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INTRODUCTION

It was stressed in one of the very first papers [1] on the application of the
idea of superconducting correlations to the atomic nuclei spectroscopy that
pair correlations in nuclei can appear only if the coupling constant exceeds
a certain value. It was also mentioned that the existence of such a threshold
value distinguishes atomic nuclei from the infinite systems considered in
the theory of superconductivity. This remark was later repeated several
times [2, 3].

The necessity of a threshold was revealed by the following reasoning [1, 2].
In the simplest case when all the matrix elements of the two-body pairing
interactions are replaced by the same positive constant G, the equations for
the correlation function C and the chemical potential A can be written as

G 1
& — 1, 1
2 Z:\/(ES—A)Z-FCZ M
1 E, — A
2Y vi=N, vi=5|1- - : 2
Z;” T3 . - V212 ®

Here NV is the number of particles in the system. The summation is carried out
over pairs of doubly-degenerate single-particle states in the nuclear mean field.
These states are related to each other by the operation of time reversal [2].

The inequality G !
— — > 1
2 Z S ®)

follows from Eq. (1) for non-zero C. Inequality (3) is often considered as
a relation that determines the minimal value of G, starting from which
superconducting pair correlations can exist in the system. The reasoning
contains a tacit assumption that A\ cannot approach one of the FEj’s close

enough to increase considerably the sum 221/\ES — Al as G decreases.

The correctness of the assumption is not evident because both A and C are
calculated by solving the nonlinear system of Egs.(l) and (2). Therefore,
inequality (3) is a useful hint rather than a proof.

In this paper, we study the conditions of the formation of superconducting
pair correlations between like nucleons in the ground state of spherical
even-even nuclei. Since Egs. (1) and (2) for many-level systems can only
be solved numerically, we first consider the solution of equations with one
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and two subshells and then use the obtained results in the discussion of the
many-subshell problem.

The paper contains Introduction, Sections 1-3, and Conclusions. The
equations for calculating normal and abnormal single-particle densities are
derived in Sec. 1. The contribution of pairing interaction to the single-particle
energy is taken into account explicitly. The appearance of pair correlations in
single-subshell and two-subshell systems is discussed in Sec. 2. The threshold
value of G is calculated for the system with closed subshell as well. Many-
subshell nuclei are discussed in Sec.3. The main results of the paper are
summed up in Conclusions.

1. MODEL HAMILTONIAN AND MAIN EQUATIONS

The Hamiltonian of the neutrons (or protons) in the nucleus with spherical
symmetry is chosen [2] as

Jk
_2 : } : T
H= Ekak‘mkak,mk—

k. mrp=—Jjk

G Jk o Ju .
- ZZ Z (_l)jk ka;mkaj};y,mk Z (_l)ﬂ la/l,—mla/l,ml- (4)

kl mgp=—jk mi=—j

Here the indices k label single-particle states with energy Ej and angular
momentum ji; my is the third projection of angular momentum, my = —jy,
—jk+1,..., 5k — 1, jx; the operators a,tymk and ag,m, are fermion operators of
the creation and annihilation of a particle in the state (k,m). We follow the
tradition and call the subshell a set of 2j, + 1 single-particle states with the
same FEj, and ji. We consider the attractive interaction, i.e., G > 0.

The quasiparticle operators are introduced by the special Bogoliubov
transformation with the real coefficients [2]:

Ok,my, = UkOkm, + (_l)jk_mk Uka;rcﬁmk,' (5)

If the operators oy, and a;mk are the fermion annihilation and creation
operators, the transformation coefficients satisfy the conditions

up + v = 1. (6)

The quasiparticle vacuum |) is determined by the equations ag m, |) = 0 for
any k and my. If the quasiparticle operators are introduced by Eq. (5), the
angular momentum of |) is zero and its parity is positive. This is easy to prove
by applying the operators of the total angular momentum of the system of like
nucleons and the parity operator on |). As a result, the product of neutron
and proton vacuum states has zero angular momentum and positive parity,
the values coincide with the angular momentum and parity of ground states
of all spherical even-even nuclei. For this reason, we approximate the wave
function of the ground state of a system containing an even number N of
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identical nucleons (either neutrons or protons) by an appropriate quasiparticle

vacuum |).
The quasiparticle vacuum is connected with the state without nucleons [2]:
b= TI (us+ 070, 0l ) 10) (7)
k,mp >0

where |0) is the state without nucleons, ay ,, |0) = 0 for any k and my. If for a
certain k the coefficients ug and vy differ simultaneously from zero (ugvi # 0),
function (7) contains components with a different number of nucleon pairs.
The coefficients of transformation (5) can be determined from the condition
of minimum of the system energy (|H|). In searching for an energy extremum,
one should satisfy the constraint that the average of the nucleon number
operator over quasiparticle vacuum is equal to the number of particles in the

system
(ND =" af n akm, ) =N
k,mk

Therefore, the functional to be minimized is

‘H| |Zakmkakmk _N .

kmk

Here A is the Lagrange multiplier usually called the chemical potential.
One can see that the inclusion of a supplementary condition modifies the

operator H into
H =H-XYal, awm,-

k,mk

The average of H' over the quasiparticle vacuum is equal to
(1H'l) =32+ D (B — Avi—
g G G ’
) > (2 + D — 7T [Z@jk + 1)%%1 . (8)

k k

The transformation coefficients wy and vy enter into the expression as the
products v? and uyvy only. We use the products as new variables

Wy = v,% and ¢, = upvL. (9)
Sometimes they are called the normal density and abnormal density because
wie = (|af @k, ]) and  te = (=1 (|ag i, Gk |)-

The presence of non-zero (|ak,—m, akm,|) is a sign of a superconducting state.
[t follows from Eq. (6) that the densities obey the inequalities

1
O0<w, <1 and O<tk<§



and are connected by the relations
wh 4+ t2 = wy,. (10)

The matrix element (8) is expressed via wy and t; as

(H'l) = > (2jr + (B = Nwi—

i 2
G . G )
- 52(27” Dw? — 1 [Z(ngﬂ)tk (11)
k i
The supplementary condition for the particle number is
> (2jk + Duwy, = N. (12)

k

For convenience of further calculations, we write w;, as a sum

we=Gt g (F1/2<6<1/2). (13)

Now relations (10) are simplified
|

ﬁ+£:1 (14)

and can be satisfied by the trigonometric functions
1 1
§k:§cos<pk, tk=§sing0k, with 0 < g < 7.

Please note that ¢, > 0 with 0 < ¢} < . The matrix element (8) depends on
the unknown ¢y, only,

(H']) = Z(jk + %)(Ek - A= %) +Z(jk + %)(Ek - % — A) cospp —
k

k
2
G o1 G A S
7 (Jr + g) cos” iy, — T [Z(Jk + 5) Sln‘Pk] - (15)
k k
For any ¢, from the interval 0 < ¢ < , the condition of extremum (|H’|) is
H/
oA =0. (16)
o

When ¢y, approaches 0 or 7, the usual derivatives should be replaced by the
one-sided ones. The simplest way to arrange the limiting processes is to map
the entire number axis to the segment 0 < ¢ < 7 by ¢ = arccot z with
00 > xp > —oo. Afterwards Eq. (16) transforms into

OUH')) _ O(H'|) dox _ O(H'|) ( 1 ) 0. (17)

Oz Opr dze  Opr \ l+a7




Three stationary points are possible for each k:

1
xp =00, =0, £k=§, wy =1, ¢, =0, (18)
1
Tp =—00, =T, §k=—§, w =0, ¢, =0, (19)
!
xy, finite, agHD:O, O<pp<m, >0, 0<wg<l. (20)
Pk

Stationary points (18) and (19) describe the states with normal density at
subshell k strictly equal to either 1 or O and abnormal density equal to
zero (normal solutions). Equation (20) describes the states with ¢ > 0 and
0 < wg < 1 (superconducting solutions). Equation (20) can be written as

G . G . G
(Ek -5~ )\) sin g — §COSg0kSIH<pk + 5

|
Z(jl + 5) singol] cos pr, = 0,
!

or

G
(Ek 5 )\)tk — G&ti + GDEL = 0. (21)

Here the notation 1
zz:Sl o S it g
is used. For each subshell [, the quantities S; are equal to the number of
different particle pairs that form the state (7).
Remark 1. Usually in Eq.(8), the terms proportional to v} are discarded
(or absorbed into Ej by the modification of single-particle energies [2]). In
this case, Eq. (21) is transformed into

(Ek — )\)tk = —GD¢&.

We square both parts of the equation, use Eq.(14) and obtain equations
analogous to Egs. (1) and (2) with the correlation function C' = GD.

Remark 2. Extremum conditions (18) and (19) at ¢ =0 and ¢ =7
correspond to the normal solutions with ¢, = 0. These solutions allow one
to describe the system having ¢; > 0 for a certain subshell and t,, =0 for
other subshells. If ¢;» = 0 for a certain subshell &', then from Egs. (21) alone
it would follow that D = 0 and the rest of the abnormal densities would be
zero.

Remark 3. The contribution of components with a different particle number
to |) is estimated by the particle number variance

V= (N) = (N2 =2 (2 + 1) t;, =4 Sut].
k k

The particle number variance is determined by non-zero ¢ only.



2. ONE AND TWO SUBSHELLS
Let us start with the simplest cases.
2.1. Single Subshell. If the system contains a single subshell with the
energy Ep and angular momentum jo, Eqs. (21) and (12) are reduced to

G
(Bo — 5 — A)to — Gé&to + GSotoéo = 0, (22)

2
25, (go + %) = N. (23)

If V=28 (all single-particle states are occupied or the subshell is
closed), the particle number equation (23) has the solution & = 1/2, and
therefore to = 0. Only the normal solution is possible for any G.

If N =28y — 2P, here Py is the number of particle pairs removed from
the closed subshell. The particle number equation (23) has the solution

£0=1/2—p0, with pozpo/So, and wo=1-—pg, wo<lI,

and only superconducting solution exists. The abnormal density and
correlation function are equal to

to = v/po(1 —po),
G
C =GD = GSotg = GSo/po(1 — po) = 5\/]\/'(250 - N).

In the case of single open subshell, the correlation function depends linearly
on @G, because both & and ¢y, are independent of G. The particle number
variance is also constant

N(2Sy - N
V = 45013 = 4Sopo(1 — po) = %

The chemical potential is a linear function of G:
1
A=FEy+G [(5 —po> So — (1 —po)} .

2.2. Two Subshells. For the system having two subshells, the set of
equations is

G
(B — 9 At = Gti& + G (Sity + Sata) & =0,

G
(B2 — 9~ Atz = Gta& + G (Sity + Satz) & =0,

2 (51&1 + S9&o) =N — 5| — So. (25)

We label subshells by the indices “1” and “2” so that Ey > E|. If Ey = F|, we
face, due to definition (5), the single-subshell system with So = S| 4+ So. It

(24)
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is convenient to introduce the dimensionless chemical potential and coupling

tant
constan _>\—E1—|—G/2 nd B G
T E_E e 9= TR

And Eqgs. (24) can be written as
—pty — gti&y 4 g (Sitr + Sate) & =0,
(1 — p)ta — gtaka + g (Sit1 + Saty) & = 0.

2.2.1. S, =89 and N = 2S;. Consider the system with S} = S5. The
particle number equation (25) is simplified to

251 (fl —|—§2) =N —285;.
When N = 28, it gives & = —&; and to = ¢,. Equations (26) are transformed

into
—pty — gt1&1 +2g951t1& =0,
(1 — ,u)t1 + gt1& — QQSltI& =0.

We sum them and get the equation

(26)

(27)

(1 —-2u)t; =0,

having two solutions: u =1/2 and ¢; = 0.

The ¢; = 0 solution corresponds to the normal state with & = +1/2
and & = F1/2. The energy minimum is reached at & = 1/2 (w; = 1) and
& = —1/2 (wg = 0). The solution exists for any positive G. The chemical
potential u is arbitrary.

Let us consider the p = 1/2 solution with ¢; # 0. The chemical potential is

1
A== (E\+E—G).

2
[t follows from the first equation of Egs. (27) for ¢; # 0 that
1 1
§1=3 g(25 — 1)

Due to Eq.(14), the real non-zero ¢ exists for |£;| < 1/2, and therefore the
superconducting pair correlations may appear if
S 1
T,

[t is convenient to introduce special notation for the critical values of the
interaction constant

Ey — E;
25— 1°

gcr:251_1 and G¢ =



The solutions are

¢ g 1Gy
179y T2 G
b=t L [0 g9+ ger)
! 4 2 92 :

For small g, 0 < g — gor < ger, We have (the approximate equality

- Yer G - Gcr
g+ g &~ 2g is taken into account) ¢, = g _ A/ , and
29 2G

C = 2GSt = S1\/2G(G — G.,;). Here one cannot expand the correlation
function C in the Taylor series in G near G¢,. As in statistical mechanics, this
example demonstrates the non-analytical dependence of correlation function
on coupling constant. The G, is the breaking point of C(G)

1 <
C(G):{o if G< G,

GS1/T— (G JG)2, if G > Ger.

For very large G, G > (E» — E1)/(251 — 1),

C=G51\/1—((}32_715’1)2 zGSl<1_1M+ )

25, — 1)2G? 225, —1)2G2 T

The first term of the expansion in powers of G /G does not depend on
the difference (F2 — E)) and coincides with the correlation function of one-
subshell system having Sp = 25 and pg = 1/2.

The calculated critical value of the interaction constant turned out to be
proportional to the ratio 1/(25; — 1). It is not clear whether g., depends on
the particle number or on the number of vacancies in the system.

Remark 4. Both normal (w; =1, we =0, t2 = t; = 0) and superconducting
(w; = 1/2 + Ge: /(2G), we = 1/2 — Gey /(2G), ta = t; > 0) solutions are
possible for G > G in the considered example. The difference of their
energies is easily calculated by Eq. (11) with A =0,

(Hl)usmo ~ [ lherzo = 51 (51~ ) 6 (1- GG)?

The subscripts we = 0 and wy > 0 indicate that the Hamiltonian is averaged
over the wave function of either the normal state or the superconducting one,
respectively. One can see that for G > G,,, the energy of the normal state
exceeds the energy of the superconducting one.

222, 5 #85 and N =2S5;. Let us figure out how the value of the
critical constant depends on the number of particles in the closed subshell E}
and on the number of empty single-particle states in the subshell Es.
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For N' =28, Eq. (25) is

2(51{1 + SQ{Q) =5 -5 or S5 (f] — %) + 52(62 + é) =0. (28)

To simplify the calculations, we introduce new variables é; and 9 such as

1 1
& = 5 =41 and & =—§+52.
[t follows from Eq.(28) that the unknown 0, and dy are connected by the
equation
S161 = 5209,
which can be taken into account by substitution

01 =S98, 0y = 5910.
As —1/2 < &9 < 1/2, the variable § should be inside the interval

1 1
<0 <mi — = .
0\5\m1n<Sl,SZ>

[t follows from Eq. (14) that

1
t1 = /61(1 = 01) = /S26(1 — S9d), & = 3 — 520,

1
ty = \/0a(1 — 02) = +/S16(1 — S10), & = —5 +510.

The unknown &2 and ¢;9 expressed in terms of ¢ can be substituted into
Eq. (26), the chemical potential can be excluded and the algebraic equation of
the sixth degree can be obtained. The analysis of solutions of these equations
is prohibitively difficult, and we narrow down the problem by looking for
values of the interaction constant G at which the superconducting correlations
will start to form. In other words, the unknown ¢ will be an infinitely small
positive number.

The abnormal densities ¢19 ~ /5216 for small §. Therefore, the first
equation of Egs. (26) changes into

—p/S20 4+ g(S1 — 1)1/ S20 &1 + gS2/ 51661 = 0.

Since we consider § > 0 (6 = 0 corresponds to the normal solution), we can
divide both sides of the equation by 1/S20 . We transform the second equation
of Egs. (26) in a similar way and obtain the simplified equations

—n+g (S 1+ V8% )& =0,
L—p+g (V88 +8-1)&=0.



The linear equation for § follows:

{<51—1+M)52+(52—1+\/E)51}5 =
Z%(\/S—1+\/S—2>2—l—é. (29)

The coefficient for § in the left-hand side of the equation is independent of g
and is positive because S12 > 1. Therefore, § is positive if the right-hand side
of the equation is positive. We rewrite the right-hand side as

1 2 1 1 1 g_gcr(SIySQ)
s +VS) —1—te L 197 9aOu5)
2 ( : 2) g gu(S1,52) g 9er(S1,52) g

here 1

TR a1

Thus, § will be an infinitesimal positive number if

gCI‘(Slv SQ) - (30)

0< g — gcr(ShSZ) < g gCI‘(Slv SQ)

The expression for g (S1,S2) shows that the particle number (the size
of the completely filled subshell 2S;) and the vacancy number of the
completely empty subshell (2S2) equally affect the critical value of the
interaction constant. Such a somehow unexpected result can be explained by
the observation that the Hamiltonian (4) has equal matrix elements for the
processes of particle pair creation and destruction inside the subshell E; and
the pair creation in the subshell Fj.

Now we calculate the correlation energy, chemical potential and particle
number variance for infinitely small 6, in other words, for G satisfying the
inequalities

0 < G —Gux(51,52) < ger(S1,92)G,

where
Ger(S1,52) = (B2 — E1) g (S1, S2).

The ¢ is calculated from Eq. (29), afterwards §; and do are determined as

5y = S ( 1 _ l) _ S 9= 9a(51,5)
R(S1,52) \ ger(S1,52) ¢ R(S1,52) g gex(S1,S2)
0y = St ( 1 _ l) — Sy g — gcr(Sl,S2)
R(S1,52) \ ger(S1,52) ¢ R(S1,52) g gex(S1,S2)

where

R(S1,SQ)= (51—14—\/@)524-(52—1-{-\/%)51.
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The correlation energy is

C = G (S1t) + Sate) = (51\/7 +52\/£)
— 6 (VE VB WIS? ) 0(5.5)

R(S1,52) g gex(S1,S2)

Evidently, C cannot be expanded in the Taylor series around g... The chemical
potential is

A=FE + - @h+v@E§—2)G+

(S1+V/5182 — 1) 8, B g B
* R(S1,52) (1 gcr(ShSZ)) (B = E).

The particle number variance is

2 2 SISQ 1 1
V_4(Slt1 +52t2) _8R(SI’SZ) (gcr g) ’
and therefore V is proportional to the difference (g — g.r) if g slightly exce-
eds ger.

2.2.3. N < 285;. Let the number of particles be N/ = 25| — 2Py, that is,
the P; pair of particles is removed from the low closed subshell. We have
shown in Subsec.2.1 that the abnormal density ¢; is positive for any G in
this case. One needs to find out at what G the abnormal density ¢o will be
non-zero. Two variants are possible. Either ¢ > 0 at any positive coupling
constant or a certain critical value G exists such as ¢; > 0 and ¢t» = 0 if
0<G <.

With A/ = 28| — 2Py, the particle number equation (25) is

2
Here p; = P /S;. We put & = 1/2 — p; — §; and & = —1/2 4 &2 and obtain
ti=+/(p1+01) (1 —p1 —81) and to= /(1 —3).

New variables ¢; and &9 are related to each other by S1d; = Sede, which
can be satisfied if §; = S9 and do = S14. The density to > 0 if § > 0. The
boundaries (13) of &2 lead to the inequalities

. (1—=p 1
0<d< = .
mm( S 51)

| |
251&1 + 258 =51 —-2P -8 or S (gl - = +p1> + S <§2 + §> =0.

As in the previous example, Egs. (26) can be transformed into an algebraic
equation of the sixth degree with respect to §. We obtain the simplified
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equations for infinitesimal positive §. For small §,

1 1 —2p;
t = pl(l—pl) +§m525+0(5)
ty = /516 (1 - é515+0(5)> .
(1‘)

The symbol o(z) stands for the functions of x that — 0 when z — 0.

For 0 < d < 1, the inequalities 0 < § < Ve <1 are satisfied, and therefore
the expansion of ¢ 5 should be carried out for v/&, not for § itself. Keeping
the terms with zero and first powers of v/d, we obtain the approximate

pi(l —p1), & =1/2—py,

to = \/S16, 622—1/2.

The approximate equations follow from the exact ones (26)

1 516 C )
—pu—gl=s—p)+g[S1+8y/—— | (=z—-p ) =0,
H 9(2 pl) g(l 2 p1(1—p1)> D) DP1
—mV@ﬁ+g Sﬁ—%(& mu—m)+&w&5)=0

The solutions of the system of approximate equations are

1 S19
= - — Si—14+ 80/ ——m— |,
K g<2 pl)(l 2 p1(1—p1)>

S 1—
by = \/g pl( pl)

2 L+g(L+pi(Si—1) = (S1+852) /2)

When calculating to, we ignored the term proportional to S produced in the
second equation from the product /519 .

The obtained solutions show that the abnormal density o is the infinitely
small positive number for any positive infinitely small g. The correlation
function is approximately equal to

G
C=GS \/pl(1 _pl) (1 + m52> .

The linear on g part of ¢9 is taken into account here. The chemical potential
calculated with the same accuracy is

1 G 1
~E - " (= :
A 1+GK2 p1> S1+p1 +2(E2—E1) (2 p1> 5152]
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[t is easy to see that the chemical potential calculated to the first order in G
is equal to the chemical potential for a system consisting of a single open
subshell.

224. N =25 +2Q, 0 < Q < Sy. Let the number of particles be
sufficient to fill the subshell E) completely and the subshell Fo — partially.
Equation (25) gives

2 (S1&1 + S9&2) = S1 — So + 20,

S (’51—%>+52<£2+%—q>=0, qzs%.

We introduce e19 such that & =1/2 —¢; and & = —1/2 + g + 2. New
variables € and €9 are connected by the equation Sje; = Soeo, which can be
solved by substitutions € = Sge and g9 = Sje.

As in the previous cases, in order to study the appearance of
superconducting pair correlations, we keep the terms proportional to the
zeroth and first degrees of infinitesimal /¢ and obtain

1
& = —525%5, t1=\/52€(1—525) ~ 1/ Soe,

1 1
£2=—§+q+515%—§+q, ts = /(g +S1e) (1 —q— Sie) ~/q(1 —q).

We substitute these approximate values into Egs. (26), divide both sides of
the second equation by non-zero to, and determine x and ¢; from the coupled

linear equations
1
uzl—i—g(q——) {52—14-51 }

. g So/a(1—q) ~ 9
b~/ She 21+g[l+(S2—1)q—(S1+52)/2] =gl

The obtained ¢; and ¢9 are used for calculation of the correlation function and
chemical potential

G
C~GSs 1— l4+——5 |,
2 (I( (I) ( Q(Eg —El) 1)

1 G 1
ANE?_FGK(]_5)52_q+2(E2—E1) (q_§> SISZ]’

Please note that the correlation function and chemical potential for small g
reproduce the exact solutions for the single open subshell.

The last two examples dealing with two-subshell systems having one
open subshell show that both abnormal densities will be non-zero (the
superconducting solutions exist for both subshells) at any small positive
coupling constant. The chemical potential is found to be near the energy of
the single-particle states forming the open subshell.

N —

1—gq).
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3. SEVERAL SUBSHELLS

Let the system have M subshells, M > 2. We number the subshells so
that £y, < E; if k < [. In the model of independent particles, as the number
of particles grows, the subshells are gradually filled: from the subshells with
lower single-particle energy to those with larger ones. We denote by F' the
number of the largest energy subshell which still has particles in it. Therefore,
the total number of particles in the system is

F
N:ZQSk—QP,

k=1

here P is the number of particle pairs required to fill the subshell F
completely. If P =0, we have the closed subshell system. If 0 < P < S, the
system is the open subshell system.

The average number of particles (12) can be written as

25k<fk—%>+sF<fF——+pF> Z Sk<§k+ )

k=F+1

Here pp = P/SF. Instead of variables &, we introduce new unknowns dy:

1
5—5k, I<k<F
1
Sk = g ~PF— 0k k=1,
1
—§+(5k, F<k<M

They are connected by

Zskcsk_ Z 6. 31)

I=F+1

The conditions —1/2 < &, < 1/2, valid for any k, dictate the inequalities
for 0y:
0<dp <l for k#F, and —prp<dop<I1—pp.

Please note that now d can be not only a positive number but also a negative
one. It follows from Eq. (14) that the abnormal densities are

{ Se(1 = 6), k#F,
tr =
V(pr+6r)(1 —pr —0p), k=F.

14



Equations (21) can be written as the system

0, l1<k<F,

[Ek—G(l—5k)—)\}tk+GD<é—5k>

1
[Er —G(1 —pp —0p) = AJtr +GD <§—pF_5F> =0,

[EI—G(SZ—)\]tl—GD(%—(;l):O, F<l<M

(32)
that connects A, §;, and t, k=1,..., M.

3.1. pr > 0. For the open subshell nuclei, pr > 0. We are looking for
the conditions under which all §; with k # F' will be positive infinitely small
numbers. It follows from Eq. (31) that 6 will also be an infinitesimal number
of the same order as ;. The abnormal densities are
1 1—-2pp
tr = \pr(l —pr) + s —F——
2 \/pr(1 —pp)

tk:m<l_%5k+0(5k)>v k # F.

o + 0(5F),

For &, with k # F, the inequalities 0 < &, < /0; are satisfied, and therefore
we consider /8, as having the first order of smallness and will keep /8 in
the zeroth and first degrees. As a result, we have

th~\op, k#F,
tr = /pr (1 —pFr),

D~ Spy/pr (1= pr) + Y S0 ~ Sev/pr (1 - pr).

I£F

The terms proportional to S;v/d; are neglected in the last expression because
they are infinitely small in comparison with the finite term Sp+\/pr (1 — pr).
We substitute the approximate expressions into Eq. (32) and obtain

A=FEp+ K%—pp>SF—(l—pF)] G,

1 G G
tk = sSrvVpr(l —pr) +o , I1<k<F,
2 Er — Ep,

Er — Eg

1 G G
P e <M.
t; QSF pF(l pF)El_EF-i-O(El_EF), F<l<M

15



The correlation function and the particle number variance are

1 G 1 X G
CxGSpv/pr(l—pr) (145 Sim—rt5 > S |
2 .2 B

Fol G 2 G 2
4+Z SrSk <7EF — Ek) Z SrS; (El EF)

k=1 I=F+1

VYV~ Srpr(l —pr)

For a small coupling constant, both the correlation function and the particle
number variance are mostly determined by the abnormal density of the open
subshell. The following inequalities are valid:

C>GSpv/pr(l —prp) and V >4Sppr(l —pr).

We would like to note that the particle number variance V is bounded below
by the positive number when G — 0.

One can see that the interaction spreads the influence of non-zero ¢tz over
all subshells in the system. The abnormal densities differ from zero at all
subshells enveloped by the interaction. In the system of like nucleons with
the open subshell, the superconducting solution exists at any arbitrarily small
constant of attractive interaction.

3.2. pr = 0. Now we consider the closed subshell system with pp = 0.
Let us assume for a moment that all E, with 1 <k < F are equal to Fr and
all By with FF <1 < M are equal to Ery;. By this assumption, we return to
the two-subshell problem with

~ F N M
SF:ZSk and SF+1= Z Sl.

k=1 I=F+1

We have shown in Subsec.2.2.2 that in the present case, the superconducting
pair correlations start to appear if the coupling constant G exceeds the
threshold value (30) which is here

Epy —
e(d wa)

Please note that 25F = A. During the development of the superconducting
correlations, pairs of particles begin to jump from fully occupied subshells
into free subshells. The difference (Epy; — Er) is the lowest energy of such
transitions. Therefore, in the initial M-subshell system, the constant GZ, gives
the lower bound for the actual critical value of the interaction constant G,.

16



On the other hand,
"o Epy1— Ep

a 1/2 (\/ﬁ +\/SF+1)2_

is the critical constant for the system with only two interacting subshells taken
into account, and the contributions of other subshells are ignored. Therefore,
Gl gives the upper bound for G;.

This consideration shows that in the closed subshell system, only the
normal solutions are possible if the interaction constant satisfies 0 < G < G,
All abnormal densities are equal to zero in this case. If G exceeds Ggr,
the superconducting solution is possible and all abnormal densities become
positive numbers. The intermediate case with G.L, < G < G, requires
additional study.

Remark 5. We have used the simplest model Hamiltonian (4) with the
constant attractive interaction. The realistic Hamiltonian can be written [4] as

Jk
— § § T
H = Ekak,mkak,mk -

k mrp=—jk

Jk mi T Ji—my
4 Zle Z Z a’k g Ve —my (_1) ar,—m;Al,m, -

myp=—7jr mi=—4i

If all matrix elements Gy are positive numbers, our qualitative conclusions
about the system with open subshell will survive. The expressions for A and
C will be more complicated of course.

Remark 6. We have considered the spherical nuclei. To obtain formulae
for deformed nuclei, one should put jr = 1/2 and S, =1 for all subshells.
The formulae obtained for the closed subshell spherical nuclei are suitable for
deformed nuclei. The deformed nucleus can be open subshell nucleus only if
the energies Fr and Ep4 coincide.

CONCLUSIONS

We have considered the appearance of superconducting pair correlations
in spherical even-even nucleus using the simplest model Hamiltonian. The
influence of the monopole pairing interaction on the energy of single-particle
states was taken into account.

It is shown that the emergence of pair correlations depends on the particle
number and shell structure.

In the open subshell system, non-zero abnormal densities appear for any
small positive coupling constant. The new result obtained in the present paper
is that at infinitely small positive G, the abnormal densities differ from zero
at each subshell participating in the pairing interaction.
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In the closed subshell system, superconducting pair correlations begin to
form when the coupling constant exceeds a certain critical value G.,. If the
coupling constant is less than G.,, the normal solution is the only solution.
All abnormal densities and correlation function equal to zero. The rough lower
and upper bounds of G, are obtained. More accurate estimations of G, are
required. Both normal and superconducting solutions are possible for G larger
than Ge..
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