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IlpuMeHeHUe I' PMOHMYECKOTO O 3HC BBICOKOTO TOPSIK IS pEIeHHs
HEKOTOPbIX 3 J1 4 M THUTOCT THKHU

Llensto p OOTHI SIBISETCS UCCIEIOB HHE BO3MOXHOCTEH HCHONB30B HUSI I PMOHH-
YyecKoro O 3uC BBICOKOIO MOPSIK  NIPOKCHM LUM JUISl PEIICHUS HEKOTOPBIX 3 1 4
M THHTOCT THKH. MBI p CCM TPHUB €M H3BECTHBIE METOMBI C H MMM O 3HMCOM U p Hee
p 3p OOT HHBI H MU 1oaxoA. B p 60Te npeacT BiIeHbI YHCIEHHbIE PE3YJIbT ThI CP B-
HEHMs 3TUX METONOB IPH PEeIIeHNH JIUHEHHON 3 1 YA H MOCIEN0B TEIbHOCTIX CEeTOK
C p 3MMYHBIMH I p MeTp MU h ¥ p. I HEeJIMHEWHOH 3 1 YW OTHOCHUTENIBHO ABYX
CK JIIPHBIX NOTEHLH JIOB IMOK 3 HO, 4TO 3T MOIENb B HOBOW IpeMT I eMOH Cil -
60ii hopMyTHpPOBKE COXp HSET CBOHCTBO MOHOTOHHOCTH. Ilo pe3ynbT T M p GOTHI
MOXHO CJ/IeJ1 Th BBIBOJ, YTO I' PMOHMYECKHH 6 3UC 1 eT Goliee TOYHbIe MPUOINXKEH-
HbIE PEIeHNs] H  JI NTHUBHBIX CETK X JUISI P CCMOTPEHHBIX 3 J 4 M THUTOCT THKH IO
Cp BHEHMIO C OOBIYHBIM IOIXOIOM.
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Application of Harmonic Basis of a High Order for Solving Some
Magnetostatic Problems

The aim of this work is investigation of possibilities of using high-order harmonic
basis for solving some magnetostatic problems. We consider known methods with
our basis and the approach earlier elaborated by the authors. We present numerical
results of their comparison when solving a linear problem on sequences of meshes
with various parameters i and p. For a nonlinear problem with respect to two scalar
potentials, it is shown that this model, in the suggested new weak formulation, keeps
the property of monotonicity. From the results of this work it may be concluded
that the harmonic basis gives more exact approximations on adaptive meshes for the
considered magnetostatic problems in comparison with the usual approach.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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1. INTRODUCTION

Magnetic fields have broad application and play an important role in scientific
research of the structure of matter. Homogeneity of stationary magnetic fields in
electromagnets of accelerators is characterized by coefficients of their expansion
in a series on harmonic functions [1]. From there was an idea to find magnetic
fields by means of harmonic basis with approximation of a high order using dis-
continuous projection methods. Usual computer models of electromagnets may
generate vertex and edge singularities in approximate solutions. It is also the
reason for finding an optimal basis for an optimal adaptive discretization.

The paper is organized as follows. In Section 2 the formulations of nonlinear
and linear magnetostatic problems are given. Section 3 deals with the methods
in which harmonic basis can be used. Section 4 presents comparison of these
methods with the usual continuous Galerkin method of a high order. In Section 5
the harmonic basis is applied for solving nonlinear magnetostatics problems in
the formulation for the total and reduced scalar potentials. Here, the new weak
formulation, developed by the authors, is used.

2. FORMULATIONS OF MAGNETOSTATIC PROBLEMS

Consider the problem of magnetostatics with respect to the total (! and
reduced (?) scalar potentials in an area = ﬁ(l) U 5(2). On smooth parts
of the boundary define mutually orthogonal unit tangent, binormal, and normal
vectors so that they make up a local right-handed Cartesian coordinate system.
Denote these vectors by s, t, and n, respectively. Define the vector function
u, = sug + tuy; with components us and u;. With the notation we have the
following problem [2]:

V‘(M(I)VQD(I)):O, z e QW) V'(M(Q)ch@)):(), z e Q?,

e =o® 1% 1MW jon = u (96 Jon + HY), (1)
Voo =V, 0@ +HS zel,



o® =0, ze Fg), p®op® jon =0, xe Fg\l,c), k=1,2.

Here, Q) and Q) are regions of ferromagnetic and nonmagnetic media, res-
pectively; T' = (90M\ (T uTM)) n (@0@\ P uT®)), where T,
I’g\lf) are boundaries with the Dirichlet and Neumann conditions in these regions;
I’(Elf) NTC =0, I’g\]f) NT =0, Vo) =s0p® /95 +tdp®) /0t, k = 1,2; p1) =
po - pr(|V™M)]) is a given continuously differentiable function, 12 = g > 0,
HS, HY are normal component and tangential vector of the given field H,

n’

which is calculated by the Biot—Savart law:

() = [V () a9,
Qs

where Qg € Q?), J is a given vector function, V*(x,y) = V,(1/(4r|z — y|))
and |z — y| is the distance between the points x and y. Note that the function ¢
is either calculated by the formula [2]

Yy
oS(2) = () - / HS.dr, a.yecT,

where ¢ (z9) = ¢§ is the value prescribed at the point 2o € T', or found by
solving the problem [3]

/VTQOS -V, vdS = /Hf -V,udS,  ¢3(x0) = ¢f,
T r

where v is a basis function. Note that the second formula does not accumulate
errors in calculation of the vector H® by means of cubature formulas in 3D.
B =MV, 2 QW or B=pu®Vep® 4+ u2HS, z € Q) is a magnetic
flux density. In Section 5 we suggest a new weak formulation to solve (1) with
high-order harmonic basis.

For the linear case we will consider the following problem with respect to
unknown vectors H and B:

V-B=g, VxH=G, ze; (2)

nxH=nxH", ze€lp; n-B=n-B* zely.

Here, g and G are given, V - G = 0, n is an external normal vector to {2,
00 =TpUly, TpNTy =0, Tp # (. Taking into account that B = yH,
problem (2) is reduced to the linear div-curl system relative to H with § = g/ 0.
In Section 3 we consider some methods for solving this system with high-order
harmonic basis.



3. METHODS WITH HARMONIC BASIS OF A HIGH ORDER

For solving problems (1) and (2) with high-order harmonic basis, one can use
the integral equation method [4], the least square method [5] or the discontinuous
Galerkin method [6].

3.1. Formulations. Let us introduce some notation for short description of
these approaches. Let T} be a regular partition [7] of the region €2 and I'j,¢ be
the interior boundary between cells:

N(Pp)
0= U U, UNQ =10, Tiye = U Cri, T = 00NOY, k#1.
k=1 Qr,Q EPy

By [-] and {{-}} we denote the jump and the average of function across the
boundary between two cells, respectively:

[u]lr, ern. = uloa, —ulaq,, k<

{{u}}|rklerint = <u|8ﬂk + u|391)/27 k 7é l.
For cells with I'y, C I'p we define
Hu]”FkCFD = u|3QA~,7 {{u}}|FkCFD = u|3ﬂk'

Here, ulsq, and ulpq, are the traces of vector functions u|q,, u|g,. As a normal
vector on the common boundary I'y; between adjacent cells € and €2;, we use
an external normal vector to €y, if k <.

Assume that in € C T}, the approximate solution has the form [8]

H=Vp+w, (3)
where ¢ is a harmonic function and w is a particular solution:
V-w=g, Vxw=G, =x¢€ Q.

For problem (2), when I'p = 99Q and H|sn = H*, by means of the integral
equation method based on the Newton volume potential, we obtain [9]

Vo) + [ (Inx VelxV(5,0) + - VeIV (2,)dS, =

T /([[n X WxV*(z,y) + [n- w[V*(z,y))dS, —

Tint



- /(n < HY)xV*(2,y) + (n - H)V* (2, y))dS, +
o9
+ Z /(gV*(a?,y) + GXV*(z,y)dQy,, € Q€T
Qe€Th

Note that it is possible to use the integral equation based on Green’s formula
with fundamental solution [4]. Hovewer, these approaches can be expensive on
computational work. Consider the least square method from [9]. We have

3 [ vevvase ¥ | [19001 [ulas+
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- > | [ vtas+ [newl e velas @

Pri€line \ 1,

Here, 1) is a harmonic basis function [9]. Equation (4) was investigated in [9].
Usual estimates for h-convergence of approximate solutions [7] were also proved
in [9].

Then consider the discontinuous Galerkin method [6] for solving (2) with
our assumptions. We have the following scheme:

> [ve-vvaa- 3| [l Vel + - - VoRas +

Qe€Th gy, FCri€line \ T,

s [oawias |+ Y [ax Vel Inx vulds -

T €(TintUON) Tt

- Y [wa-veewder S [l fnwy+

QreTy Qs Ik €T int Th

+[m-w] - {{eRds - Y ¢ (n- (H" — w))dS +

+ Y /([[n x (H* —w)] - [n x V])dS,

Tk €(DintUON) I



where 3 = (z) is a penalty function [6]. Here, in standard scheme we include
the conditions which provide continuity of n x H and w on 'yt U 9€).

There is a second approach to apply the discontinuous Galerkin method for
solving (2). Assume that it is possible to differentiate the equations of system
(2). Then, instead of (2), we consider the problem

—VZH=VxG-Vyg, z€Q; H=H" z¢cd.

For each harmonic component u; = d¢/0x; of unknown vector H = u 4+ w, we
have

> [vuevae- Y | [ vup +

N €TH Qi FMG(FthBQ) Tw
+MMme%+/ﬂMWMﬁ -

=_ Z / ((V x G); — 0g/0z;)dY —

Qr€Th Qp

= > (Vo) (H —wi) = B-v- (Hf —w;))dS —

T €002 Trs

- Z / A{n- Vw4 [w] - {n- Vol})dS. (5)

TR €(MinU0Q) 1,

Here, 5 = B(x) is a penalty function. We will use this approach in Section 4.

3.2. Numerical Example of Convergence. We investigate the experimental
order of convergence (EOC) [6] for the least square method with harmonic basis
for vector function (LSTV) in formulation (4) and also for the discontinuous
Galerkin method (SIPG variant with harmonic basis) in formulation (5). Consider
the model problem in Q = (0,2):

V-u=0, Vxu=0, z€Q; u=u", =z,
where u* is a gradient of harmonic polynomial of the thirteenth order in spherical
coordinates = = (r, 0, ¢):
u* = V((r/3)' - (sin (2¢) - C132 - P (cos (0)) +
+cos (3¢) - C13.3 - Pi5(cos (9)))),

where P (cos (6)) is the associated Legendre function and C,, ,,, = (2n+1)(n —
E)/(n+ k).



In accordance with [9,10], in each cell €25 an unknown solution is sought in

the form
m(pr)

), = Z P v () 6)

where fi(k)(g) is a harmonic basis function, £ = (&1,&2,&3) is a point in local

coordinate system, &, = (z, — y,(bk)) / rk) y,(bk) is a coordinate of the center of the
cell Qp, n=1,2,3, r(*) is one half of the diameter A, of Qf, m(py) is a number
of polynomials of degree < pg, cl(-k) is an unknown coefficient. As harmonic

basis f;, j = 1,...,m, we choose functions from the sequence
Ly a2,1; a2,2; b2,2; a3,1; a3,2; b3,2; 03,3, b3,3; 4,15 04,2, ba,2; 04,35 04,35 a4,45 0,45 . -

and these functions are computed by the recursion relations, which limit growth
of round-off errors [10]:

2n+1

ez n—1
<§3an,1 €] m

n— ; =2,3,...,
_30, 171> n

an4+1,1 =

a1 =1,a2,1 = 3&3;

2n+1
n+1,n = 7. a0 n,n bnn; =1,2,...,
ntintt = 5o, (Gann = &bon), 1

a1 =1,b11 =0,

2n+1
bntin = 5. a\o_ n,n bnn7 =1,2,...,
Htl = g Ty, (200 Gban), 1

a1 =1,b11 =0,

2n+1 1 —k
n = |\ 5 4 n,k — bn n P
Untlhil = L= (2n1(§1a & —&bn k) + . 1§3a ,k+1>
n=23,...., k=1,...,n—1;
2n+1 1 n—=k
bpt1kt1 = " (2n (&2an.1 + &1 nk)erfsbn,kH)a
n=23..., k=1,..n—1

Let e; be the LQ(Q)—norm of an error of the solution on a mesh with the
cells having a diameter h. If we assume that

~ EOC
hNCh )



Table 1. h- and p-convergence of LSTV and SIPG methods with harmonic basis in

L?(92)-norm
Parameters LSTV SIPG
h n/m P en EOC | p en EOC g
V32 57619 2.6138e-2 1.0863e-2 17
V314 4608/9 1 7.7298e-3 1.76 2 1.4974e-3 2.86 33
V318 36864/9 2.0555¢e-3 1.91 1.8805¢e-4 2.99 66
V312 1024/16 1.0060e-2 2.5528e-3 20
V34 8192/16 2 1.3968e-3 2.85 3 1.7425¢e-4 3.87 35
V318 65536/16 1.7772e-4 2.97 1.1004e-5 3.99 67
V32 1600125 2.3093e-3 4.2100e-4 25
V34 12800/25 3 1.5681e-4 3.88 4 1.4301e-5 4.88 44
V318 102400725 9.9338e-6 3.98 4.5265e-7 4.98 78
V312 2304/36 3.5790e-4 5.7223e-5 29
V34 1843236 | 4 1.2318e-5 4.86 5 9.5903e-7 5.90 55
V318 147456/36 3.9267e-7 4.97 1.5079¢-8 5.99 102
V32 3136/49 5.0943e-5 5.4686¢e-6 31
V34 25088/49 5 8.6722e-7 5.88 6 4.6431e-8 6.87 57
V318 200704/49 1.3864¢-8 5.97 3.7082¢-10  6.97 104
V32 4096/64 6 5.3294e-6 7 3.7498e-7 32
V34 32768/64 4.3950e-8 6.92 1.5758e-9 7.89 61
V32 5184/81 7 3.5386e-7 8 1.9958e-8 35
V34 41472/81 1.4272e-9 7.95 4.1696e-11  8.90 66
V32 6400/100 8 1.9218e-8 9 9.2338e-10 40
V314 51200/100 3.8491e-11  8.96 9.4132e-13  9.94 76
V312 77441121 9 8.5297¢-10 10 2.9282¢-11 48
V34 61952/121 8.4414e-13  9.98 1.4300e-14 11.00 88
V32 9216/144 10 2.7879e-11 11 5.9665e-13 49
V34 73728/144 1.3724e-14  10.99 1.1026e-15 95

where C' is independent of h, then for two meshes with cells of diameters h
hs, we have

EOC ~

log (en, /en,)
IOg (hl/hg) '

and

Table 1 presents EOC for LSTV and SIPG with harmonic basis for the considered
model problem. Here, p is the degree of harmonic basis and n is the number

of equations.

estimations [9].

The obtained results are in a good agreement with theoretical



4. NUMERICAL COMPARISON OF METHODS ON MODEL
MAGNETOSTATIC PROBLEM

Calculation of magnetic fields in large regions can be a challenge. The mag-
netic system of a physical experiment (for example, ALICE [11], PANDA [12]
and, perhaps, some future experiments) may contain a huge solenoid with ferro-
magnetic screen and a large dipole with ferromagnetic core, i.e., the electromag-
nets having differently directed fields. To estimate the field behavior between two
magnets, it is possible to use linear models without ferromagnetic parts (Figs. 1
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Fig. 1. Model of magnet system with two large solenoids and first calculation mesh in
plane z; =0
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Fig. 2. Model of magnet system with two large solenoids and first calculation mesh (top
view)



and 2). Such a model problem can be used for comparison of efficiency of
the above-presented methods with harmonic basis. Let the Dirichlet problem for
vector Laplace equation be solved in the region Q = {z = (z1,22,23) : 0 <
r1 < 3.5;0 < 23 < 1.5;0 < 23 < 10.} with condition n x poH*|gq = Bf
or ioH*|s0 = BS. Here, B is the total field of two solenoids computed by
the Biot-Savart law [13] with given current densities providing Bs(0) = 0.5 T
and B2(0,0,9.75) = 0.75 T for the horizontal and the vertical solenoid, respec-
tively. Figures 3 and 4 show the behavior of the field between the magnets in
two perpendicular planes.

We have solved this problem by the least square method with harmonic
basis for vector function (LSTV) in formulation (4), the discontinuous Galerkin
method (SIPG variant [6]) in formulation (5) and the continuous Galerkin method
(CG) [7] in the same assumptions as for SIPG method.

The results obtained with the above-mentioned methods are presented in
Tables 2-4, where we have introduced the following notation: CG27 and CG64
are the CG method with 27- and 64-noded elements in the form of hexahedrons [7,
14], respectively; LSTV-1 is LSTV with the boundary condition nx B*|sq = Bf ,
LSTV-2 is LSTV with the boundary condition Bl|sq = B®: “nelm”, p, n, m
are the number of elements, the maximal degree of basis functions, the total
number of unknowns (freedom degrees), and the number of unknowns in each
element, respectively; § = maxzeq, |[B* — By|/|B*|, where Qj, is the grid of
56x24x160 points uniformly dividing the region €2; ¢* means the same as §,

Ty, M
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Fig. 3. Distribution of total magnetic flux density between the magnets in plane 1 = 0



Fig. 4. Distribution of total magnetic flux density between the magnets in plane x3
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Table 2. h- and p-convergence of SIPG method with harmonic basis

p | nelm n/m 1) it/iter+ 8
420 3780/9 9.7048e-3 | 89/27 0.2
2 | 3360 30240/9 1.6221e-3 | 148/45 | 0.3
26880 | 241920/9 2.3418e-4 | 282/85 | 0.6
420 6720/16 2.1110e-3 | 108/30 | 0.3
3 1 3360 53760/16 1.9813e-4 | 148/45 | 0.3
26880 | 430080/16 | 1.6585e-5 | 282/84 | 0.6
420 10500/25 4.9070e-4 | 100/28 | 0.25
4 | 3360 84000/25 3.6785e-5 | 180/50 | 0.45
26880 | 672000/25 | 1.6499e-6 | 323/91 | 0.8

and By is computed in each element with the help of harmonic interpolation
formulas. By “it”, “iter” and “iter+” we denote the number of iterations when
using the conjugate gradient method with a block-diagonal preconditioner [15],
the method ICCG(0) [15] and ICCG(0) with a block-diagonal preconditioner,
respectively. Here each block corresponds to element matrix. It is important to
note that the number of iterations of the preconditioned conjugate gradient method
is approximately in proportion to the square root of the condition number of a
matrix [15].

Table 2 shows h- and p-convergence of SIPG method with the harmonic
basis. The first adaptive mesh is depicted in Figs. 1 and 2. Each consequent mesh

10



Table 3. h- and p-convergence of CG method

Type | nelm n/m 1) 0" iter
420 4305727 3.0317e-3 | 2.3799%¢-3 | 13
CG27 | 3360 30537/27 4.1259¢e-4 | 2.0613e-4 | 23
26880 | 229425/27 | 2.2415e-5 | 8.9953e-6 | 43
420 10060/64 3.4268e-4 | 1.1293e-4 | 13
CG64 | 3360 71977/64 1.5569e-5 | 4.8405e-6 | 24
26880 | 542905/64 | 1.1001e-6 | 3.5730e-7 | 44

Table 4. h- and p-convergence of LSTV methods

Parameters LSTV-1 LSTV-2
p nelm n/m ) it/iter+ ) it/iter+
420 3780/9 7.0005e-2  78/28 5.1976e-2  54/20
2 3360 30240/9 1.9773e-2  150/53 1.6604e-2  102/37
26880 241920/9 5.3522e-3  286/102 4.6155e-3  192/70
420 6720/16 1.2205e-2  81/28 1.1856e-2  56/20
3 3360 53760/16 2.2320e-3  151/51 2.0022e-3  103/36
26880 430080/16 3.1810e-4  286/98 2.8910e-4  193/68
420 10500/25 3.1465¢-3  81/28 2.8916e-3  56/21
4 3360 84000/25 3.2983e-4  151/52 3.0555e-4  103/37
26880  672000/25 2.6755e-5  286/99 2.3730e-5 193/69
420 15120/36 7.2374e-4  81/29 6.4707e-4  56/21
5 3360 120960/36 | 4.9031e-5 152/53 4.2319e-5  104/37
26880 967680/36 2.3698e-6  286/102" | 1.9520e-6  193/70*
420 20580/49 1.7649¢-4  81/29 1.7323e-4  56/21
6 3360 164640/49 | 6.9802e-6 152/54 6.8604e-6  103/38
26880 1317120/49 | 2.1848e-7  287/102* | 1.8235e-7  193/70*
7 420 26880/64 5.7201e-5 81/29 5.9091e-5 56/22
3360  215040/64 | 1.3093e-6 152/54 1.4861e-6  103/38
8 420 34020/81 2.1388e-5  81/29 2.0118e-5 56/22
420 42000/100 6.6198e-6  81/30 6.1836e-6  57/22

is obtained by dividing each element from the previous mesh into eight identical
parts. The parameter 3 is chosen from the set {0.1,0.15,0.2,...,0.9} to obtain
a minimal value of 0. For CG64 (Table 3) we have used “static condensation”,
i.e., elimination unknowns, corresponding to inner nodes of elements, from the
system. To calculate the volume integrals, the product of three- or four-point one-
dimensional Gauss formulas for each direction of integration is used. In LSTV
(Table4), for integration, the special two-dimensional 17-noded formulas [16]

with a minimum number of nodes are used.
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Calculations and analysis of the tables show that, in comparison with SIPG, in
LSTYV the required accuracy is achieved by increase in degree of basis functions at
unit. But in LSTV the same accuracy is reached faster than in SIPG. Concerning
the CG method it should be noted that basis functions in the form of tensor
product contain monomials up to degree 6 (CG27) and up to degree 9 (CG64).
However, in LSTV the same accuracy can be reached on a coarser mesh, but
with more filled matrix. In the tables the compared results are marked in bold
type. Note that the number of iterations for LSTV weakly depends on p. Here,
102* and 70* are estimating values. Table 4 also shows the possibility of using
high-order harmonic basis in LSTV for solving problems with smooth solutions
on meshes with small numbers of elements.

5. APPLICATION OF HIGH-ORDER HARMONIC BASIS
FOR SOLVING NONLINEAR MAGNETOSTATIC PROBLEMS

As is well known, in adaptive approach the usual C'(®) continuous finite
element basis [7] requires that additional elements and nodes be generated or
additional computational work be carried out for processing hanging nodes and
edges. It is not required in projection methods with the discontinuous basis,
presented in Section 4. The basis is very convenient for hp-adaptive problem
solving with a high accuracy, allows one to increase easily a local order of
approximation and to work with the meshes containing hanging nodes and edges.
However, in this case, the multi-frontal parallel direct solver is required, for
example, from KRYLOV library [17].

5.1. New Weak Formulations of the Nonlinear Magnetostatic Problem for
Two Scalar Potentials. To solve the problem of magnetostatics in formulation
(1), one usually presupposes that the function ;(|V(!)|) is a piecewise constant
on each element in Q). It follows that for each such element the potential p(!) is
harmonic and it is possible to use harmonic basis of the first order for its finding.
For this case, in the framework of the continuous Galerkin approach, the weak
formulation for (1) was presented in [2]. But the formulation is not suitable for
application of high-order harmonic basis. Therefore, we write our formulation in
another way. Introduce the following notation:

m(p@(p(j)w(i),u(j)]]]lrk,L =

[p DT[] + [® 22 [0 252 4+ [V, O] [V,0 D], @ € Tyyyi = 5

) ) X . O] N 9@ N 9u® iy v
= (D — @)@ — @) (u(l)%’n— _ u(a)@a_)(ﬂuwa_ _ M(J)Ba_])+

on n n

+V (@ — ).V (v —0)) € Thy,i # j.
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In this notation we have

2
Z( /|][<p<’“>,<p<’“>,v<’“>,v<’“>]]]ds+ / oM 4

Tl iy
9ok vk
(9P (k) OV 1) 2 (1) ,(2) _
+/u Gl g dS +/W ;o 0 P]ds
r r
o™ o
_ S (1) _ . (2) Qs " _ @
/(cp(v v+ p n<u i e wall A
T

+H? -V, (v — @ )) ds. (7

Here, Fl(ft) is the inner boundary between elements and v(*) is a weight function
in the region Q) |k = 1,2. As a result of discretization, we have a symmetric
matrix and a right side depending on ;') and, hence, on the required solution.
5.2. Example of Solving the Nonlinear Magnetostatic Problem. An import-
ant question for electromagnets is about saturation of ferromagnetic parts [18]. To
study this effect, at a magnet design stage, we need to solve nonlinear magnetosta-
tic problems in order to obtain distribution of a module field in the ferromagnetic
region. Figure5 shows a symmetric part of the cross section by the center plane

of a spectrometer magnet model. The considered model is investigated in [19]

. 1600 ~
= 1
1400
1200
1000
800
600
400 3
200
0-'I'I'I'I'I'I'I'

0 0.4 0.8 1.2 1.6 0 051 15 2253 354
zl,m |B|,T

Ty, M

Fig. 5. Computational model of the electro- Fig. 6. Permeability u, versus |B|
magnet
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with the help of the continuous Galerkin approach in the framework of formu-
lation (1) for 2D and 3D. It is assumed that the magnetic core is a magnetic
isotropic medium. The behavior of the magnetic permeability p, depending on
magnetic flux density B is shown in Fig. 6. The prescribed current density J;
provides B2(0) = 1.07 T. The model contains singularities at points A, B, C,
which influence saturation.

We solve the nonlinear magnetostatic problem in formulation (7), where
the Neumann condition is given at x; = 0, and the Dirichlet condition at lines
x9 = 0, x1 = 3.7, x9 = 3.35, remote from the center. The harmonic basis of
order 2,3,...,10 is used: o) (x)|g, = ji)cy)f;l)({). In the ferromagnetic
region p;|qa) = 2. For solving system (7), write the iterative process [20]:

2

(k) (k) k) . (k (k) k
§ :( /M¢Ilit+1/2’90nit+1/2’v( ), oW ]dS + / 111t+1/2v( Jds +
B=1\ Lo r(

int

&p( ) o
k nit+1/2  (k vk
+ / p’l('nt) on p’l('nt) on dS /m@mt_t,q/y nlt+1/27 7U(2)]]]dS:

NG
v o2
=/<ws(v(1)—v(2))+u(2)H (unllt) o M ) ®

r

+HS .V, (v~ u@))) ds,

k k (k .
90511t)+1 Whit - S01(1it)-',-1/2 + (1 — wnit) - ()01’1137 k=12, nit=0,1,2,...,

where goék) is given, wyjy 1S a parameter, wo = 1, at nit > 0 it is adaptively
chosen as function of the variable

e [t /]

Q@) Q)

System (8), corresponding to an adaptive mesh with numerous hanging nodes, is
solved by a direct method in each iteration step on nonlinearity. Here, use of
KRYLOV library [17] is possible.

We executed computations for the sequence of current densities J1, J1 -0.75,
J1-0.5 and J; - 0.25 on the same mesh and at the same distribution of an order
of approximation. Figure 7 shows a typical convergence of oy,i;. Table 5 presents

14



5 10

15 20 25 30
nit

Fig. 7. Typical convergence of onit: ©, A, e, o for current density J1, J1 - 0.75, J1 - 0.5,

and J; - 0.25, respectively

Table 5. The field module peak and the field in the magnet center

Field Ji J1-075 [ J1-0.5 | Ji-0.25
max |B|, T | 2.5415 2.2875 1.8883 1.4816
B»(0,0), T | 1.0689 0.8047 0.5373 0.2682

0.8 1.2 1.6

e Z, m
Distribution of B, T
e —
2.1799 1.4569 0.7339  0.0109
2.5415 1.8185 1.0955 0.3725

Fig. 8. Field behavior obtained by means
of high-order harmonic basis for current
density Jq

0 0.4 0.8 1.2 1.6
1, m

z
Distribution of |B|, T
BN I I — ]
19615 13094 0.6574  0.0054

22875 1.6354 09834 03314

Fig. 9. Field behavior obtained by means
of high-order harmonic basis for current
density J1 - 0.75



0 0.4 0.8 1.2 1.6 0 0.4 0.8 1.2 1.6

o zp, m o T, m
Distribution of |B|, T Distribution of |B|, T
C e eeee— C T e —
1.6188 1.0806  0.5425  0.0043 1.2702  0.8475 0.4248  0.0021
1.8879 1.3497 0.8116  0.2734 1.4816 1.0589 0.6361 0.2134

Fig. 10. Field behavior obtained by means Fig. 11. Field behavior obtained by means
of high-order harmonic basis for current of high-order harmonic basis for current
density Ji1 - 0.5 density Ji - 0.25

convergence of field module peak in the ferromagnetic material and the main field
component in the magnet center for different current densities.

The distributions of field module in the ferromagnetic media and field beha-
vior in the nonmagnetic region are presented in Figs. 8—11.

6. CONCLUSIONS AND FUTURE WORK

In this work we have considered the linear and nonlinear magnetostatic prob-
lems and have shown possibilities to use our high-order harmonic basis for their
solving. For the nonlinear problem with respect to two scalar potentials, such a
basis is used in nonmagnetic medium. Comparison with the continuous Galerkin
method and with the considered discontinuous methods of a high order at var-
ious h and p, for 3D model linear problems, shows that the harmonic basis is
especially effective on adaptive meshes. For solving the nonlinear magnetostatic
problem, the new weak formulation, obtained by the authors, was used. Using
the numerical example it is shown that the formulation keeps the monotonicity
property of the considered magnetostatic problem even with hanging nodes.

In the paper [21], the special algorithm for discretization of the discontinuous
Galerkin method is presented, where high degree of convergence of approximate
solutions was theoretically proved in the case of linear problems with singularities.
But as Figs.8-11 show, for accounting singularities in points A, B, C it is
necessary to use similar algorithms for discretizations of projection discontinuous
methods in both nonmagnetic and magnetic medium.
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