archaeology and Local History of Dubna, Moscow region, and F. N. Petrov and L. V. Panteleeva personally for assistance in working with materials from the Dubna settlement; professor O. Duliu, the University of Bucharest; Ph.D., Associate Professor E. K. Stoliarova, Russian State University for the Humanities; and Ph.D. student A. A. Astakhov, Dmitry Mendeleev University of Chemical Technology of Russia, for their consultation assistance.

REFERENCES

- 1. Dachenkov I. B., Petrov F. N., Panteleeva L. V. Regional History. Moscow Region. V. 1. The City of Dubna. M., 2015. 132 p., ill. (in Russian).
- Glascock M. D., Neff H. Neutron Activation Analysis and Provenance Research in Archaeology // Meas. Sci. Technol. 2003. V. 14, No. 9. P. 1516–1526.
- Kuleff I., Djingova R., Penev I. Analysis of Ancient and Medieval Glasses by INAA // J. Radioanal. Nucl. Chem. 1984. V. 83, No. 2. P. 333–343.
- 4. *Liadova A.V.* Glass of Vladimir-Suzdal Rus'. Historical Sciences Ph.D. Thesis 07.00.06. M., 2001. 478 p.: ill. Russian State Library, 61 02-7/78-X (in Russian).
- Bugoi R., Poll I., Manucu-Adamesteanu Gh., Calligaro T., Pichon L. Byzantine Glass Bracelets (10–13 Century A.D.) Found on Romanian Territory Investigated Using External IBA Method // Proc. of the 39th Intern. Symp. for Archaeometry, Leuven, 2012. P. 164–170.
- Rudnick R. L., Gao S. Composition of the Continental Crust // Treatise on Geochemistry. 2003. V. 3. P. 1–64.

Received on December 14, 2016.

Редактор Е. И. Крупко

Подписано в печать 10.02.2017. Формат 60 × 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 0,56. Уч.-изд. л. 0,77. Тираж 195 экз. Заказ № 59029.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@jinr.ru www.jinr.ru/publish/