P6-2021-53

А. Д. Ефимов^{1,2,*}, И. Н. Изосимов^{**}

ЭКСТРАПОЛЯЦИЯ ЭНЕРГИЙ НИЖАЙШИХ СОСТОЯНИЙ СВЕРХТЯЖЕЛЫХ ЧЕТНО-ЧЕТНЫХ ЯДЕР

Направлено в журнал «Письма в ЭЧАЯ»

Санкт-Петербург, Россия

¹ Государственный университет морского и речного флота им. адмирала С. О. Макарова, Санкт-Петербург, Россия ² Физико-технический институт им. А. Ф. Иоффе РАН,

^{*} E-mail: efimov98@mail.ru

^{**} E-mail: izosimov@jinr.ru

Ефимов А. Д., Изосимов И. Н.

Экстраполяция энергий нижайших состояний сверхтяжелых четно-четных ядер

Исходя из имеющейся корреляции энергии деформации и нижайшей энергии возбуждений были получены оценки для энергий 2^+_1 -состояний. Рассмотренная систематика отношений энергий в ротационной полосе позволила также получить оценки для 4^+_1 - и 6^+_1 -состояний.

Работа выполнена в Лаборатории ядерных реакций им. Г. Н. Флерова ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 2021

Efimov A. D., Izosimov I. N.

P6-2021-53

Extrapolation of the Energy of the Lowest States in the Superheavy Even-Even Nuclei

Based on the existing correlation between the deformation energy and the lowest excitation energy, estimates were obtained for energy of the 2_1^+ -states. The considered systematics of the energy ratios in the rotational band also made it possible to obtain estimates for the 4_1^+ - and 6_1^+ -states.

The investigation has been performed at the Flerov Laboratory of Nuclear Reactions, JINR.

введение

Успехи в синтезе атомных ядер сверхтяжелых элементов [1-3] позволили продвинуть исследования в область атомных ядер вплоть до Z = 118 и планировать эксперименты по получению атомных ядер с Z = 119, 120и выше. Эта область является уникальной с точки зрения изучения структуры атомных ядер, поскольку сверхтяжелые ядра существуют исключительно благодаря квантово-механическим эффектам, стабилизирующим данные ядра. Роль стабилизирующих оболочечных эффектов в устойчивости сверхтяжелых ядер продемонстрирована [1-3] путем сравнения экспериментальных результатов с теоретическими расчетами и эмпирической систематикой. Для исследования структуры атомных ядер сверхтяжелых элементов крайне полезно иметь информацию об энергии хотя бы нескольких нижайших уровней. Экспериментальные данные по энергии уровней в области сверхтяжелых ядер крайне скудны, а теоретические расчеты довольно неоднозначны. Тем не менее при экспериментальном исследовании сверхтяжелых ядер полезно заранее получить представление об энергиях возбужденных состояний ядер. Особенно существенны такие данные при исследовании бета- и гамма-распадов высокоспиновых изомеров в сверхтяжелых ядрах [4]. Поэтому целью данной работы было получить оценки энергий ряда нижайших уровней для сверхтяжелых ядер. Наш подход к расчету энергий возбужденных состояний в рассматриваемой области ядер основывается на продемонстрированной в работе [5] корреляции относительной энергии первого возбужденного уровня и энергии деформации в четно-четных ядрах.

Энергия деформации E_{def} определяется как разность между энергиями ядер при их сферической и равновесной деформированных формах [6]:

$$E_{\text{def}} = E(\beta) - E(0). \tag{1}$$

Оценки для данной энергии были взяты из работы [7], хотя оценки энергии деформации в ней завышены по сравнению с теми, что даны в работе [6]. Однако можно предположить, что использование энергии $E_{\rm def}$, полученной по единообразной методике расчета, дает корректные корреляции с энергией первого возбуждения.

ЗАВИСИМОСТЬ ЭНЕРГИИ ПЕРВОГО ВОЗБУЖДЕНИЯ ОТ ЭНЕРГИИ ДЕФОРМАЦИИ

В работе [5] проведена систематизация энергий коллективных состояний в зависимости от значений энергии деформации, полученных в работе [7], с использованием приближения Хартри-Фока-Боголюбова с учетом реалистических сил Гоньи. Все известные экспериментально полученные энергии нижайших 2⁺-состояний в четно-четных ядрах от ₉₀Th до ₁₀₂Rf и теоретические значения энергии деформации позволяют установить соответствие между ними.

На рис. 1 представлены корреляции между энергиями первого возбуждения $E(2^+)$ и E_{def} . Наличие длинного плато на этом рисунке при $E_{def} < -10$ МэВ позволило использовать зависимость момента инерции от энергии деформации по аналогии с тем, как потенциал среднего поля зависит от радиуса в представлении Саксона-Вудса. Это дало возможность использовать следующую параметризацию [5]:

$$E(2_1^+) = \frac{3}{J}, \quad J = \frac{J_0}{1 + \exp\left(\frac{E_{\text{def}} + V_1}{\zeta V_0}\right)}.$$
 (2)

Сохраняя аналогичную функциональную зависимость, будем использовать для энергии первого возбуждения параметризацию в виде

$$E(2_1^+) = b_1 + b_2 e^{aE_{\text{def}}}.$$
(3)

Параметры в формуле (3) определялись с использованием двух вариантов данных. Данные, используемые для определения параметров в первом варианте в этом уравнении, приведены в табл. 1, а также на рис. 1. В табл. 2

Рис. 1. Экспериментальные энергии $E(2^+_1)$ в зависимости от расчетных энергий деформации, полученных из [7] для четно-четных изотопов от Th до Rf: «Для аппроксимации 1» — точки, по которым проходила 1-я аппроксимация; «Дополнительно для аппроксимации 2» — точки, которые дополнительно были учтены при 2-й аппроксимации («аппроксимация 2»)

Таблица 1. Данные, используемые для определения аппроксимационных параметров, деформационные энергии взяты из [7], энергии первых возбуждений — из [8]

¶ ⊿ DO	$E_{\mathrm{def}},$	$E(2_1^+),$	¶.πpo	$E_{\mathrm{def}},$	$E(2_1^+),$	¶ πpo	$E_{\mathrm{def}},$	$E(2_1^+),$
лдро	МэВ	МэВ	лдро	МэВ	МэВ	лдро	МэВ	МэВ
²⁵⁶ Rf	-21,6	0,044	²⁴⁶ Cm	-18,45	0,0429	²³⁸ U	-15,0	0,0449
²⁵⁴ No	-21,505	0,0442	²⁴² Cm	-18,25	0,0421	²³⁶ Pu	-15,0	0,0446
²⁵² No	$-21,\!495$	0,0464	²⁵² Cf	-17,95	0,0457	²⁴² U	-14,6	0,0478
²⁵⁰ Fm	-21,0	0,045	²⁴⁸ Cm	-17,8	0,0434	²³⁶ U	-14,3	0,0452
²⁴⁸ Fm	-20,7	0,046	²⁴² Pu	-17,0	0,0445	²³⁴ U	-13,7	0,0435
²⁵² Fm	-20,07	0,0421	²⁵⁰ Cm	-16,9	0,043	²³⁶ Th	-12,75	0,0484
²⁴⁸ Cf	-20,05	0,0415	²⁴⁰ Pu	-16,85	0,0428	²³² U	-12,1	0,0476
²⁴⁶ Cf	-20,0	0,044	²⁴⁴ Pu	$-16,\!65$	0,0442	²³⁴ Th	-12,1	0,0496
²⁵⁴ Fm	-19,05	0,045	²³⁸ Pu	-16,1	0,0441	²³² Th	-11,2	0,0494
²⁵⁰ Cf	-19,0	0,0427	²⁴⁶ Pu	-15,75	0,0467	²³⁰ U	-10,35	0,0517
²⁴⁴ Cm	-18,9	0,042965	²⁴⁰ U	-15,0	0,045	²³⁰ Th	-10,1	0,0532
						²²⁸ Th	-8,45	0,0578
						²²⁸ U	-7,95	0,059
						²²⁶ Th	-6,4	0,0722

Таблица 2. Дополнительные данные к приведенным в табл. 1, вошедшие во второй вариант аппроксимационной процедуры, E_{def} и $E(2^+_1)$

Ядро	$E_{\rm def}, M$ эВ	$E(2_1^+)$, МэВ
²²⁴ Th	-4,1	0,0981
²²² Th	-2,2	0,1833
²²⁶ U	-5,0	0,0813
²²⁰ Th	-0,3	0,3865

приведены ядра и их характеристики, которые дополнительно были учтены для второго набора параметров. Данные из табл. 2 также отображены на рис. 1.

В результате оптимизации для первого варианта были получены значения параметров

 $a = 0.378 \text{ M} \cdot \text{B}^{-1}, \quad b_1 = 0.04359 \text{ M} \cdot \text{B}, \quad b_2 = 0.42563 \text{ M} \cdot \text{B}.$ (4)

Для второго варианта были получены

 $a = 0,367 \text{ M} \Im \text{B}^{-1}, \quad b_1 = 0,04507 \text{ M} \Im \text{B}, \quad b_2 = 0,39162 \text{ M} \Im \text{B}.$ (5)

Оценки энергий первого возбуждения исходя из энергии деформации были получены следующим образом. Если энергия деформации в соответствии с данными из работы [7], которые приведены в табл. 3, меньше –5,5 МэВ, то оценки энергий осуществляются в соответствии с первым вариантом, если иначе — со вторым.

Рис. 2. «Экспериментальные» отношения энергий в ротационных единицах: для «А» — $(E(4_1^+)/E(2_1^+))/(10/3)$; для «В» — $(E(6_1^+)/E(2_1^+))/7$

Рис. 3. То же самое, что и на рис. 2, но для бо́льшего интервала энергий $E(2^+_1)$

Крайне полезной была бы оценка также следующих возбуждений, и связано это с тем, что энергии 2_1^+ -состояний слишком малы, поэтому вместо соответствующих гамма-переходов в эксперименте будут наблюдаються в основном электроны конверсии. Наблюдаться могут гамма-переходы с 4⁺- и 6⁺-состояний. Для того чтобы получить оценки энергий соответствующих состояний, были рассмотрены отношения $E(4_1^+)/E(2_1^+)$ и $E(6_1^+)/E(2_1^+)$ по имеющимся экспериментальным данным [8] для четночетных ядер $Z \ge 90$. Эти отношения приведены на рис. 2 и 3 для разных диапазонов энергии первого возбуждения.

Для определения неизвестных энергий 2⁺-состояний были использованы теоретические значения энергии деформации из работы [7], приведенные в табл. 3. Для ряда уже синтезированных ядер известны периоды полураспада, которые приведены в табл. 4.

Так как данных по энергиям деформации в работе [7] для ядер с Z > 110 не имеется, то было принято в соответствии с табл. 3 для N = 168 и Z = 112-118 $E_{def} \approx -7.7$ МэВ, для N = 170 и Z = 112-118 $E_{def} \approx -5.5$ МэВ, для N = 172 и Z = 112-118 $E_{def} \approx -4.3$ МэВ, для N = 174 и Z = 112-118 $E_{def} \approx -3$ МэВ, для N = 176 и Z = 112-118 $E_{def} \approx -2.3$ МэВ.

Совокупность рассмотренных выше данных позволяет получить оценки для искомых энергий, которые приведены в табл. 5.

Возможность определения энергий состояний с бо́льшими значениями Z ограничивается наличием теоретических данных по энергии деформации. Как видно из рис. 4, сделать это для $Z \ge 120$ в настоящее время не представляется возможным. Тем более, как отмечалось в работе [9], различные теоретические модели предсказывают разные местоположения «острова стабильности» сверхтяжелых ядер со стабилизированными оболочками. Макроскопическо-микроскопические методы, основанные на различных феноменологических потенциалах, локализуют этот остров вокруг замыканий сферических оболочек Z = 114 и N = 184 [10, 11].

N	Z = 104	Z = 106	Z = 108	Z = 110
150	-21,40	_	_	-
152	-21,6	-20,95	—	_
154	-21,02	-20,3	—	—
156	-20,02	-19,7	-19,75	—
158	-18,75	-18,8	-18,9	-19,2
160	-17,5	-17,75	-18,0	-18,3
162	-16,1	-16,5	-17,15	-17,1
164	-12,9	-13,4	-13,5	-12,95
166	-10,2	-10,7	-10,4	-9,7
168	-7,6	-8,0	-7,7	-7,6
170	-5,6	-5,5	-6,0	-5,3
172	-4,4	-4,2	-4,75	-4,2
174	-2,95	-3,0	-3,2	-2,9
176	-2,1	-2,2	-2,1	-2,4

Таблица 3. Значения энергий деформаций E_{def} (в МэВ), для которых неизвестны энергии возбуждений

Таблица 4. Известные периоды полураспада сверхтяжелых ядер с $Z \ge 104$

Ядро	$T_{1/2}$	Ядро	$T_{1/2}$
$^{254}_{104}{ m Rf}$	23(3) мкс	$^{258}_{106}{ m Sg}$	$2,9^{+13}_{-7}$ мкс
²⁵⁶ Rf	6,67(10) мс	²⁶⁰ Sg	4,95(33) мс
²⁵⁸ Rf	$14,7^{+12}_{-1}$ мс	262 Sg	6,9 ⁺³⁸ мкс
²⁶⁰ Rf	21(1) мс	²⁶⁴ Sg	37^{+27}_{-11} мс
²⁶² Rf	2,3(4) c	²⁶⁶ Sg	21^{+20}_{-12} c
²⁶⁴ ₁₀₈ Hs	pprox 0,8мс	²⁶⁸ ₁₁₀ Ds	-
²⁶⁶ Hs	$2,3^{+13}_{-6}$ мс	²⁷⁰ Ds	$0,10^{+14}_{-4}$ мс
²⁶⁸ Hs	$0,4^{+18}_{-2}$ c	²⁷² Ds	_
²⁷⁶ ₁₁₂ Cn	_	$^{284}_{114}{ m Fl}$	$2,5^{+18}_{-8}$ мс
²⁷⁸ Cn	_	²⁸⁶ Fl	$0,16^{+7}_{-3}$ c
²⁸⁰ Cn	_	²⁸⁸ Fl	$0,52^{+22}_{-13}$ c
²⁸² Cn	$0,50^{+33}_{-1}$ мс	²⁹⁰ Fl	_
²⁸⁴ Cn	101 ⁺⁴¹ мс	²⁸⁶ ₁₁₆ Lv	_
²⁸⁶ Cn	—	²⁸⁸ Lv	—
²⁸⁸ Cn	—	²⁹⁰ Lv	15^{+26}_{-6} мс
		²⁹⁴ ₁₁₈ Og	0,69 мс

Таблица 5. Значения энергий состояний (в кэВ). Единственно известные экспериментальные данные относятся к ²⁵⁶Rf, и соответствующие энергии равны 44,1, 148,2, 309,2 кэВ, что может дать представление о точности произведенной экстраполяции

Z	N	Α	$E_{\text{def}},$	E _{def} , Экстраполяция, кэВ			Энергия, кэВ [6]		
	11	21	МэВ	$E(2_{1}^{+})$	$E(4_{1}^{+})$	$E(6_{1}^{+})$	$E(2_{1}^{+})$	$E(4_{1}^{+})$	
104	150	254	-21,4	43,7	144	301	46,9	155,9	
	152	256	-21,6	43,7	144	301	43,4	144,4	
	154	258	-21,02	43,7	144	301	44,5	148,5	
	156	260	-20,02	43,8	144	302	46,4	154,4	
	158	262	-18,75	44,0	145	303	47,3	157,3	
	160	264	-17,5	44,2	146	304	47,2	157,2	
	162	266	-16,1	44,6	147	307	44,3	147,3	
	164	268	-12,9	46,8	155	322	49,0	163,0	
	166	270	-10,2	51,5	168	344	54,9	182,9	
	168	272	-7,6	62,5	202	415	—	—	
	170	274	-5,6	80,2	249	494	—	—	
	172	276	-4,4	95,1	279	540	—	—	
	174	278	-2,95	143,7	359	624	_	—	
	176	280	-2,1	191,9	464	793	—	—	
106	152	258	-20,95	43,7	144	301	44,7	148,7	
	154	260	-20,3	43,8	144	301	45,0	150,0	
	156	262	-19,7	43,8	144	301	45,9	152,9	
	158	264	-18,8	44,0	145	303	45,6	151,6	
	160	266	-17,75	44,2	146	304	45,0	150,0	
	162	268	-16,5	44,5	147	306	41,9	139,9	
	164	270	-13,4	46,3	153	318	46,5	155,5	
	166	272	-10,7	50,3	165	338	51,8	172,8	
	168	274	-8,0	60,1	197	394	57,0	190,0	
	170	276	-5,5	75(6)	233	457	_	—	
	172	278	-4,2	100,0	291	540	_	—	
	174	280	-3,0	141,5	348	620	—	—	
	176	282	-2,2	185,2	420	713	—	—	
108	156	264	-19,75	43,8	145	303	46,6	155,6	
	158	266	-18,9	44,0	145	303	45,8	152,8	
	160	268	-18,0	44,1	145	303	43,9	145,9	
	162	270	-17,15	44,3	146	305	40,2	134,2	
	164	272	-13,5	46,2	153	318	44,5	148,5	
	166	274	-10,4	51,0	167	343	49,1	164,1	
	168	276	-7,7	61,9	202	412	53,8	178,8	

Z	Ν	Α	E _{def} , МэВ	Экстр	аполяци	Энергия, кэВ [6]		
_				$E(2_{1}^{+})$	$E(4_{1}^{+})$	$E(6_{1}^{+})$	$E(2_{1}^{+})$	$E(4_{1}^{+})$
	170	278	-6,0	75,1	240	478	61,6	205,6
	172	280	-4,75	87,6	257	505	_	—
	174	282	-3,2	132,9	332	577	—	_
	176	284	-2,1	192,0	429	725	_	_
110	158	268	-19,2	44	145	303	50,6	168,6
	160	270	-18,3	44	145	303	47,7	158,7
	162	272	-17,1	44	145	303	42,3	141,3
	164	274	-12,95	47	155	323	46,7	155,7
	166	276	-9,7	49,3	161	330	51,3	171,3
	168	278	-7,6	56,3	182	366	54,7	182,7
	170	280	-5,3	78	240	470	—	—
	172	282	-4,2	100	291	540	—	—
	174	284	-2,9	146	363	588	_	_
	176	286	-2,4	173	397	665	—	_
От	168	_	-7,7	56	182	371	_	_
112	170	_	-5,7	75	233	457	—	_
до	172	_	-4,3	98	273	509	—	—
118	174	—	-3,0	142	348	620	—	—
	176	—	-2,3	179	400	692	—	—

Окончание табл. 5

Рис. 4. Теоретические значения энергии деформации

Ковариантная теория функционала плотности [12] локализует указанный остров около Z = 120 и N = 172 [13, 14]. Аналогичный результат был получен в работе [15] в рамках самосогласованной ковариантной теории функционала плотности энергии с учетом квазичастично-колебательной связи. В ней также было приведено описание эволюции оболочки в цепочке сверхтяжелых изотопов с A = 292, 296, 300, 304 и Z = 120 и найдено довольно устойчивое замыкание сферической протонной оболочки при Z = 120. При этом взаимодействие, определяющее парные корреляции, и квазичастично-фононное взаимодействие приводят к плавной эволюции зазора нейтронной оболочки между числами нейтронов N = 172 и 184, размывая эффекты оболочки. Это, в свою очередь, приводит к тому, что для N = 170-186 энергии первого возбуждения оказываются ≥ 1 МэВ, а для N = 172 и 184 энергии первого возбуждения $\ge 1,5$ МэВ.

ЗАКЛЮЧЕНИЕ

Исходя из теоретических данных по энергии деформации и систематике отношений энергий внутри ротационных полос были получены оценки для энергий трех нижайших возбуждений в четных сверхтяжелых ядрах с Z = 104, 106, 108, 110, 112, 114, 116, 118.

ЛИТЕРАТУРА

- 1. Oganessian Yu. Ts. // Herald of the Russian Academy of Sciences. 2020. V. 90. P. 207;
- Oganessian Yu. Ts. // Vestn. Ros. Akad. Nauk. 2020. V. 90. P. 312.
- Oganessian Yu. Ts., Sobiczewski A., Ter-Akopian G. M. // Phys. Scr. 2017. V. 92. P. 023003.
- Utyonkov V., Oganessian Yu. Ts., Dmitriev S., Itkis M., Moody K., Stoyer M., Shaughnessy D., Roberto J., Rykaczewski K., Hamilton J. // EPJ Web of Conf. 2016. V. 131. P. 06003.
- 4. Ефимов А. Д., Изосимов И. Н. Препринт ОИЯИ Р4-2021-4. Дубна, 2021; Ефимов А. Д., Изосимов И. Н. // ЯФ. 2021. Т. 84. Р. 298; Еfimov A. D., Izosimov I. N. // Phys. At. Nucl. 2021. V. 84. Р. 660.
- 5. Ефимов А. Д., Изосимов И. Н. // Письма в ЭЧАЯ. 2021. Т. 18, № 6. С. 551–559.
- 6. Sobiczewski A., Muntian I., Patyk Z. // Phys. Rev. C. 2001. V. 63. P. 034306.
- Hilaire S., Girod M. // Eur. Phys. J. A. 2007. V. 33. P. 237; http://www-phynu.cea.fr/science_en_ligne/carte_potentiels_microscopiques/ choix/choixisotopes.html.
- 8. National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov.
- 9. Afanasjev A. V., Abusara H., Litvinova E., Ring P. // J. Phys.: Conf. Ser. 2011. V. 312. P. 092004.
- Cwiok S., Dobaczewski J., Heenen P. H., Magierski P., Nazarewicz W. // Nucl. Phys. A. 1996. V. 611. P. 211.
- 11. Moller P., Nix J. R. // J. Phys. G. 1994. V. 20. P. 1681.
- Vretenar D., Afanasjev A. V., Lalazissis G. A., Ring P. // Phys. Rep. 2005. V. 409. P. 101.
- Afanasjev A. V., Khoo T. L., Frauendorf S., Lalazissis G. A., Ahmad I. // Phys. Rev. C. 2003. V.67. P. 024309.
- 14. Bender M., Rutz K., Reinhard P.G., Maruhn J.A., Greiner W. // Phys. Rev. C. 1999. V.60. P. 034304.
- 15. Litvinova E. // Phys. Rev. C. 2012. V. 85. P. 021303(R).

Получено 9 декабря 2021 г.

Редактор Е.В.Григорьева

Подписано в печать 20.01.2022. Формат 60 × 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 0,64. Уч.-изд. л. 0,5. Тираж 185 экз. Заказ № 60346.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@jinr.ru www.jinr.ru/publish/