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Application of Harmonic Basis of a High Order for Solving Some
Magnetostatic Problems

The aim of this work is investigation of possibilities of using high-order harmonic
basis for solving some magnetostatic problems. We consider known methods with
our basis and the approach earlier elaborated by the authors. We present numerical
results of their comparison when solving a linear problem on sequences of meshes
with various parameters h and p. For a nonlinear problem with respect to two scalar
potentials, it is shown that this model, in the suggested new weak formulation, keeps
the property of monotonicity. From the results of this work it may be concluded
that the harmonic basis gives more exact approximations on adaptive meshes for the
considered magnetostatic problems in comparison with the usual approach.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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1. INTRODUCTION

Magnetic ˇelds have broad application and play an important role in scientiˇc
research of the structure of matter. Homogeneity of stationary magnetic ˇelds in
electromagnets of accelerators is characterized by coefˇcients of their expansion
in a series on harmonic functions [1]. From there was an idea to ˇnd magnetic
ˇelds by means of harmonic basis with approximation of a high order using dis-
continuous projection methods. Usual computer models of electromagnets may
generate vertex and edge singularities in approximate solutions. It is also the
reason for ˇnding an optimal basis for an optimal adaptive discretization.

The paper is organized as follows. In Section 2 the formulations of nonlinear
and linear magnetostatic problems are given. Section 3 deals with the methods
in which harmonic basis can be used. Section 4 presents comparison of these
methods with the usual continuous Galerkin method of a high order. In Section 5
the harmonic basis is applied for solving nonlinear magnetostatics problems in
the formulation for the total and reduced scalar potentials. Here, the new weak
formulation, developed by the authors, is used.

2. FORMULATIONS OF MAGNETOSTATIC PROBLEMS

Consider the problem of magnetostatics with respect to the total ϕ(1) and

reduced ϕ(2) scalar potentials in an area Ω = Ω
(1) ∪ Ω

(2)
. On smooth parts

of the boundary deˇne mutually orthogonal unit tangent, binormal, and normal
vectors so that they make up a local right-handed Cartesian coordinate system.
Denote these vectors by s, t, and n, respectively. Deˇne the vector function
uτ = sus + tut with components us and ut. With the notation we have the
following problem [2]:

∇ · (μ(1)∇ϕ(1)) = 0, x ∈ Ω(1), ∇ · (μ(2)∇ϕ(2)) = 0, x ∈ Ω(2),

ϕ(1) = ϕ(2) + ϕS , μ(1)∂ϕ(1)/∂n = μ(2)(∂ϕ(2)/∂n + HS
n ), (1)

∇τϕ(1) = ∇τϕ(2) + HS
τ , x ∈ Γ,
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ϕ(k) = 0, x ∈ Γ(k)
D , μ(k)∂ϕ(k)/∂n = 0, x ∈ Γ(k)

N , k = 1, 2.

Here, Ω(1) and Ω(2) are regions of ferromagnetic and nonmagnetic media, res-

pectively; Γ = (∂Ω(1) \ (Γ(1)
D ∪ Γ(1)

N )) ∩ (∂Ω(2) \ (Γ(2)
D ∪ Γ(2)

N )), where Γ(k)
D ,

Γ(k)
N are boundaries with the Dirichlet and Neumann conditions in these regions;

Γ(k)
D ∩ Γ = ∅, Γ(k)

N ∩ Γ = ∅, ∇τϕ(k) = s∂ϕ(k)/∂s + t∂ϕ(k)/∂t, k = 1, 2; μ(1) =
μ0 · μr(|∇ϕ(1)|) is a given continuously differentiable function, μ(2) = μ0 > 0,
HS

n , HS
τ are normal component and tangential vector of the given ˇeld HS ,

which is calculated by the BiotÄSavart law:

HS(x) =
∫
ΩS

J × V∗(x, y) dΩy,

where ΩS ∈ Ω(2), J is a given vector function, V∗(x, y) = ∇y(1/(4π|x − y|))
and |x− y| is the distance between the points x and y. Note that the function ϕS

is either calculated by the formula [2]

ϕS(x) = ϕS(y) −
y∫

x

HS
τ · dτ, x, y ∈ Γ,

where ϕS(x0) = ϕS
0 is the value prescribed at the point x0 ∈ Γ, or found by

solving the problem [3]∫
Γ

∇τϕS · ∇τvdS =
∫
Γ

HS
τ · ∇τvdS, ϕS(x0) = ϕS

0 ,

where v is a basis function. Note that the second formula does not accumulate
errors in calculation of the vector HS by means of cubature formulas in 3D.
B = μ(1)∇ϕ(1), x ∈ Ω(1), or B = μ(2)∇ϕ(2) + μ(2)HS , x ∈ Ω(2), is a magnetic
�ux density. In Section 5 we suggest a new weak formulation to solve (1) with
high-order harmonic basis.

For the linear case we will consider the following problem with respect to
unknown vectors H and B:

∇ ·B = g, ∇× H = G, x ∈ Ω; (2)

n× H = n× H∗, x ∈ ΓD; n · B = n · B∗, x ∈ ΓN .

Here, g and G are given, ∇ · G = 0, n is an external normal vector to Ω,
∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, ΓD �= ∅. Taking into account that B = μ0H,
problem (2) is reduced to the linear div-curl system relative to H with g̃ = g/μ0.
In Section 3 we consider some methods for solving this system with high-order
harmonic basis.
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3. METHODS WITH HARMONIC BASIS OF A HIGH ORDER

For solving problems (1) and (2) with high-order harmonic basis, one can use
the integral equation method [4], the least square method [5] or the discontinuous
Galerkin method [6].

3.1. Formulations. Let us introduce some notation for short description of
these approaches. Let Th be a regular partition [7] of the region Ω and Γint be
the interior boundary between cells:

Ω =
N(Ph)⋃
k=1

Ωk, Ωk∩Ωl = ∅, Γint =
⋃

Ωk,Ωl∈Ph

Γkl, Γkl = ∂Ωk∩∂Ωl, k �= l.

By [[·]] and {{·}} we denote the jump and the average of function across the
boundary between two cells, respectively:

[[u]]|Γkl∈Γint = u|∂Ωk
− u|∂Ωl

, k < l;

{{u}}|Γkl∈Γint = (u|∂Ωk
+ u|∂Ωl

)/2, k �= l.

For cells with Γk ⊂ ΓD we deˇne

[[u]]|Γk⊂ΓD = u|∂Ωk
, {{u}}|Γk⊂ΓD = u|∂Ωk

.

Here, u|∂Ωk
and u|∂Ωl

are the traces of vector functions u|Ωk
, u|Ωl

. As a normal
vector on the common boundary Γkl between adjacent cells Ωk and Ωl, we use
an external normal vector to Ωk, if k < l.

Assume that in Ωk ⊂ Th the approximate solution has the form [8]

H = ∇ϕ + w, (3)

where ϕ is a harmonic function and w is a particular solution:

∇ · w = g̃, ∇× w = G, x ∈ Ωk.

For problem (2), when ΓD = ∂Ω and H|∂Ω = H∗, by means of the integral
equation method based on the Newton volume potential, we obtain [9]

∇ϕ(x) +
∫

Γint

([[n ×∇ϕ]]×V∗(x, y) + [[n · ∇ϕ]]V∗(x, y))dSy =

= −
∫

Γint

([[n × w]]×V∗(x, y) + [[n · w]]V∗(x, y))dSy −
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−
∫

∂Ω

(n × H∗)×V∗(x, y) + (n · H∗)V∗(x, y))dSy +

+
∑

Ωk∈Th

∫
Ωk

(g̃V∗(x, y) + G×V∗(x, y))dΩy , x ∈ Ωk ∈ Th.

Note that it is possible to use the integral equation based on Green's formula
with fundamental solution [4]. Hovewer, these approaches can be expensive on
computational work. Consider the least square method from [9]. We have

∑
(∂Ωk∩∂Ω)∈Th

∫
(∂Ωk∩∂Ω)

∇ϕ · ∇ψdS +
∑

Γkl∈Γint

⎛
⎝ ∫

Γkl

[[∇τϕ]] · [[∇τψ]]dS +

+
∫

Γkl

[[n · ∇ϕ]] · [[n · ∇ψ]]dS

⎞
⎠ = −

∑
(∂Ωk∩∂Ω)∈Th

∫
(∂Ωk∩∂Ω)

(w − H∗) · ∇ψdS −

−
∑

Γkl∈Γint

⎛
⎝ ∫

Γkl

[[wτ ]] · [[∇τψ]]dS +
∫

Γkl

[[n · w]] · [[n · ∇ψ]]dS

⎞
⎠. (4)

Here, ψ is a harmonic basis function [9]. Equation (4) was investigated in [9].
Usual estimates for h-convergence of approximate solutions [7] were also proved
in [9].

Then consider the discontinuous Galerkin method [6] for solving (2) with
our assumptions. We have the following scheme:

∑
Ωk∈Th

∫
Ωk

∇ϕ · ∇ψdΩ −
∑

Γkl∈Γint

⎛
⎝ ∫

Γkl

([[ψ]] · {{n · ∇ϕ}} + [[ϕ]] · {{n · ∇ψ}})dS +

+
∫

Γkl

β[[ϕ]] · [[ψ]]dS

⎞
⎠ +

∑
Γkl∈(Γint∪∂Ω)

∫
Γkl

[[n×∇ϕ]] · [[n ×∇ψ]]dS =

= −
∑

Ωk∈Th

∫
Ωk

(ψ · g −∇ψ ·w)dΩ +
∑

Γkl∈Γint

∫
Γkl

([[ψ]] · {{n ·w}}+

+ [[n ·w]] · {{ψ}})dS −
∑

Γkl∈∂Ω

∫
Γkl

ψ · (n · (H∗ − w))dS +

+
∑

Γkl∈(Γint∪∂Ω)

∫
Γkl

([[n × (H∗ − w)]] · [[n×∇ψ]])dS,
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where β = β(x) is a penalty function [6]. Here, in standard scheme we include
the conditions which provide continuity of n× H and w on Γint ∪ ∂Ω.

There is a second approach to apply the discontinuous Galerkin method for
solving (2). Assume that it is possible to differentiate the equations of system
(2). Then, instead of (2), we consider the problem

−∇2H = ∇× G −∇g, x ∈ Ω; H = H∗, x ∈ ∂Ω.

For each harmonic component ui = ∂ϕ/∂xi of unknown vector H = u + w, we
have

∑
∂Ωk∈Th

∫
Ωk

∇ui · ∇vdΩ −
∑

Γkl∈(Γint∪∂Ω)

⎛
⎝ ∫

Γkl

([[v]] · {{n · ∇ui}} +

+ [[ui]]{{n · ∇v}})dS +
∫

Γkl

β · [[ui]] · [[v]]dS

⎞
⎠ =

= −
∑

Ωk∈Th

∫
Ωk

v · ((∇× G)i − ∂g/∂xi)dΩ −

−
∑

Γkl∈∂Ω

∫
Γkl

((n · ∇v) · (H∗
i − wi) − β · v · (H∗

i − wi))dS −

−
∑

Γkl∈(Γint∪∂Ω)

∫
Γkl

([[v]] · {{n · ∇wi}} + [[wi]] · {{n · ∇v}})dS. (5)

Here, β = β(x) is a penalty function. We will use this approach in Section 4.
3.2. Numerical Example of Convergence. We investigate the experimental

order of convergence (EOC) [6] for the least square method with harmonic basis
for vector function (LSTV) in formulation (4) and also for the discontinuous
Galerkin method (SIPG variant with harmonic basis) in formulation (5). Consider
the model problem in Ω = (0, 2)3:

∇ · u = 0, ∇× u = 0, x ∈ Ω; u = u∗, x ∈ ∂Ω,

where u∗ is a gradient of harmonic polynomial of the thirteenth order in spherical
coordinates x = (r, θ, φ):

u∗ = ∇((r/3)13 · (sin (2φ) · C13,2 · P 2
13(cos (θ)) +

+ cos (3φ) · C13,3 · P 3
13(cos (θ)))),

where Pm
n (cos (θ)) is the associated Legendre function and Cn,m = (2n+1)(n−

k)!/(n + k)!.
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In accordance with [9,10], in each cell Ωk an unknown solution is sought in
the form

u(x)|Ωk
=

m(pk)∑
i=2

c
(k)
i−1∇f

(k)
i (ξ), (6)

where f
(k)
i (ξ) is a harmonic basis function, ξ = (ξ1, ξ2, ξ3) is a point in local

coordinate system, ξn = (xn−y
(k)
n )/r(k), y

(k)
n is a coordinate of the center of the

cell Ωk, n = 1, 2, 3, r(k) is one half of the diameter hk of Ωk, m(pk) is a number

of polynomials of degree � pk, c
(k)
i is an unknown coefˇcient. As harmonic

basis fj , j = 1, . . . , m, we choose functions from the sequence

1; a2,1; a2,2; b2,2; a3,1; a3,2; b3,2; a3,3; b3,3; a4,1; a4,2; b4,2; a4,3; b4,3; a4,4; b4,4; . . . ,

and these functions are computed by the recursion relations, which limit growth
of round-off errors [10]:

an+1,1 =
2n + 1

n

(
ξ3an,1 − |ξ|2 n − 1

2n − 3
an−1,1

)
, n = 2, 3, . . . ,

a1,1 = 1, a2,1 = 3ξ3;

an+1,n+1 =
2n + 1

(2n − 1)2n
(ξ1an,n − ξ2bn,n), n = 1, 2, . . . ,

a1,1 = 1, b1,1 = 0.;

bn+1,n+1 =
2n + 1

(2n − 1)2n
(ξ2an,n + ξ1bn,n), n = 1, 2, . . . ,

a1,1 = 1, b1,1 = 0.;

an+1,k+1 =
2n + 1
n + k

(
1

2n − 1
(ξ1an,k − ξ2bn,k) +

n − k

2n − 1
ξ3an,k+1

)
,

n = 2, 3, . . . , k = 1, . . . , n − 1;

bn+1,k+1 =
2n + 1
n + k

(
1

2n − 1
(ξ2an,k + ξ1bn,k) +

n − k

2n − 1
ξ3bn,k+1

)
,

n = 2, 3, . . . , k = 1, . . . , n − 1.

Let eh be the L2(Ω)-norm of an error of the solution on a mesh with the
cells having a diameter h. If we assume that

eh ≈ C · hEOC,
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Table 1. h- and p-convergence of LSTV and SIPG methods with harmonic basis in
L2(Ω)-norm

Parameters LSTV SIPG

h n/m p eh EOC p eh EOC β√
3/2 576/9 2.6138e-2 1.0863e-2 17√
3/4 4608/9 1 7.7298e-3 1.76 2 1.4974e-3 2.86 33√
3/8 36864/9 2.0555e-3 1.91 1.8805e-4 2.99 66√
3/2 1024/16 1.0060e-2 2.5528e-3 20√
3/4 8192/16 2 1.3968e-3 2.85 3 1.7425e-4 3.87 35√
3/8 65536/16 1.7772e-4 2.97 1.1004e-5 3.99 67√
3/2 1600/25 2.3093e-3 4.2100e-4 25√
3/4 12800/25 3 1.5681e-4 3.88 4 1.4301e-5 4.88 44√
3/8 102400/25 9.9338e-6 3.98 4.5265e-7 4.98 78√
3/2 2304/36 3.5790e-4 5.7223e-5 29√
3/4 18432/36 4 1.2318e-5 4.86 5 9.5903e-7 5.90 55√
3/8 147456/36 3.9267e-7 4.97 1.5079e-8 5.99 102√
3/2 3136/49 5.0943e-5 5.4686e-6 31√
3/4 25088/49 5 8.6722e-7 5.88 6 4.6431e-8 6.87 57√
3/8 200704/49 1.3864e-8 5.97 3.7082e-10 6.97 104√
3/2 4096/64 6 5.3294e-6 7 3.7498e-7 32√
3/4 32768/64 4.3950e-8 6.92 1.5758e-9 7.89 61√
3/2 5184/81 7 3.5386e-7 8 1.9958e-8 35√
3/4 41472/81 1.4272e-9 7.95 4.1696e-11 8.90 66√
3/2 6400/100 8 1.9218e-8 9 9.2338e-10 40√
3/4 51200/100 3.8491e-11 8.96 9.4132e-13 9.94 76√
3/2 7744/121 9 8.5297e-10 10 2.9282e-11 48√
3/4 61952/121 8.4414e-13 9.98 1.4300e-14 11.00 88√
3/2 9216/144 10 2.7879e-11 11 5.9665e-13 49√
3/4 73728/144 1.3724e-14 10.99 1.1026e-15 95

where C is independent of h, then for two meshes with cells of diameters h1 and
h2, we have

EOC ≈ log (eh1/eh2)
log (h1/h2)

.

Table 1 presents EOC for LSTV and SIPG with harmonic basis for the considered
model problem. Here, p is the degree of harmonic basis and n is the number
of equations. The obtained results are in a good agreement with theoretical
estimations [9].

7



4. NUMERICAL COMPARISON OF METHODS ON MODEL
MAGNETOSTATIC PROBLEM

Calculation of magnetic ˇelds in large regions can be a challenge. The mag-
netic system of a physical experiment (for example, ALICE [11], PANDA [12]
and, perhaps, some future experiments) may contain a huge solenoid with ferro-
magnetic screen and a large dipole with ferromagnetic core, i.e., the electromag-
nets having differently directed ˇelds. To estimate the ˇeld behavior between two
magnets, it is possible to use linear models without ferromagnetic parts (Figs. 1
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Fig. 1. Model of magnet system with two large solenoids and ˇrst calculation mesh in
plane x1 = 0
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Fig. 2. Model of magnet system with two large solenoids and ˇrst calculation mesh (top
view)
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and 2). Such a model problem can be used for comparison of efˇciency of
the above-presented methods with harmonic basis. Let the Dirichlet problem for
vector Laplace equation be solved in the region Ω = {x = (x1, x2, x3) : 0 <
x1 < 3.5; 0 < x2 < 1.5; 0 < x3 < 10.} with condition n × μ0H∗|∂Ω = BS

τ

or μ0H∗|∂Ω = BS . Here, BS is the total ˇeld of two solenoids computed by
the BiotÄSavart law [13] with given current densities providing B3(0) = 0.5 T
and B2(0, 0, 9.75) = 0.75 T for the horizontal and the vertical solenoid, respec-
tively. Figures 3 and 4 show the behavior of the ˇeld between the magnets in
two perpendicular planes.

We have solved this problem by the least square method with harmonic
basis for vector function (LSTV) in formulation (4), the discontinuous Galerkin
method (SIPG variant [6]) in formulation (5) and the continuous Galerkin method
(CG) [7] in the same assumptions as for SIPG method.

The results obtained with the above-mentioned methods are presented in
Tables 2Ä4, where we have introduced the following notation: CG27 and CG64
are the CG method with 27- and 64-noded elements in the form of hexahedrons [7,
14], respectively; LSTV-1 is LSTV with the boundary condition n×B∗|∂Ω = BS

τ ,
LSTV-2 is LSTV with the boundary condition B|∂Ω = BS ; ©nelmª, p, n, m
are the number of elements, the maximal degree of basis functions, the total
number of unknowns (freedom degrees), and the number of unknowns in each
element, respectively; δ = maxx∈Ωh

|B∗ − Bh|/|B∗|, where Ωh is the grid of
56×24×160 points uniformly dividing the region Ω; δ∗ means the same as δ,

x2, m
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Fig. 3. Distribution of total magnetic �ux density between the magnets in plane x1 = 0
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Fig. 4. Distribution of total magnetic �ux density between the magnets in plane x3 =
6.825 m

Table 2. h- and p-convergence of SIPG method with harmonic basis

p nelm n/m δ it/iter+ β

420 3780/9 9.7048e-3 89/27 0.2
2 3360 30240/9 1.6221e-3 148/45 0.3

26880 241920/9 2.3418e-4 282/85 0.6

420 6720/16 2.1110e-3 108/30 0.3
3 3360 53760/16 1.9813e-4 148/45 0.3

26880 430080/16 1.6585e-5 282/84 0.6

420 10500/25 4.9070e-4 100/28 0.25
4 3360 84000/25 3.6785e-5 180/50 0.45

26880 672000/25 1.6499e-6 323/91 0.8

and Bh is computed in each element with the help of harmonic interpolation
formulas. By ©itª, ©iterª and ©iter+ª we denote the number of iterations when
using the conjugate gradient method with a block-diagonal preconditioner [15],
the method ICCG(0) [15] and ICCG(0) with a block-diagonal preconditioner,
respectively. Here each block corresponds to element matrix. It is important to
note that the number of iterations of the preconditioned conjugate gradient method
is approximately in proportion to the square root of the condition number of a
matrix [15].

Table 2 shows h- and p-convergence of SIPG method with the harmonic
basis. The ˇrst adaptive mesh is depicted in Figs. 1 and 2. Each consequent mesh
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Table 3. h- and p-convergence of CG method

Type nelm n/m δ δ∗ iter

420 4305/27 3.0317e-3 2.3799e-3 13

CG27 3360 30537/27 4.1259e-4 2.0613e-4 23

26880 229425/27 2.2415e-5 8.9953e-6 43

420 10060/64 3.4268e-4 1.1293e-4 13

CG64 3360 71977/64 1.5569e-5 4.8405e-6 24

26880 542905/64 1.1001e-6 3.5730e-7 44

Table 4. h- and p-convergence of LSTV methods

Parameters LSTV-1 LSTV-2

p nelm n/m δ it/iter+ δ it/iter+

420 3780/9 7.0005e-2 78/28 5.1976e-2 54/20
2 3360 30240/9 1.9773e-2 150/53 1.6604e-2 102/37

26880 241920/9 5.3522e-3 286/102 4.6155e-3 192/70

420 6720/16 1.2205e-2 81/28 1.1856e-2 56/20
3 3360 53760/16 2.2320e-3 151/51 2.0022e-3 103/36

26880 430080/16 3.1810e-4 286/98 2.8910e-4 193/68

420 10500/25 3.1465e-3 81/28 2.8916e-3 56/21
4 3360 84000/25 3.2983e-4 151/52 3.0555e-4 103/37

26880 672000/25 2.6755e-5 286/99 2.3730e-5 193/69

420 15120/36 7.2374e-4 81/29 6.4707e-4 56/21
5 3360 120960/36 4.9031e-5 152/53 4.2319e-5 104/37

26880 967680/36 2.3698e-6 286/102∗ 1.9520e-6 193/70∗

420 20580/49 1.7649e-4 81/29 1.7323e-4 56/21
6 3360 164640/49 6.9802e-6 152/54 6.8604e-6 103/38

26880 1317120/49 2.1848e-7 287/102∗ 1.8235e-7 193/70∗

7 420 26880/64 5.7201e-5 81/29 5.9091e-5 56/22
3360 215040/64 1.3093e-6 152/54 1.4861e-6 103/38

8 420 34020/81 2.1388e-5 81/29 2.0118e-5 56/22

9 420 42000/100 6.6198e-6 81/30 6.1836e-6 57/22

is obtained by dividing each element from the previous mesh into eight identical
parts. The parameter β is chosen from the set {0.1, 0.15, 0.2, . . . , 0.9} to obtain
a minimal value of δ. For CG64 (Table 3) we have used ©static condensationª,
i.e., elimination unknowns, corresponding to inner nodes of elements, from the
system. To calculate the volume integrals, the product of three- or four-point one-
dimensional Gauss formulas for each direction of integration is used. In LSTV
(Table 4), for integration, the special two-dimensional 17-noded formulas [16]
with a minimum number of nodes are used.
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Calculations and analysis of the tables show that, in comparison with SIPG, in
LSTV the required accuracy is achieved by increase in degree of basis functions at
unit. But in LSTV the same accuracy is reached faster than in SIPG. Concerning
the CG method it should be noted that basis functions in the form of tensor
product contain monomials up to degree 6 (CG27) and up to degree 9 (CG64).
However, in LSTV the same accuracy can be reached on a coarser mesh, but
with more ˇlled matrix. In the tables the compared results are marked in bold
type. Note that the number of iterations for LSTV weakly depends on p. Here,
102∗ and 70∗ are estimating values. Table 4 also shows the possibility of using
high-order harmonic basis in LSTV for solving problems with smooth solutions
on meshes with small numbers of elements.

5. APPLICATION OF HIGH-ORDER HARMONIC BASIS
FOR SOLVING NONLINEAR MAGNETOSTATIC PROBLEMS

As is well known, in adaptive approach the usual C(0) continuous ˇnite
element basis [7] requires that additional elements and nodes be generated or
additional computational work be carried out for processing hanging nodes and
edges. It is not required in projection methods with the discontinuous basis,
presented in Section 4. The basis is very convenient for hp-adaptive problem
solving with a high accuracy, allows one to increase easily a local order of
approximation and to work with the meshes containing hanging nodes and edges.
However, in this case, the multi-frontal parallel direct solver is required, for
example, from KRYLOV library [17].

5.1. New Weak Formulations of the Nonlinear Magnetostatic Problem for
Two Scalar Potentials. To solve the problem of magnetostatics in formulation
(1), one usually presupposes that the function μ(|∇ϕ(1)|) is a piecewise constant
on each element in Ω(1). It follows that for each such element the potential ϕ(1) is
harmonic and it is possible to use harmonic basis of the ˇrst order for its ˇnding.
For this case, in the framework of the continuous Galerkin approach, the weak
formulation for (1) was presented in [2]. But the formulation is not suitable for
application of high-order harmonic basis. Therefore, we write our formulation in
another way. Introduce the following notation:

[[[ϕ(i), ϕ(j), v(i), v(j)]]]|Γk,l
=

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[[ϕ(i)]][[v(i)]] + [[μ(i) ∂ϕ(i)

∂n ]][[μ(i) ∂v(i)

∂n ]] + [[∇τϕ(i)]][[∇τ v(i)]], x ∈ Γk,l, i = j;

(ϕ(i) − ϕ(j))(v(i) − v(j)) +
(
μ(i) ∂ϕ(i)

∂n − μ(j) ∂ϕ(j)

∂n

)(
μ(i) ∂v(i)

∂n − μ(j) ∂v(j)

∂n

)
+

+∇τ (ϕ(i) − ϕ(j)) · ∇τ (v(i) − v(j)), x ∈ Γk,l, i �= j.
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In this notation we have

2∑
k=1

( ∫
Γ

(k)
int

[[[ϕ(k), ϕ(k), v(k), v(k)]]]dS +
∫

Γ
(k)
D

ϕ(k)v(k)dS +

+
∫

Γ
(k)
N

μ(k) ∂ϕ(k)

∂n
μ(k) ∂v(k)

∂n
dS

)
+

∫
Γ

[[[ϕ(1), ϕ(2), v(1), v(2)]]]dS =

=
∫
Γ

(
ϕS(v(1) − v(2)) + μ(2)HS

n

(
μ(1) ∂v(1)

∂n
− μ(2) ∂v(2)

∂n

)
+

+HS
τ · ∇τ (v(1) − v(2))

)
dS. (7)

Here, Γ(k)
int is the inner boundary between elements and v(k) is a weight function

in the region Ω(k), k = 1, 2. As a result of discretization, we have a symmetric
matrix and a right side depending on μ(1) and, hence, on the required solution.

5.2. Example of Solving the Nonlinear Magnetostatic Problem. An import-
ant question for electromagnets is about saturation of ferromagnetic parts [18]. To
study this effect, at a magnet design stage, we need to solve nonlinear magnetosta-
tic problems in order to obtain distribution of a module ˇeld in the ferromagnetic
region. Figure 5 shows a symmetric part of the cross section by the center plane
of a spectrometer magnet model. The considered model is investigated in [19]
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with the help of the continuous Galerkin approach in the framework of formu-
lation (1) for 2D and 3D. It is assumed that the magnetic core is a magnetic
isotropic medium. The behavior of the magnetic permeability μr depending on
magnetic �ux density B is shown in Fig. 6. The prescribed current density J1

provides B2(0) = 1.07 T. The model contains singularities at points A, B, C,
which in�uence saturation.

We solve the nonlinear magnetostatic problem in formulation (7), where
the Neumann condition is given at x1 = 0, and the Dirichlet condition at lines
x2 = 0, x1 = 3.7, x2 = 3.35, remote from the center. The harmonic basis of

order 2, 3, . . . , 10 is used: ϕ(k)(x)|Ωi =
m(pi)∑
j=1

c
(i)
j f

(i)
j (ξ). In the ferromagnetic

region pi|Ω(1) = 2. For solving system (7), write the iterative process [20]:

2∑
k=1

( ∫
Γ

(k)
int

[[[ϕ(k)
nit+1/2, ϕ

(k)
nit+1/2, v

(k), v(k)]]]dS +
∫

Γ
(k)
D

ϕ
(k)
nit+1/2v

(k)dS +

+
∫

Γ
(k)
N

μ
(k)
nit

∂ϕ
(k)
nit+1/2

∂n
μ

(k)
nit

∂v(k)

∂n
dS

)
+

∫
Γ

[[[ϕ(1)
nit+1/2, ϕ

(2)
nit+1/2, v

(1), v(2)]]]dS =

=
∫
Γ

(
ϕS(v(1) − v(2)) + μ(2)HS

n

(
μ

(1)
nit

∂v(1)

∂n
− μ(2) ∂v(2)

∂n

)
+ (8)

+ HS
τ · ∇τ (v(1) − v(2))

)
dS,

ϕ
(k)
nit+1 = wnit · ϕ(k)

nit+1/2 + (1 − wnit) · ϕ(k)
nit , k = 1, 2, nit = 0, 1, 2, . . . ,

where ϕ
(k)
0 is given, wnit is a parameter, w0 = 1, at nit > 0 it is adaptively

chosen as function of the variable

σnit =

( ∫
Ω(1)

|μ(1)
nit − μ

(1)
nit−1|/μ

(1)
nitdΩ

)/∫
Ω(1)

dΩ.

System (8), corresponding to an adaptive mesh with numerous hanging nodes, is
solved by a direct method in each iteration step on nonlinearity. Here, use of
KRYLOV library [17] is possible.

We executed computations for the sequence of current densities J1, J1 ·0.75,
J1 · 0.5 and J1 · 0.25 on the same mesh and at the same distribution of an order
of approximation. Figure 7 shows a typical convergence of σnit. Table 5 presents
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Table 5. The ˇeld module peak and the ˇeld in the magnet center

Field J1 J1 · 0.75 J1 · 0.5 J1 · 0.25

max |B|, T 2.5415 2.2875 1.8883 1.4816
B2(0, 0), T 1.0689 0.8047 0.5373 0.2682
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convergence of ˇeld module peak in the ferromagnetic material and the main ˇeld
component in the magnet center for different current densities.

The distributions of ˇeld module in the ferromagnetic media and ˇeld beha-
vior in the nonmagnetic region are presented in Figs. 8Ä11.

6. CONCLUSIONS AND FUTURE WORK

In this work we have considered the linear and nonlinear magnetostatic prob-
lems and have shown possibilities to use our high-order harmonic basis for their
solving. For the nonlinear problem with respect to two scalar potentials, such a
basis is used in nonmagnetic medium. Comparison with the continuous Galerkin
method and with the considered discontinuous methods of a high order at var-
ious h and p, for 3D model linear problems, shows that the harmonic basis is
especially effective on adaptive meshes. For solving the nonlinear magnetostatic
problem, the new weak formulation, obtained by the authors, was used. Using
the numerical example it is shown that the formulation keeps the monotonicity
property of the considered magnetostatic problem even with hanging nodes.

In the paper [21], the special algorithm for discretization of the discontinuous
Galerkin method is presented, where high degree of convergence of approximate
solutions was theoretically proved in the case of linear problems with singularities.
But as Figs. 8Ä11 show, for accounting singularities in points A, B, C it is
necessary to use similar algorithms for discretizations of projection discontinuous
methods in both nonmagnetic and magnetic medium.
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