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О возникновении парных корреляций сверхпроводящего типа
в сферических четно-четных ядрах

На базе специального преобразования Боголюбова для одинаковых нук-
лонов рассмотрено возникновение парных корреляций в основном состоянии
сферических четно-четных ядер. Подтверждено, что в ядрах с заполненными
подоболочками парные корреляции сверхпроводящего типа возникают при
константах взаимодействия G, превышающих некоторое пороговое значение.
Для такого порогового значения получены грубые оценки сверху и снизу.
Показано, что в ядрах с открытой подоболочкой сверхпроводящие корреляции
существуют при любых положительных значениях G. При этом пары нукло-
нов распределяются по всем подоболочкам, участвующим в спаривательном
взаимодействии.
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бова ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 2024

Kuz’min V.A., Tetereva T.V. E4-2024-13
Formation of Superconducting Pair Correlations
in Spherical Even-Even Nuclei

The appearance of like nucleon pair correlations in the ground state
of spherical even-even nuclei is considered within the special Bogoliubov
transformation. It is confirmed that in closed subshell nuclei, superconducting
pair correlations appear if the coupling constant G exceeds a certain threshold
value. Rough upper and lower estimates are obtained for the threshold value.
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any positive G. In this case, nucleon pairs are distributed over all subshells
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INTRODUCTION

It was stressed in one of the very first papers [1] on the application of the
idea of superconducting correlations to the atomic nuclei spectroscopy that
pair correlations in nuclei can appear only if the coupling constant exceeds
a certain value. It was also mentioned that the existence of such a threshold
value distinguishes atomic nuclei from the infinite systems considered in
the theory of superconductivity. This remark was later repeated several
times [2, 3].

The necessity of a threshold was revealed by the following reasoning [1, 2].
In the simplest case when all the matrix elements of the two-body pairing
interactions are replaced by the same positive constant G, the equations for
the correlation function C and the chemical potential λ can be written as

G

2

∑
s

1√
(Es − λ)2 + C2

= 1, (1)

2
∑
s

v2s = N , v2s =
1
2

[
1− Es − λ√

(Es − λ)2 + C2

]
. (2)

Here N is the number of particles in the system. The summation is carried out
over pairs of doubly-degenerate single-particle states in the nuclear mean field.
These states are related to each other by the operation of time reversal [2].
The inequality

G

2

∑
s

1
|Es − λ| > 1 (3)

follows from Eq. (1) for non-zero C. Inequality (3) is often considered as
a relation that determines the minimal value of G, starting from which
superconducting pair correlations can exist in the system. The reasoning
contains a tacit assumption that λ cannot approach one of the Es’s close
enough to increase considerably the sum

∑
s

1/ |Es − λ| as G decreases.

The correctness of the assumption is not evident because both λ and C are
calculated by solving the nonlinear system of Eqs. (1) and (2). Therefore,
inequality (3) is a useful hint rather than a proof.

In this paper, we study the conditions of the formation of superconducting
pair correlations between like nucleons in the ground state of spherical
even-even nuclei. Since Eqs. (1) and (2) for many-level systems can only
be solved numerically, we first consider the solution of equations with one
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and two subshells and then use the obtained results in the discussion of the
many-subshell problem.

The paper contains Introduction, Sections 1–3, and Conclusions. The
equations for calculating normal and abnormal single-particle densities are
derived in Sec. 1. The contribution of pairing interaction to the single-particle
energy is taken into account explicitly. The appearance of pair correlations in
single-subshell and two-subshell systems is discussed in Sec. 2. The threshold
value of G is calculated for the system with closed subshell as well. Many-
subshell nuclei are discussed in Sec. 3. The main results of the paper are
summed up in Conclusions.

1. MODEL HAMILTONIAN AND MAIN EQUATIONS

The Hamiltonian of the neutrons (or protons) in the nucleus with spherical
symmetry is chosen [2] as

H =
∑
k

jk∑
mk=−jk

Eka
†
k,mk

ak,mk
−

− G

4

∑
k,l

jk∑
mk=−jk

(−1)jk−mka†k,mk
a†k,−mk

jl∑
ml=−jl

(−1)jl−mlal,−ml
al,ml

. (4)

Here the indices k label single-particle states with energy Ek and angular
momentum jk; mk is the third projection of angular momentum, mk = −jk,
−jk + 1, ... , jk − 1, jk; the operators a†k,mk

and ak,mk
are fermion operators of

the creation and annihilation of a particle in the state (k,mk). We follow the
tradition and call the subshell a set of 2jk + 1 single-particle states with the
same Ek and jk. We consider the attractive interaction, i.e., G > 0.

The quasiparticle operators are introduced by the special Bogoliubov
transformation with the real coefficients [2]:

ak,mk
= ukαk,mk

+ (−1)jk−mkvkα
†
k,−mk

. (5)

If the operators αk,mk
and α†

k,mk
are the fermion annihilation and creation

operators, the transformation coefficients satisfy the conditions

u2
k + v2k = 1. (6)

The quasiparticle vacuum |〉 is determined by the equations αk,mk
|〉 = 0 for

any k and mk. If the quasiparticle operators are introduced by Eq. (5), the
angular momentum of |〉 is zero and its parity is positive. This is easy to prove
by applying the operators of the total angular momentum of the system of like
nucleons and the parity operator on |〉. As a result, the product of neutron
and proton vacuum states has zero angular momentum and positive parity,
the values coincide with the angular momentum and parity of ground states
of all spherical even-even nuclei. For this reason, we approximate the wave
function of the ground state of a system containing an even number N of
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identical nucleons (either neutrons or protons) by an appropriate quasiparticle
vacuum |〉.

The quasiparticle vacuum is connected with the state without nucleons [2]:

|〉 =
∏

k,mk>0

(
uk + (−1)jk−mkvka

†
k,mk

a†k,−mk

)
|0〉, (7)

where |0〉 is the state without nucleons, ak,mk
|0〉 = 0 for any k and mk. If for a

certain k the coefficients uk and vk differ simultaneously from zero (ukvk �= 0),
function (7) contains components with a different number of nucleon pairs.

The coefficients of transformation (5) can be determined from the condition
of minimum of the system energy 〈|H |〉. In searching for an energy extremum,
one should satisfy the constraint that the average of the nucleon number
operator over quasiparticle vacuum is equal to the number of particles in the
system

〈|N |〉 = 〈|
∑
k,mk

a†k,mk
ak,mk

|〉 = N .

Therefore, the functional to be minimized is

〈|H |〉 − λ

[
〈|
∑
k,mk

a†k,mk
ak,mk

|〉 − N
]
.

Here λ is the Lagrange multiplier usually called the chemical potential.
One can see that the inclusion of a supplementary condition modifies the
operator H into

H ′ = H − λ
∑
k,mk

a†k,mk
ak,mk

.

The average of H ′ over the quasiparticle vacuum is equal to

〈|H ′|〉 =
∑
k

(2jk + 1)(Ek − λ)v2k−

− G

2

∑
k

(2jk + 1)v4k − G

4

[∑
k

(2jk + 1)ukvk

]2
. (8)

The transformation coefficients uk and vk enter into the expression as the
products v2k and ukvk only. We use the products as new variables

wk = v2k and tk = ukvk. (9)

Sometimes they are called the normal density and abnormal density because

wk = 〈|a†k,mk
ak,mk

|〉 and tk = (−1)jk−mk〈|ak,−mk
ak,mk

|〉.
The presence of non-zero 〈|ak,−mk

ak,mk
|〉 is a sign of a superconducting state.

It follows from Eq. (6) that the densities obey the inequalities

0 � wk � 1 and 0 � tk � 1
2
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and are connected by the relations

w2
k + t2k = wk. (10)

The matrix element (8) is expressed via wk and tk as

〈|H ′|〉 =
∑
k

(2jk + 1)(Ek − λ)wk−

− G

2

∑
k

(2jk + 1)w2
k − G

4

[∑
k

(2jk + 1)tk

]2
. (11)

The supplementary condition for the particle number is∑
k

(2jk + 1)wk = N . (12)

For convenience of further calculations, we write wk as a sum

wk = ξk +
1
2
, (−1/2 � ξk � 1/2) . (13)

Now relations (10) are simplified

ξ2k + t2k =
1
4

(14)

and can be satisfied by the trigonometric functions

ξk =
1
2
cosϕk, tk =

1
2
sinϕk, with 0 � ϕk � π.

Please note that tk > 0 with 0 < ϕk < π. The matrix element (8) depends on
the unknown ϕk only,

〈|H ′|〉 =
∑
k

(
jk +

1
2

)(
Ek − λ− G

4

)
+
∑
k

(
jk +

1
2

)(
Ek − G

2
− λ
)
cosϕk −

− G

4

∑
k

(
jk +

1
2

)
cos2 ϕk − G

4

[∑
k

(
jk +

1
2

)
sinϕk

]2
. (15)

For any ϕk from the interval 0 < ϕk < π, the condition of extremum 〈|H ′|〉 is
∂〈|H ′|〉
∂ϕk

= 0. (16)

When ϕk approaches 0 or π, the usual derivatives should be replaced by the
one-sided ones. The simplest way to arrange the limiting processes is to map
the entire number axis to the segment 0 � ϕk � π by ϕk = arccotxk with
∞ > xk > −∞. Afterwards Eq. (16) transforms into

∂〈|H ′|〉
∂xk

=
∂〈|H ′|〉
∂ϕk

dϕk

dxk
=

∂〈|H ′|〉
∂ϕk

(
− 1
1+ x2k

)
= 0. (17)
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Three stationary points are possible for each k:

xk = ∞, ϕk = 0, ξk =
1
2
, wk = 1, tk = 0, (18)

xk = −∞, ϕk = π, ξk = −1
2
, wk = 0, tk = 0, (19)

xk finite,
∂〈|H ′|〉
∂ϕk

= 0, 0 < ϕk < π, tk > 0, 0 < wk < 1. (20)

Stationary points (18) and (19) describe the states with normal density at
subshell k strictly equal to either 1 or 0 and abnormal density equal to
zero (normal solutions). Equation (20) describes the states with tk > 0 and
0 < wk < 1 (superconducting solutions). Equation (20) can be written as

(
Ek − G

2
− λ

)
sinϕk − G

2
cosϕk sinϕk +

G

2

[∑
l

(
jl +

1
2

)
sinϕl

]
cosϕk = 0,

or (
Ek − G

2
− λ
)
tk −Gξktk +GDξk = 0. (21)

Here the notation
D =

∑
l

Sl tl, Sl = jl +
1
2
,

is used. For each subshell l, the quantities Sl are equal to the number of
different particle pairs that form the state (7).

Remark 1. Usually in Eq. (8), the terms proportional to v4k are discarded
(or absorbed into Ek by the modification of single-particle energies [2]). In
this case, Eq. (21) is transformed into(

Ek − λ
)
tk = −GDξk.

We square both parts of the equation, use Eq. (14) and obtain equations
analogous to Eqs. (1) and (2) with the correlation function C = GD.

Remark 2. Extremum conditions (18) and (19) at ϕk = 0 and ϕk = π
correspond to the normal solutions with tk = 0. These solutions allow one
to describe the system having tl > 0 for a certain subshell and tm = 0 for
other subshells. If tk′ = 0 for a certain subshell k′, then from Eqs. (21) alone
it would follow that D = 0 and the rest of the abnormal densities would be
zero.

Remark 3. The contribution of components with a different particle number
to |〉 is estimated by the particle number variance

V = 〈|N 2|〉 − 〈|N |〉2 = 2
∑
k

(2jk + 1) t2k = 4
∑
k

Skt
2
k.

The particle number variance is determined by non-zero tk only.
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2. ONE AND TWO SUBSHELLS

Let us start with the simplest cases.

2.1. Single Subshell. If the system contains a single subshell with the
energy E0 and angular momentum j0, Eqs. (21) and (12) are reduced to(

E0 − G

2
− λ
)
t0 −Gξ0t0 +GS0t0ξ0 = 0, (22)

2S0

(
ξ0 +

1
2

)
= N . (23)

If N = 2S0 (all single-particle states are occupied or the subshell is
closed), the particle number equation (23) has the solution ξ0 = 1/2, and
therefore t0 = 0. Only the normal solution is possible for any G.

If N = 2S0 − 2P0, here P0 is the number of particle pairs removed from
the closed subshell. The particle number equation (23) has the solution

ξ0 = 1/2− p0, with p0 = P0/S0, and w0 = 1− p0, w0 < 1,

and only superconducting solution exists. The abnormal density and
correlation function are equal to

t0 =
√
p0(1− p0) ,

C = GD = GS0t0 = GS0

√
p0(1− p0) =

G

2

√
N (2S0 −N ) .

In the case of single open subshell, the correlation function depends linearly
on G, because both ξ0 and t0 are independent of G. The particle number
variance is also constant

V = 4S0t
2
0 = 4S0p0(1− p0) =

N (2S0 −N )

S0
.

The chemical potential is a linear function of G:

λ = E0 +G

[(
1
2
− p0

)
S0 − (1− p0)

]
.

2.2. Two Subshells. For the system having two subshells, the set of
equations is (

E1 − G

2
− λ
)
t1 −Gt1ξ1 +G (S1t1 + S2t2) ξ1 = 0,(

E2 − G

2
− λ
)
t2 −Gt2ξ2 +G (S1t1 + S2t2) ξ2 = 0,

(24)

2 (S1ξ1 + S2ξ2) = N − S1 − S2. (25)

We label subshells by the indices “1” and “2” so that E2 > E1. If E2 = E1, we
face, due to definition (5), the single-subshell system with S0 = S1 + S2. It
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is convenient to introduce the dimensionless chemical potential and coupling
constant

μ =
λ− E1 +G/2

E2 − E1
and g =

G

E2 − E1
.

And Eqs. (24) can be written as

−μt1 − gt1ξ1 + g (S1t1 + S2t2) ξ1 = 0,(
1− μ

)
t2 − gt2ξ2 + g (S1t1 + S2t2) ξ2 = 0.

(26)

2.2.1. S1 = S2 and N = 2S1. Consider the system with S1 = S2. The
particle number equation (25) is simplified to

2S1 (ξ1 + ξ2) = N − 2S1.

When N = 2S1, it gives ξ2 = −ξ1 and t2 = t1. Equations (26) are transformed
into −μt1 − gt1ξ1 + 2gS1t1ξ1 = 0,(

1− μ
)
t1 + gt1ξ1 − 2gS1t1ξ1 = 0.

(27)

We sum them and get the equation

(1− 2μ) t1 = 0,

having two solutions: μ = 1/2 and t1 = 0.
The t1 = 0 solution corresponds to the normal state with ξ1 = ±1/2

and ξ2 = ∓1/2. The energy minimum is reached at ξ1 = 1/2 (w1 = 1) and
ξ2 = −1/2 (w2 = 0). The solution exists for any positive G. The chemical
potential μ is arbitrary.

Let us consider the μ = 1/2 solution with t1 �= 0. The chemical potential is

λ =
1
2
(E1 + E2 −G) .

It follows from the first equation of Eqs. (27) for t1 �= 0 that

ξ1 =
1
2

1
g (2S1 − 1)

.

Due to Eq. (14), the real non-zero t1 exists for |ξ1| < 1/2, and therefore the
superconducting pair correlations may appear if

g >
1

2S1 − 1
.

It is convenient to introduce special notation for the critical values of the
interaction constant

gcr =
1

2S1 − 1
and Gcr =

E2 − E1

2S1 − 1
.
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The solutions are

ξ1 =
1
2
gcr
g

=
1
2
Gcr

G
,

t1 =

√
1
4
− ξ21 =

1
2

√
(g − gcr)(g + gcr)

g2
.

For small g, 0 < g − gcr � gcr, we have (the approximate equality

g + gcr ≈ 2g is taken into account) t1 ≈
√

g − gcr
2g

=

√
G−Gcr

2G
, and

C = 2GS1t1 ≈ S1
√
2G(G −Gcr) . Here one cannot expand the correlation

function C in the Taylor series in G near Gcr. As in statistical mechanics, this
example demonstrates the non-analytical dependence of correlation function
on coupling constant. The Gcr is the breaking point of C(G)

C(G) =

{
0, if G � Gcr,
GS1

√
1− (Gcr /G)2 , if G > Gcr .

For very large G, G 	 (E2 − E1)/(2S1 − 1),

C = GS1

√
1− (E2 − E1)2

(2S1 − 1)2G2 ≈ GS1

(
1− 1

2
(E2 − E1)

2

(2S1 − 1)2 G2 + ...

)
.

The first term of the expansion in powers of Gcr /G does not depend on
the difference (E2 − E1) and coincides with the correlation function of one-
subshell system having S0 = 2S1 and p0 = 1/2.

The calculated critical value of the interaction constant turned out to be
proportional to the ratio 1/(2S1 − 1). It is not clear whether gcr depends on
the particle number or on the number of vacancies in the system.

Remark 4. Both normal (w1 = 1, w2 = 0, t2 = t1 = 0) and superconducting
(w1 = 1/2 + Gcr /(2G), w2 = 1/2 − Gcr /(2G), t2 = t1 > 0) solutions are
possible for G > Gcr in the considered example. The difference of their
energies is easily calculated by Eq. (11) with λ = 0,

〈|H |〉w2=0 − 〈|H |〉w2>0 = S1

(
S1 − 1

2

)
G

(
1− Gcr

G

)2

.

The subscripts w2 = 0 and w2 > 0 indicate that the Hamiltonian is averaged
over the wave function of either the normal state or the superconducting one,
respectively. One can see that for G > Gcr, the energy of the normal state
exceeds the energy of the superconducting one.

2.2.2. S1 �= S2 and N = 2S1. Let us figure out how the value of the
critical constant depends on the number of particles in the closed subshell E1
and on the number of empty single-particle states in the subshell E2.
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For N = 2S1, Eq. (25) is

2(S1ξ1 + S2ξ2) = S1 − S2 or S1(ξ1 − 1
2
) + S2(ξ2 +

1
2
) = 0. (28)

To simplify the calculations, we introduce new variables δ1 and δ2 such as

ξ1 =
1
2
− δ1 and ξ2 = −1

2
+ δ2.

It follows from Eq. (28) that the unknown δ1 and δ2 are connected by the
equation

S1δ1 = S2δ2,

which can be taken into account by substitution

δ1 = S2δ, δ2 = S1δ.

As −1/2 � ξ1,2 � 1/2, the variable δ should be inside the interval

0 � δ � min

(
1
S1

,
1
S2

)
.

It follows from Eq. (14) that

t1 =
√
δ1(1− δ1) =

√
S2δ(1− S2δ) , ξ1 =

1
2
− S2δ,

t2 =
√
δ2(1− δ2) =

√
S1δ(1− S1δ) , ξ2 = −1

2
+ S1δ.

The unknown ξ1,2 and t1,2 expressed in terms of δ can be substituted into
Eq. (26), the chemical potential can be excluded and the algebraic equation of
the sixth degree can be obtained. The analysis of solutions of these equations
is prohibitively difficult, and we narrow down the problem by looking for
values of the interaction constant G at which the superconducting correlations
will start to form. In other words, the unknown δ will be an infinitely small
positive number.

The abnormal densities t1,2 ≈ √
S2,1δ for small δ. Therefore, the first

equation of Eqs. (26) changes into

−μ
√
S2δ + g(S1 − 1)

√
S2δ ξ1 + gS2

√
S1δ ξ1 = 0.

Since we consider δ > 0 (δ = 0 corresponds to the normal solution), we can
divide both sides of the equation by

√
S2δ . We transform the second equation

of Eqs. (26) in a similar way and obtain the simplified equations

−μ+ g
(
S1 − 1+

√
S1S2

)
ξ1 = 0,

1− μ+ g
(√

S1S2 + S2 − 1
)
ξ2 = 0.
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The linear equation for δ follows:[(
S1 − 1+

√
S1S2

)
S2 +

(
S2 − 1+

√
S1S2

)
S1

]
δ =

=
1
2

(√
S1 +

√
S2

)2
− 1− 1

g
. (29)

The coefficient for δ in the left-hand side of the equation is independent of g
and is positive because S1,2 � 1. Therefore, δ is positive if the right-hand side
of the equation is positive. We rewrite the right-hand side as

1
2

(√
S1 +

√
S2

)2
− 1− 1

g
=

1
gcr(S1,S2)

− 1
g
=

g − gcr(S1,S2)

gcr(S1,S2) g
,

here
gcr(S1,S2) =

1
1
2

(√
S1 +

√
S2

)2
− 1

. (30)

Thus, δ will be an infinitesimal positive number if

0 < g − gcr(S1,S2) � g gcr(S1,S2).

The expression for gcr(S1,S2) shows that the particle number (the size
of the completely filled subshell 2S1) and the vacancy number of the
completely empty subshell (2S2) equally affect the critical value of the
interaction constant. Such a somehow unexpected result can be explained by
the observation that the Hamiltonian (4) has equal matrix elements for the
processes of particle pair creation and destruction inside the subshell E1 and
the pair creation in the subshell E2.

Now we calculate the correlation energy, chemical potential and particle
number variance for infinitely small δ, in other words, for G satisfying the
inequalities

0 < G−Gcr(S1,S2) � gcr(S1,S2)G,

where
Gcr(S1,S2) = (E2 − E1) gcr(S1,S2).

The δ is calculated from Eq. (29), afterwards δ1 and δ2 are determined as

δ1 =
S2

R(S1,S2)

(
1

gcr(S1,S2)
− 1

g

)
=

S2

R(S1,S2)

g − gcr(S1,S2)

g gcr(S1,S2)
,

δ2 =
S1

R(S1,S2)

(
1

gcr(S1,S2)
− 1

g

)
=

S1

R(S1,S2)

g − gcr(S1,S2)

g gcr(S1,S2)
,

where

R(S1,S2) =
(
S1 − 1+

√
S1S2

)
S2 +

(
S2 − 1+

√
S1S2

)
S1.
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The correlation energy is

C = G (S1t1 + S2t2) ≈ G
(
S1

√
δ1 + S2

√
δ2

)
=

= G
(√

S1 +
√
S2

)√ S1S2 (g − gcr(S1,S2))

R(S1,S2) g gcr(S1,S2)
.

Evidently, C cannot be expanded in the Taylor series around gcr. The chemical
potential is

λ = E1 +
1
2

(
S1 +

√
S1S2 − 2

)
G+

+

(
S1 +

√
S1S2 − 1

)
S2

R(S1,S2)

(
1− g

gcr(S1,S2)

)
(E2 − E1).

The particle number variance is

V = 4
(
S1t

2
1 + S2t

2
2

)
= 8

S1S2

R(S1,S2)

(
1
gcr

− 1
g

)
,

and therefore V is proportional to the difference (g − gcr) if g slightly exce-
eds gcr.

2.2.3. N < 2S1. Let the number of particles be N = 2S1 − 2P1, that is,
the P1 pair of particles is removed from the low closed subshell. We have
shown in Subsec. 2.1 that the abnormal density t1 is positive for any G in
this case. One needs to find out at what G the abnormal density t2 will be
non-zero. Two variants are possible. Either t2 > 0 at any positive coupling
constant or a certain critical value G̃ exists such as t1 > 0 and t2 = 0 if
0 < G < G̃.

With N = 2S1 − 2P1, the particle number equation (25) is

2S1ξ1 + 2S2ξ2 = S1 − 2P1 − S2 or S1

(
ξ1 − 1

2
+ p1

)
+ S2

(
ξ2 +

1
2

)
= 0.

Here p1 = P1/S1. We put ξ1 = 1/2− p1 − δ1 and ξ2 = −1/2+ δ2 and obtain

t1 =
√
(p1 + δ1) (1− p1 − δ1) and t2 =

√
δ2 (1− δ2) .

New variables δ1 and δ2 are related to each other by S1δ1 = S2δ2, which
can be satisfied if δ1 = S2δ and δ2 = S1δ. The density t2 > 0 if δ > 0. The
boundaries (13) of ξ1,2 lead to the inequalities

0 � δ � min

(
1− p1
S2

,
1
S1

)
.

As in the previous example, Eqs. (26) can be transformed into an algebraic
equation of the sixth degree with respect to δ. We obtain the simplified

11



equations for infinitesimal positive δ. For small δ,

t1 =
√
p1(1− p1) +

1
2

1− 2p1√
p1(1− p1)

S2δ + o(δ),

t2 =
√
S1δ

(
1− 1

2
S1δ + o(δ)

)
.

The symbol o(x) stands for the functions of x that
o(x)

x
→ 0 when x → 0.

For 0 < δ < 1, the inequalities 0 < δ <
√
δ < 1 are satisfied, and therefore

the expansion of t1,2 should be carried out for
√
δ , not for δ itself. Keeping

the terms with zero and first powers of
√
δ , we obtain the approximate

t1 =
√
p1(1− p1) , ξ1 = 1/2− p1,

t2 =
√
S1δ , ξ2 = −1/2.

The approximate equations follow from the exact ones (26)

−μ− g

(
1
2
− p1

)
+ g

(
S1 + S2

√
S1δ

p1(1− p1)

)(
1
2
− p1

)
= 0,

(1− μ)
√
S1δ +

g

2

√
S1δ − g

2

(
S1

√
p1(1− p1) + S2

√
S1δ

)
= 0.

The solutions of the system of approximate equations are

μ = g

(
1
2
− p1

)(
S1 − 1+ S2

√
S1δ

p1(1− p1)

)
,

t2 =
√
S1δ =

g

2
S1
√
p1(1− p1)

1+ g (1+ p1(S1 − 1)− (S1 + S2) /2)
.

When calculating t2, we ignored the term proportional to S1δ produced in the
second equation from the product μ

√
S1δ .

The obtained solutions show that the abnormal density t2 is the infinitely
small positive number for any positive infinitely small g. The correlation
function is approximately equal to

C ≈ GS1

√
p1(1− p1)

(
1+

G

2 (E2 − E1)
S2

)
.

The linear on g part of t2 is taken into account here. The chemical potential
calculated with the same accuracy is

λ ≈ E1 +G

[(
1
2
− p1

)
S1 + p1 − 1+

G

2 (E2 − E1)

(
1
2
− p1

)
S1S2

]
.

12



It is easy to see that the chemical potential calculated to the first order in G
is equal to the chemical potential for a system consisting of a single open
subshell.

2.2.4. N = 2S1 + 2Q, 0 < Q < S2. Let the number of particles be
sufficient to fill the subshell E1 completely and the subshell E2 — partially.
Equation (25) gives

2 (S1ξ1 + S2ξ2) = S1 − S2 + 2Q,

S1

(
ξ1 − 1

2

)
+ S2

(
ξ2 +

1
2
− q

)
= 0, q =

Q

S2
.

We introduce ε1,2 such that ξ1 = 1/2 − ε1 and ξ2 = −1/2 + q + ε2. New
variables ε1 and ε2 are connected by the equation S1ε1 = S2ε2, which can be
solved by substitutions ε1 = S2ε and ε2 = S1ε.

As in the previous cases, in order to study the appearance of
superconducting pair correlations, we keep the terms proportional to the
zeroth and first degrees of infinitesimal

√
ε and obtain

ξ1 =
1
2
− S2ε ≈ 1

2
, t1 =

√
S2ε (1− S2ε) ≈

√
S2ε ,

ξ2 = −1
2
+ q + S1ε ≈ −1

2
+ q, t2 =

√
(q + S1ε) (1− q − S1ε) ≈

√
q (1− q) .

We substitute these approximate values into Eqs. (26), divide both sides of
the second equation by non-zero t2, and determine μ and t1 from the coupled
linear equations

μ ≈ 1+ g

(
q − 1

2

)[
S2 − 1+ S1

t1
t2

]
,

t1 ≈
√
S2ε =

g

2
S2
√
q (1− q)

1+ g [1+ (S2 − 1) q − (S1 + S2) /2]
≈ g

2
S2

√
q(1− q) .

The obtained t1 and t2 are used for calculation of the correlation function and
chemical potential

C ≈ GS2

√
q (1− q)

(
1+

G

2(E2 − E1)
S1

)
,

λ ≈ E2 +G

[(
q − 1

2

)
S2 − q +

G

2(E2 − E1)

(
q − 1

2

)
S1S2

]
.

Please note that the correlation function and chemical potential for small g
reproduce the exact solutions for the single open subshell.

The last two examples dealing with two-subshell systems having one
open subshell show that both abnormal densities will be non-zero (the
superconducting solutions exist for both subshells) at any small positive
coupling constant. The chemical potential is found to be near the energy of
the single-particle states forming the open subshell.
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3. SEVERAL SUBSHELLS

Let the system have M subshells, M > 2. We number the subshells so
that Ek � El if k < l. In the model of independent particles, as the number
of particles grows, the subshells are gradually filled: from the subshells with
lower single-particle energy to those with larger ones. We denote by F the
number of the largest energy subshell which still has particles in it. Therefore,
the total number of particles in the system is

N =

F∑
k=1

2Sk − 2P ,

here P is the number of particle pairs required to fill the subshell F
completely. If P = 0, we have the closed subshell system. If 0 < P < SF , the
system is the open subshell system.

The average number of particles (12) can be written as

F−1∑
k=1

Sk

(
ξk − 1

2

)
+ SF

(
ξF − 1

2
+ pF

)
+

M∑
k=F+1

Sk

(
ξk +

1
2

)
= 0.

Here pF = P/SF . Instead of variables ξk, we introduce new unknowns δk:

ξk =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2
− δk, 1 � k < F ,

1
2
− pF − δk, k = F ,

−1
2
+ δk, F < k � M.

They are connected by
F∑

k=1

Skδk =

M∑
l=F+1

Slδl. (31)

The conditions −1/2 < ξk < 1/2, valid for any k, dictate the inequalities
for δk:

0 < δk < 1 for k �= F , and − pF < δF < 1− pF .

Please note that now δF can be not only a positive number but also a negative
one. It follows from Eq. (14) that the abnormal densities are

tk =

{√
δk(1− δk) , k �= F ,√
(pF + δF )(1 − pF − δF ) , k = F.
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Equations (21) can be written as the system

[Ek −G (1− δk)− λ] tk +GD

(
1
2
− δk

)
= 0, 1 � k < F ,

[EF −G (1− pF − δF )− λ] tF +GD

(
1
2
− pF − δF

)
= 0,

[El −Gδl − λ] tl −GD

(
1
2
− δl

)
= 0, F < l � M

(32)
that connects λ, δk and tk, k = 1, ... ,M.

3.1. pF > 0. For the open subshell nuclei, pF > 0. We are looking for
the conditions under which all δk with k �= F will be positive infinitely small
numbers. It follows from Eq. (31) that δF will also be an infinitesimal number
of the same order as δk. The abnormal densities are

tF =
√
pF (1− pF ) +

1
2

1− 2pF√
pF (1− pF )

δF + o(δF ),

tk =
√
δk

(
1− 1

2
δk + o(δk)

)
, k �= F.

For δk with k �= F , the inequalities 0 < δk <
√
δk are satisfied, and therefore

we consider
√
δk as having the first order of smallness and will keep

√
δk in

the zeroth and first degrees. As a result, we have

tk ≈
√
δk , k �= F ,

tF ≈
√
pF (1− pF ) ,

D ≈ SF

√
pF (1− pF ) +

∑
l �=F

Sl

√
δl ≈ SF

√
pF (1− pF ) .

The terms proportional to Sl

√
δl are neglected in the last expression because

they are infinitely small in comparison with the finite term SF

√
pF (1− pF ) .

We substitute the approximate expressions into Eq. (32) and obtain

λ = EF +

[(
1
2
− pF

)
SF − (1− pF )

]
G,

tk =
1
2
SF

√
pF (1− pF )

G

EF − Ek
+ o

(
G

EF − Ek

)
, 1 � k < F ,

tl =
1
2
SF

√
pF (1− pF )

G

El − EF
+ o

(
G

El − EF

)
, F < l � M.

15



The correlation function and the particle number variance are

C ≈ GSF

√
pF (1− pF )

(
1+

1
2

F−1∑
k=1

Sk
G

EF − Ek
+

1
2

M∑
l=F+1

Sl
G

El − EF

)
,

V ≈ SF pF (1− pF )

[
4+

F−1∑
k=1

SFSk

(
G

EF − Ek

)2

+

M∑
l=F+1

SFSl

(
G

El − EF

)2
]
.

For a small coupling constant, both the correlation function and the particle
number variance are mostly determined by the abnormal density of the open
subshell. The following inequalities are valid:

C > GSF

√
pF (1− pF ) and V > 4SF pF (1− pF ).

We would like to note that the particle number variance V is bounded below
by the positive number when G → 0.

One can see that the interaction spreads the influence of non-zero tF over
all subshells in the system. The abnormal densities differ from zero at all
subshells enveloped by the interaction. In the system of like nucleons with
the open subshell, the superconducting solution exists at any arbitrarily small
constant of attractive interaction.

3.2. pF = 0. Now we consider the closed subshell system with pF = 0.
Let us assume for a moment that all Ek with 1 � k < F are equal to EF and
all El with F < l � M are equal to EF+1. By this assumption, we return to
the two-subshell problem with

S̃F =
F∑

k=1

Sk and S̃F+1 =
M∑

l=F+1

Sl.

We have shown in Subsec. 2.2.2 that in the present case, the superconducting
pair correlations start to appear if the coupling constant G exceeds the
threshold value (30) which is here

G′
cr =

EF+1 − EF

1/2
(√

S̃F +

√
S̃F+1

)2

− 1

.

Please note that 2S̃F = N . During the development of the superconducting
correlations, pairs of particles begin to jump from fully occupied subshells
into free subshells. The difference (EF+1 − EF ) is the lowest energy of such
transitions. Therefore, in the initial M-subshell system, the constant G′

cr gives
the lower bound for the actual critical value of the interaction constant Gcr.
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On the other hand,

G′′
cr =

EF+1 − EF

1/2
(√

SF +
√
SF+1

)2 − 1

is the critical constant for the system with only two interacting subshells taken
into account, and the contributions of other subshells are ignored. Therefore,
G′′

cr gives the upper bound for Gcr.
This consideration shows that in the closed subshell system, only the

normal solutions are possible if the interaction constant satisfies 0 < G < G′
cr.

All abnormal densities are equal to zero in this case. If G exceeds G′′
cr,

the superconducting solution is possible and all abnormal densities become
positive numbers. The intermediate case with G′

cr < G < G′′
cr requires

additional study.
Remark 5. We have used the simplest model Hamiltonian (4) with the

constant attractive interaction. The realistic Hamiltonian can be written [4] as

H =
∑
k

jk∑
mk=−jk

Eka
†
k,mk

ak,mk
−

− 1
4

∑
k,l

Gk,l

jk∑
mk=−jk

jl∑
ml=−jl

(−1)jk−mka†k,mk
a†k,−mk

(−1)jl−mlal,−ml
al,ml

.

If all matrix elements Gk,l are positive numbers, our qualitative conclusions
about the system with open subshell will survive. The expressions for λ and
C will be more complicated of course.

Remark 6. We have considered the spherical nuclei. To obtain formulae
for deformed nuclei, one should put jk = 1/2 and Sk = 1 for all subshells.
The formulae obtained for the closed subshell spherical nuclei are suitable for
deformed nuclei. The deformed nucleus can be open subshell nucleus only if
the energies EF and EF+1 coincide.

CONCLUSIONS

We have considered the appearance of superconducting pair correlations
in spherical even-even nucleus using the simplest model Hamiltonian. The
influence of the monopole pairing interaction on the energy of single-particle
states was taken into account.

It is shown that the emergence of pair correlations depends on the particle
number and shell structure.

In the open subshell system, non-zero abnormal densities appear for any
small positive coupling constant. The new result obtained in the present paper
is that at infinitely small positive G, the abnormal densities differ from zero
at each subshell participating in the pairing interaction.
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In the closed subshell system, superconducting pair correlations begin to
form when the coupling constant exceeds a certain critical value Gcr. If the
coupling constant is less than Gcr, the normal solution is the only solution.
All abnormal densities and correlation function equal to zero. The rough lower
and upper bounds of Gcr are obtained. More accurate estimations of Gcr are
required. Both normal and superconducting solutions are possible for G larger
than Gcr.
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