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INTRODUCTION

According to [1], an intermediate structure is a violation of the statistical
model in a localized energy region. In the statistical model, the wave function
of the state ΨSt is written as follows:

ΨSt =

n∑
k

Ck ϕk,
n∑
k

|Ck|2 = 1, (1)

where ϕk is the wave function of a “simple” configuration, Ck are random
numbers, and n �1. When non-statistically considered [2], one or a small
number of simple configurations ϕ0 are dominated in the wave function of the
non-statistical state ΨNSt:

ΨNSt = C0 ϕ0 +

n∑
k

Ck ϕk, |C0| � |Ck|, |C0|2 +
n∑
k

|Ck|2 = 1. (2)

The study of the decay characteristics of nuclear states and resonances at
excitation energies exceeding 3–5 MeV in medium and heavy nuclei plays
an important role in understanding the structure of atomic nuclei [2–9].
With an increase in the excitation energy, the density of levels in the
nucleus increases rapidly and the wave function of such excited states can
have a rather complex structure, since even a small residual interaction
can lead to mixing of closely spaced states. Therefore, as a rule, it is
assumed that the structure of states at significant excitation energies of
the nucleus is quite complex and the coefficients of decomposition (1) of
the wave function in simple configurations obey statistical patterns. The
characteristics of various types of atomic nucleus decay are quite simply
calculated in such statistical models. In particular, the gamma-decay width
distributions obey the Porter–Thomas distribution [4, 5, 10], the beta-decay
strength function Sß(E) is proportional to the density of the daughter nucleus
levels [11], there are no correlations of partial decay widths along various
channels [2, 4], and the amplitude ratios along various spin channels obey
the Cauchy distribution [2, 4, 5]. Therefore, the question naturally arises of
identifying and studying non-statistical effects during the excitation and decay
of nuclear states and resonances, determining the degree of mixing of the
“simple” component responsible for non-statistical effects with the levels of the
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compound nuclei and interpreting the structure of the studied non-statistical
states and resonances at the microscopic level [2, 4, 5, 11].

Non-statistical effects are closely related to the symmetry of interaction
in atomic nuclei [2]. A number of the first and most distinct manifestations
of non-statistical effects in the decay of highly excited states and resonances
in atomic nuclei were found for isobar analog resonances (IAR). The
manifestation of the discovered non-statistical properties of the IAR was due
to the isospin symmetry of the nuclear forces [9]. Since the value of the
isospin quantum number corresponding to this symmetry for the IAR exceeds
the isospin value for neighboring levels of the compound nuclei by one, there
is no strong mixing of the IAR with nearby states of the compound nuclei. At
excitation energies in medium and heavy atomic nuclei exceeding 3–5 MeV,
a large number of other (non-analog) states and resonances are observed.
There are two possible approaches to the interpretation of their properties:
statistical and non-statistical [2, 4, 5]. In the first case, it is assumed that the
wave function of states and resonances has a statistical character (1), whereas
in the second case it is assumed that the non-statistical component dominates
in the wave function (2), and the energy distribution of this non-statistical
component manifests itself in the form of a giant resonance type structure
(intermediate structure, Fig. 1). In the second case, non-statistical approaches
should be applied when interpreting experimental data [2, 4].

Fig. 1. The manifestation of the gross structure, intermediate structure and fine
structure in the excitation function of resonances in the (p, γ) reaction [13]

In addition to analog resonances, a large number of non-analog resonances
are manifested in the excitation functions of nuclear reactions [3–8]. The
intensity of these resonances is often comparable to the intensity of analogues.
A direct proof of the non-statistical nature of non-analog resonances would be
the discovery of an intermediate structure [9] in the cross sections of nuclear

2



reactions. The simplest manifestation of the intermediate structure is the
presence of a maximum in the distribution of squares of the reduced resonance
widths depending on the excitation energy. Attempts to find such maxima in
the widths characteristics for non-analog resonances were unsuccessful [12].
Only the fine structure of analog states are clearly visible in the reduced
proton widths distribution. The same situation is observed for γ widths. When
distributing the strength of a resonance other than analog (for example, the
Gamow–Teller resonance), an intermediate structure must also be formed, just
as it is formed in the case of analogues. The difference is that this structure
should be more extended in energy (Fig. 1) than the structure of analogues,
and therefore it is more difficult to detect experimentally [5].

A more effective method for detecting intermediate structures turned out
to be the study of the amplitude ratios of the reduced widths for various
channels of the resonant nuclear reaction. In the statistical model, the ratios
of the reduced amplitudes are described by the Cauchy distribution [2, 4, 5].
The main assumption of the statistical model is the random distribution of the
reduced amplitudes. It follows from this that, in general, the sign of the ratio
of the given amplitudes also has a random character and both positive and
negative values of such a ratio are equally common. In this case, the average
value of the ratio of the reduced amplitudes of the reaction channels will
have zero value according to the statistical nature of the studied resonances.
Using this method, non-statistical effects were found in the study of proton
decay of non-analog resonances through various spin channels [4]. Further,
similar effects were found both in the analysis of the distributions of the
multipole mixture ratios δ for E2+M1 γ decays of non-analog resonances,
and in the analysis of the coefficients A2 of the angular distributions of
γ transitions [2, 5, 14–18]. In addition, correlations of the reduced probabilities
of B(M1) and B(E2) γ transitions for γ decay of non-analog resonances were
observed [2, 16, 18]. From the analysis of the distributions of the values of the
multipole mixture ratios δ for E2 +M1 γ decays, the fractions of a simple
non-statistical component in the wave functions of a number of non-analog
resonances were determined [2, 14].

In this paper, the angular distributions of γ radiation in the
58,60,62Ni(p, γ)59,61,63Cu reactions for the γ-decay of non-analog resonances
into the ground and a number of excited states of 59,61,63Cu nuclei are
investigated. The intermediate structure manifests itself in γ decay only into
a number of excited states of the final nucleus. Such a manifestation of the
intermediate structure is interpreted as a selective distribution of the strength
of non-statistical configurations (for example, satellites of the Gamow–Teller
resonance, antianalog states, etc.) over resonant states of a more complex
structure. Also the specific selection rules for γ decay of non-statistical
configurations (for example, connected with the Wigner spin–isospin SU(4)
symmetry) may be important. The manifestation of non-statistical effects for
non-analog resonances excited in reactions with protons is associated with
the presence of neutron excess in the nuclei under consideration. In reactions
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with neutrons, such non-statistical effects are not observed in nuclei with an
excess of neutrons [19, 20].

1. THE METHOD OF THE EXPERIMENT.
THE ANGULAR DISTRIBUTION OF GAMMA RADIATION

IN (p, γ) REACTIONS

The study of the angular distributions of γ transitions from resonances
in the reaction (p, γ) on even-even isotopes of nickel (58,60,62Ni) was carried
out at the Frank Laboratory of Neutron Physics of JINR. The protons were
accelerated using an electrostatic generator EG-5 with a maximum proton
energy of Ep = 5 MeV. The currents were about 10 μA. The search for
resonances [2, 5, 14] was carried out using a scintillation γ-ray detector based
on a NaI(Tl) crystal with a size of 100 × 100 mm. The NaI(Tl) detector
operated in the integral counting mode. The discrimination threshold was
chosen in such a way that the recorded γ-radiation energy was approximately
half of the excitation energy in a given nucleus E∗/2. In this case, the
registration of some low-energy background lines was excluded and, at
the same time, significant information about the decay of the resonance
was preserved. If the resonance decay occurred at the lower levels of the
nucleus, then the detector registered these γ transitions having energy
E > E∗/2. When the resonance decays into highly excited states of the
nucleus, γ transitions from these states to low-lying and ground states of the
nucleus were recorded.

To study resonances, it is necessary to choose the appropriate thickness
of the target. The energy losses in it should be less than the energy distance
between the resonances. The lower limit for the thickness of the target was
determined by the energy resolution of the accelerator. For nuclei with A ∼ 60
and Ep ∼ 3 MeV, when using a proton beam with a resolution of 1–2 keV,
targets with a thickness of 10–20 μg/cm2 turned out to be convenient.

After the resonance was detected, the spectra of its γ decay were measured
using a Ge(Li) detector with a volume of 40 cm3 and an energy resolution
of 7 keV for γ radiation with an energy of about 7 MeV. The γ-radiation
energies in the range up to 2.6 MeV were graded according to many internal
benchmarks. In the region of high excitation energies, the photopics and
peaks of the single and double escape of the γ transition with an energy of
6.129 MeV, which occurs in the reaction 19F(p,α)16O, served as convenient
reference points. The calibration also used the well-known γ transitions during
the decay of IAR. The Ge(Li) detector was positioned at angles of 0◦, 30◦,
60◦ and 90◦ to the direction of the incident proton beam. When measuring
the angular distributions of gamma quanta, the intensity of the proton beam
was determined using a current integrator and the integral intensity of the
γ quanta recorded by a NaI(Tl) crystal located at 90◦ to the beam. This
made it possible to normalize the intensity of γ radiation detected by the
Ge(Li) detector by both the number of protons passing through the target and
the number of γ quanta emitted from the target. A semiconductor detector
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registering elastically scattered protons was used as an additional monitor.
The probability of γ radiation being emitted in a nuclear reaction at an angle
θ to the direction of the incident particles is represented [21] in the form of a
Legendre polynomial decomposition:

W (θ) =
∑
k

Ak Pk(cos θ). (3)

If a zero-spin target is used in the reaction (p, γ) and the excited state is
an isolated resonance with a certain spin value, then the Ak coefficients for
direct γ radiation depend only on the spin of the resonance Jres, the spin of
the final state Jlev and on multipole mixture ratios δ [2, 5, 21]. Expressions for
the coefficients Ak for the case of Legendre polynomial expansion of degree
no higher than 4 are given below.

Jres = 1/2. All angular distributions are isotropic.
Jres = 3/2. A4 = 0 for all distributions.

Jlev = 1/2, A2 =
−0.5− 1.732δ + 0.5δ2

1+ δ2
;

Jlev = 3/2, A2 =
0.4− 1.55δ
1+ δ2

;

Jlev = 5/2, A2 =
−0.10+ 1.18δ − 0.357δ2

1+ δ2
;

Jlev = 7/2, A2 = 0.1428.

Jres = 5/2.

Jlev = 1/2, A2 = 0.571, A4 = −0.571;
Jlev = 3/2, A2 =

−0.4− 2.03δ + 0.204δ2

1+ δ2
, A4 =

0.65δ2

1+ δ2
;

(4)

Jlev = 5/2, A2 =
−0.457− 2.084δ − 0.204δ2

1+ δ2
, A4 =

−0.376δ2
1+ δ2

;

Jlev = 7/2, A2 =
−0.143+ 1.485δ − 0.347δ2

1+ δ2
, A4 =

0.109δ2

1+ δ2
.

Jres = 7/2.

Jlev = 3/2, A2 = 0.51, A4 = −0.367;
Jlev = 5/2, A2 =

−0.357− 2.06δ + 0.085δ2

1+ δ2
, A4 =

0.653δ2

1+ δ2
;

Jlev = 7/2, A2 =
0.476− 0.825δ − 0.272δ2

1+ δ2
, A4 =

−0.49δ2
1+ δ2

.

To compare the experimentally obtained angular distributions for
γ transitions from a given resonance, the spin of which is not known, with
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theoretical distributions under various assumptions about the spin of the
resonance, we can construct (Fig. 2) the function:

χ2 (δ) =
N∑
i=1

(Yi −Wi)
2

σ2i
, (5)

where Yi is the relative intensity of the γ transition at an angle θ; Wi is the
theoretical value of the probability of a γ transition at this angle; σi is the
error in determining the relative intensity.

Fig. 2. Analysis of the angular distribution (a) of the γ transition from the non-analog
resonance to the level with the excitation energy Elev = 475 keV, Jlev = 1/2−.
The proton energy in the 60Ni(p, γ)61Cu reaction was Ep = 2442 keV, the resonance
excitation energy in the 61Cu nucleus was E∗ = 7193 keV. In addition to the main
minimum χ2 corresponding (b) to the spin of the resonance Jres = 3/2, the figure
also shows the minima χ2 corresponding to the spins of the resonance Jres = 1/2 and
Jres = 5/2. The analysis allows us to attribute to the resonance the value of the spin

Jres = 3/2

The minimum value of χ2 corresponds [22–24] to the best set of values
of the resonance spin and a mixture of multipoles δ. The angular distribution
for a single transition sometimes does not allow us to uniquely determine
the spin of the resonance. A joint analysis of the angular distributions of
several transitions from a given resonance can significantly facilitate the
determination of the resonance spin. The value of δ is related to the coefficients
A2 by a quadratic equation, the solution of which yields two values of δ. One
of them is small and corresponds to the main contribution of M1-multipole to
the intensity of the γ transition. The second value is large and refers mainly
to the E2 multipole. Meanwhile, it has been experimentally established [5, 8]
that strong M1 transitions with an admixture of E2, exceeding 10% only
in rare cases, are characteristic of the gamma decay of resonances in the
nuclei of the fp shell. A large value of δ can be discarded [5], since its use
leads to unreasonably large values of the reduced probabilities B(E2) for the
studied region of nuclei. Thus, from the analysis of the angular distributions
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of γ radiation, we obtain not only the value of the resonance spin, but also
the value of δ with a certain sign (Fig. 2). It is not only the sign of δ itself
that makes sense, but also the relative sign of δ for the γ decays of various
resonances to different levels of the nuclei under study.

2. DISTRIBUTION OF A2 COEFFICIENTS
AND NON-STATISTICAL EFFECTS

The values of the A2 coefficients and the corresponding distribution
functions are shown in Tables 1–3 and Figures 3–12.

T a b l e 1. Angular distribution coefficients A2 in 58Ni(p, γ)59Cu reaction,
Ep = 2120−3460 keV, Eres = 5520−6815 keV, Jπ

res = 3/2− [5, 25]

59Cu
Elev, keV, 2265, 2324, 491, 912, 1987, 2707,

Jlev 0, 3/2− 3/2− 3/2− 1/2− 5/2− 5/2− 5/2−

Ep, keV,
Jres 3/2−

A2 A2 A2 A2 A2 A2 A2

2161 –0.13(10)

2210 –0.52(10)

2338 –0.20(13) –0.44(11) –0.55(12)

2512 –0.25(9) –0.31(40)

2574 –0.49(6) –0.40(23)

2668 –0.41(5) –0.45(34) –0.69(11) 0.02(38)

2704 –0.66(11)

2721 –0.49(5) –0.39(20)

2756 0.05(13) –0.39(18)

2831 0.22(12) –0.64(7) –0.08(11)

2869 –0.63(9) –0.46(7)

2938 0.10(8) –0.13(25) –0.64(10) –0.41(11) –0.39(10)

2960 –0.54(10) –0.43(19) –0.55(14)

2978 –0.51(26) –0.17(19) –0.60(26) –0.48(12)

2999 0.07(8) –0.73(5) –0.30(14)

3051 –0.39(7) –0.33(15)

3062 –0.33(20) –0.24(23) –0.47(14) 0.03(20) –0.32(25)

3106 –0.74(11) –0.58(17)

3453 0.38(24) –0.89(12) –0.69(21)

We obtain an expression for the distribution of A2 coefficients in the
statistical model. We know the relationship (4) between the coefficient A2 and
the value of the mixture of multipoles δ. In the statistical model, the matrix
elements of the γ transitions have a normal distribution with an average value
of zero and a standard deviation of σ. In this case, the values of the mixture
of multipoles δ for the γ decay of the studied resonances to a fixed level are
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Fig. 3. Distribution of the angular correlation coefficients A2 for γ decay
of 3/2− non-analog resonances to the g. s. (3/2−) of 59Cu. 58Ni(p, γ)59Cu
reaction, Ep = 2120−3460 keV, Eres = 5520−6815 keV. Fit-normal distribution

I

σ
√
2π

exp

(
−1/2

(
A2 − 〈A2〉

σ

)2
)
, 〈A2〉 = −0.23, σ = 0.31 and I = 1.7

Fig. 4. Distribution of the A2 coefficients for γ decay of 3/2− non-analog resonances
to the 491 keV (1/2−) level in 59Cu. 58Ni(p, γ)59Cu reaction, Ep = 2120−3460 keV,
Eres = 5520−6815 keV. Fit-normal distribution with parameters 〈A2〉 = −0.60, σ =

= 0.15 and I = 1.3

described by the Cauchy distribution [2, 5, 15]:

P (δ) =
a

π(a2 + δ2)
, (6)

where a = σ(E2)/σ(M1). Estimates [5] values of 1/a for the γ transitions
Jres = 3/2− → g. s. (3/2−) gave values of 1/a = 1.4 for 59Cu, 1/a = 1.9 for
61Cu and 1/a = 1.8 for 63Cu.
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Ta b l e 2. Angular distribution coefficients A2 in 60Ni(p, γ)61Cu reaction,
Ep = 1451−2455 keV, Eres = 6200−7205 keV [5, 15, 25]

61Cu
Elev , keV, 1663, 2357, 2473, 476, 2089, 970, 1395,

Jlev 0, 3/2− 3/2− 3/2− 3/2− 1/2− 5/2− 5/2− 5/2−

Ep, keV,
Jres 3/2−

A2 A2 A2 A2 A2 A2 A2 A2

1491 0.39(15)

1515 0.22(11)

1577 –0.35(9) –0.37(12) –0.44(8)

1588, IAR,
p3/2

0.18(5) –0.15(21) 0.12(9) –0.59(22) –0.26(14) –0.31(7)

1599, IAR,
p3/2

0.10(6) –0.29(9) –0.80(13) –0.50(8) –0.30(8) –0.25(6)

1605, IAR,
p3/2

0.22(6) 0.09(18) –0.45(2) –0.13(11) –0.12(6)

1620, IAR,
p3/2

0.14(2) 0.64(13) –0.50(16) –0.09(26) –0.12(14)

1649 –0.36(15)

1694 0.29(4) 0.14(14) –0.52(7) –0.19(10)

1698 0.26(13)

1734 –0.31(6) –0.13(22) –0.58(17) 0.06(17) –0.04(19)

1764 0.09(5) 0.26(11) 0.23(13) –0.27(10)

1770 0.37(4) –0.09(9) –0.62(13)

1793 0.05(12) –0.25(13)

1815 –0.14(11)

1835 0.10(8) 0.22(13)

1850 –0.30(3)

1931 0.12(10) –0.1(17) 0.1(26) –0.39(9) 0.04(32) –0.11(17)

1944 –0.20(17) –0.64(35) –0.14(70) 0.42(19)

1972 –0.52(10) –0.12(26) 0.16(13) 0.54(22)

2150 –0.45(11) –0.37(19)

2173 –0.15(10) –0.59(14) –0.5(2) 0.05(14)

2242 –0.21(10) –0.28(15) –0.38(17) 0.16(13)

2253 0.12(11) –0.55(15) –0.20(12)

2270 –0.45(11) –0.07(13)

2283 –0.23(9) –0.29(12) –0.29(18)

2299 –0.34(10) –0.29(4) 0.05(10) –0.39(16)

2359 –0.30(10) –0.19(15)

2442 –0.42(10) –0.48(13) –0.64(14) 0.17(13) –0.42(16)

2455 0.03(9) –0.71(12) –0.04(13) –0.63(12)

The type of Cauchy distribution for different values of parameter a is
shown in Fig. 13. From formula (6) it follows that the average value 〈δ〉 = 0
and the distribution P (δ) is symmetric with respect to δ = 0; i.e. positive and
negative values of δ are equally common (Fig. 13).
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Ta b l e 3. Angular distribution coefficients A2 in 62Ni(p, γ)63Cu reaction,
Ep = 1943−3175 keV, Eres = 8040−9250 keV [5, 25]

63Cu Elev, keV,
Jlev 0, 3/2−

1547, 3/2− 668, 1/2− 962, 5/2− 1410, 5/2−

Ep, keV,
Jres 3/2−

A2 A2 A2 A2 A2

1943 –0.54(18) 0.73(18) –0.10(10)
1953 –0.38(13) 0.22(20) –0.24(15) 0.06(12)
1958 0.003(90) 0.13(30)
1976 0.014(70) –0.38(15) 0.58(20)
2022 0.31(13) 0.34(17)
2085 –0.11(8) 0.22(17) 0.38(19) 0.22(13) 0.08(11)
2113 –0.21(10) 0.08(3) –0.64(14) 0.17(34) 0.25(15)
2169 –0.59(15) 0.16(15) –0.46(13) –0.11(9)
2231 –0.47(9) 0.045(144)
2238 –0.25(10) –0.34(12) –0.38(17) 0.04(19) 0.11(19)
2251 –0.43(10)
2268 –0.34(9)
2275 0.063(102) –0.10(16)
2285 –0.29(19)
2512 –0.37(11) –0.25(18) –0.24(21)
2584 –0.34(16) –0.16(32) 0.01(22) –0.01(29)
2613 –0.54(11) –0.10(26) –0.041(21)
2620 –0.42(9) 0.07(22) –0.23(18)
2635 –0.29(11) 0.07(20)
2642 –0.36(10) –0.70(15)
2675 –0.49(13) –0.71(18) –0.45(12)
2682 –0.53(9)
2690 –0.21(19) –0.44(18)
2696 –0.35(12) –0.66(18) –0.47(14) –0.15(18)
2710 –0.63(12) –0.38(15)
2722 –0.70(10) –0.53(25)
2730 –0.67(10) –0.44(16)
2765 –0.16(9) –0.27(12)
2783 0.13(11) 0.16(23)
2811 –0.28(10) –0.24(31) 0.19(16)
2818 –0.22(10) 0.57(35) 0.00(16)
2833 –0.54(13) –0.55(14)
2839 –0.41(9) –0.20(29) –0.24(26)
2865 –0.60(12) –0.59(16)
2880 0.05(10) –0.13(23)
2933 –0.76(30) –0.39(24) –0.29(18)
2951 0.10(29)
3154 –0.76(12)
3185 –0.04(23)
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Fig. 5. Distribution of the A2 coefficients for γ decay of 3/2− non-analog resonances
to the g. s. (3/2−) of 61Cu. 60Ni(p, γ)61Cu reaction, Ep = 1451−2455 keV, Eres =
= 6200−7205 keV. Fit-normal distribution with parameters 〈A2〉 = −0.10, σ = 0.28

and I = 2.72

Fig. 6. Distribution of the angular correlation coefficients A2 for γ decay of
3/2− non-analog resonances to the 1663 keV (3/2−) level in 61Cu. 60Ni(p, γ)61Cu
reaction, Ep = 1451−2455 keV, Eres = 6200−7205 keV. Fit-normal distribution with

parameters 〈A2〉 = −0.21, σ = 0.26 and I = 1.20

The density of the distribution R(A2) of the A2 coefficients is related to
the distribution (6) P (δ) as follows [22–24]:

R (A2) = P (δ1 (A2))

∣∣∣∣ d (δ1)d (A2)

∣∣∣∣+ P (δ2 (A2))

∣∣∣∣ d (δ2)d (A2)

∣∣∣∣ , (7)

where δ1(A2) and δ2(A2) are two solutions of a quadratic equation of type (4)
connecting the quantities A2 and δ. For the case Jres = Jlev = 3/2, the graph
of the function A2(arctan (δ)) is shown in Fig. 14. In this case, the values of
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Fig. 7. Distribution of the angular correlation coefficients A2 for γ decay of
3/2− non-analog resonances to the 476 keV (1/2−) level in 61Cu. 60Ni(p, γ)61Cu
reaction, Ep = 1451−2455 keV, Eres = 6200−7205 keV. Fit-normal distribution with

parameters 〈A2〉 = −0.41, σ = 0.24 and I = 1.50

Fig. 8. Distribution of the angular correlation coefficients A2 for γ decay
of 3/2− non-analog resonances to the g. s. (3/2−) of 63Cu. 62Ni(p, γ)63Cu
reaction, Ep = 1943−3175 keV, Eres = 8040−9250 keV. Fit-normal distribution with

parameters 〈A2〉 = −0.31, σ = 0.25 and I = 4.09

A2 have, in accordance with (4), both upper (0.99) and lower (–0.6) limits.
The specified limits correspond, taking into account measurement errors, to
the experimental data given in Tables 1–3.

Taking into account the type of distribution function Φ = arctan (δ)
(Fig. 13) and knowing the type (6) of the distribution P (δ) for the statistical
model, it is possible to determine the characteristic features of the function
R(A2). For all values of parameter a, the distribution function of the value
Φ = arctan (δ) in the statistical model is symmetric with respect to Φ = 0.
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Fig. 9. Distribution of the angular correlation coefficients A2 for γ decay of
3/2− non-analog resonances to the 1547 keV (3/2−) level in 63Cu. 62Ni(p, γ)63Cu
reaction, Ep = 1943−3175 keV, Eres = 8040−9250 keV. Fit-normal distribution with

parameters 〈A2〉 = −0.091, σ = 0.39 and I = 1.9

Fig. 10. Distribution of the angular correlation coefficients A2 for γ decay of
3/2− non-analog resonances to the 668 keV (1/2−) level in 63Cu. 62Ni(p, γ)63Cu
reaction, Ep = 1943−3175 keV, Eres = 8040−9250 keV. Fit-normal distribution with

parameters 〈A2〉 = −0.32, σ = 0.28 and I = 2.05

In the case a = 1, the distribution R(A2) in the statistical model has the
following form [2, 17]:

R (A2) ∼ 1

2π
√
0.6−A2(A2 − 0.4)

; (8)

that is, the function R(A2) has a minimum at A2 ∼ 0.2 and further increases
with both decreasing and increasing (Fig. 15) value of A2.

At the γ decay of the studied non-analog resonances in the nuclei of
59,61,63Cu, the mentioned growth is not observed and the type of the R(A2)
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Fig. 11. Distribution of the angular correlation coefficients A2 for γ decay of
3/2− non-analog resonances to the 962 keV (5/2−) level in 63Cu. 62Ni(p, γ)63Cu
reaction, Ep = 1943−3175 keV, Eres = 8040−9250 keV. Fit-normal distribution with

parameters 〈A2〉 = 0.05, σ = 0.26 and I = 1.4

Fig. 12. Distribution of the angular correlation coefficients A2 for γ decay of
3/2− non-analog resonances to the 1410 keV (5/2−) level in 63Cu. 62Ni(p, γ)63Cu
reaction, Ep = 1943−3175 keV, Eres = 8040−9250 keV. Fit-normal distribution with

parameters 〈A2〉 = −0.056, σ = 0.24 and I = 0.8

function (Fig. 15) differs qualitatively from the experimental data (Figs. 4–12,
Tables 1–3), which indicates a significant contribution of the non-statistical
component to the wave functions of the studied resonances [2, 17, 18].The
difference from the statistical model is even more pronounced in the
distribution of the values of the mixture of multipoles δ, which will be
discussed in Section 4. Nevertheless, it should be noted that in some cases,
when the gamma decay of the non-statistical component to any level is
inhibited, the admixture of the statistical component in the resonance wave
function can play a significant role [2, 14].
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Fig. 13. The distribution function of
the value Φ = arctan (δ), the value δ
is distributed in accordance with (6)
(Cauchy distribution). The numbers on
the curves correspond to the value of
parameter a. For a = 1, the corresponding
distribution (or the distribution of the
value Φ = arctan (δ/a)) is a straight

line [4, 5]

Fig. 14. Function A2(arctan (δ)) in the case of
Jres = Jlev = 3/2

Fig. 15. The distribution function
R(A2) of the coefficients of the
angular distribution of γ radiation
A2 at the decay of resonances
Jres = Jlev = 3/2− in the statis-
tical model at the value of parame-

ter (6) of the model a = 1
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3. CORRELATIONS OF THE REDUCED PROBABILITIES B(E2)
AND B(M1) OF GAMMA RADIATION

In the statistical model, there are no correlations during decay along
various reaction channels, including various spin channels [2, 4]. In the case
of (p, γ) reactions, the statistical model should lack [2, 16, 18] correlations for
the reduced probabilities of B(E2) and B(M1) γ transitions (γ decay along
various spin channels). Knowing the experimental values of the quantities of
the mixture of multipoles δ, the angular distributions of γ radiation W (θ),
energy Eγ and intensity Iγ of gamma transitions, it is possible to determine
the values xi and yi:

xi =
Iγiδ

2
i k

2
p

(1+ δ2i )E
5
γiWi(θ)εγ(i)

,

yi =
Iγik

2
p

(1+ δ2i )E
3
γiWi(θ)εγ(i)

,

(9)

where kp is the proton wave vector and εγ(i) is the efficiency of registration
of γ radiation with energy Eγi. Next, the correlation coefficient is determined:

ρ (x, y) =

∑
i

(xi − 〈x〉)(yi − 〈y〉)
[∑

i

(xi − 〈x〉)2∑
i

(yi − 〈y〉)2
]1/2 ε, (10)

where 〈x〉 and 〈y〉 are the corresponding average values, and ε is the
correction (10) associated with the errors in determining the values of xi

and yi:

ε ≈

⎧⎪⎨
⎪⎩1−

1
2

⎡
⎢⎣

∑
i

(Δxi)
2

∑
i

(xi − 〈x〉)2
+

∑
i

(Δyi)
2

∑
i

(yi − 〈y〉)2

⎤
⎥⎦
⎫⎪⎬
⎪⎭ . (11)

Under certain experimental conditions [16], it turns out that the equality
ρ(B(E2),B(M1)) = ρ(x, y) is fulfilled with good accuracy and it is possible
to determine the correlation coefficient ρ(B(E2),B(M1)) without measuring
the values of B(E2) themselves and B(M1). The data analyzed in the work
from experimental data for the γ decay of the i resonance were obtained under
the following experimental conditions [16]: ΔEp � Γ and Γγ � Γp, where Γ
is the full width of the resonance, Γp is the width along the input channel,
Γγ is the width along the output channel of the reaction, and ΔEp is the
energy resolution for the proton beam. During the experiments [5, 16], the
above quantities had the following values: ΔEp

∼= 2−3 keV, Γγ ∼ 10−2 eV,
Γp ∼ 10−100 eV, which allows the equality ρ(B(E2),B(M1)) = ρ(x, y) to
determine the desired correlation coefficient of the reduced probabilities of
transitions along various spin channels (in this case E2 andM1 γ transitions).
The method discussed above, proposed in [16], allows us to determine the
correlation coefficients in experiments using a “thin” (10–20 μg/cm2) and the
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data on relative efficiency [26] of detecting γ radiation. These advantages
make it possible to identify and determine the values of the correlation
coefficients more accurately, compared with the “thick” (up to 500 μg/cm2)
target method [13].

The values of ρ(B(E2),B(M1)) were determined by this
method [2, 16, 18] for the γ decay of non-analog resonances with
Jres = 3/2 to the ground states of Cu nuclei (Jlev = 3/2−) in reactions
58,60,62Ni(p, γ)59,61,63Cu. The excitation energies of non-analog resonances in
the 63Cu nucleus ranged from 8.04 to 9.25 MeV; in the 61Cu nucleus, from
6.2 to 7.2 MeV; in the 59Cu nucleus, from 5.5 to 6.8 MeV. In all cases, it
turned out that the correlation coefficients were the same within the error
limits and amounted to ρ(B(E2),B(M1)) = 0.7 ± 0.1. The presence of a
correlation coefficient obviously different from zero (ρ 	= 0) confirms the
non-statistical nature of the studied non-analog resonances excited in (p, γ)
reactions.

4. DISTRIBUTIONS OF E2/M1 GAMMA RADIATION MULTIPOLE
MIXTURES RATIOS AND NON-STATISTICAL EFFECTS

For γ radiation with mixed multipolarities (E2 + M1), the multipole
mixing ratio δ is defined as the ratio of the reduced matrix elements
corresponding to E2 and M1 γ transitions between initial (Ii) and final (If )
states [27]:

δ =
〈If ||O(E2)||Ii〉
〈If ||O(M1)||Ii〉 , (12)

Fig. 16. E2/M1 multipole mixture δ for γ decay of 3/2− non-analog resonances
to the g. s. (3/2−) of 59Cu. 58Ni(p, γ)59Cu reaction, Ep = 2120−3460 keV, Eres =
= 5520−6815 keV. Fit-normal distribution with 〈δ〉 = 0.45625, σ = 0.4458 and I =
= 3.20. For 63Cu, estimates [5] give the value of the parameter 1/a = σ(M1)/σ(E2) =

= 1.4. The dotted line corresponds to the statistical model (Cauchy distribution)
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Ta b l e 4. E2/M1 multipole mixture δ in 59Cu, Ep = 2120−3460 keV,
Eres = 5520−6815 keV, Jπ

res = 3/2− [5, 15, 25]

59Cu
Elev , keV, 2265, 2324, 491, 912, 1987, 2707, 2927,

Jlev 0, 3/2− 3/2− 3/2− 1/2− 5/2− 5/2− 5/2− 5/2−

Ep, keV,
Jres 3/2−

δ δ δ δ δ δ δ δ

2161 0.35(8)

2210 0.81+44
−19

2338 0.41(12) 0.67+33
−11 −0.40+12

−17

2512 0.45(9) 0.51+75
−31

2574 0.77(12) 0.62+58
−24

2668 0.63(6) 0.70+59
−36 0.12(9) 0.11+79

−34

2704 0.10(8)

2721 0.76+13
−8 –0.06(11)

2756 0.23(9) –0.06(10)

2831 0.11(8) 0.08(5) 0.02+4
−9

2869 1.29+0
−39 –0.02(4)

2938 0.19(5) 0.35(17) 0.09(7) –0.28(11) –0.25(10) –0.18(9)

2960 0.88+41
−20 0.67+53

−22 0.03(9)

2978 0.80+49
−35 0.38+32

−20 0.06+21
−14 −0.34+11

−14

2999 0.21(5) 0.15(4) –0.17(13)

3051 –0.61(9) –0.20(14)

3062 0.54+45
−19 0.45+27

−19 –0.02(7) 0.12+21
−18 –0.19(23)

3106 0.16(9) –0.45(9)

3453 0.02+14
−25 0.30+25

−12 0.61+27
−44 −0.55+20

−9

Fig. 17. E2/M1 multipole mixture δ for γ decay of 3/2− non-analog resonances
to the 491 keV (1/2−) level in 59Cu. 58Ni(p, γ)59Cu reaction, Ep = 2120−3460 keV,
Eres = 5520−6815 keV. Fit-normal distribution with 〈δ〉 = 0.071, σ = 0.10 and

I = 0.73
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where E2 and M1 are the two mixed multipolarities, O(E2) and O(M1)
are the electromagnetic operators for electric quadrupole (E2) and magnetic
dipole (M1) type of γ transition. For δ2, one can write

δ2 =
Γγ(E2)
Γγ(M1)

, (13)

where Γγ(E2) and Γγ(M1) are the probabilities of γ decay via each of the
multipolarities.

Fig. 18. E2/M1 multipole mixture δ for γ decay of 3/2− non-analog resonances
to the g. s. (3/2−) of 61Cu. 60Ni(p, γ)61Cu reaction, Ep = 1451−2455 keV, Eres =
= 6200−7200 keV. Fit-normal distribution with 〈δ〉 = 0.339, σ = 0.232 and I = 3.19

Fig. 19. E2/M1 multipole mixture δ for γ decay of 3/2− non-analog resonances to
the 1395 keV (5/2−) level in 61Cu. 60Ni(p, γ)61Cu reaction, Ep = 1451−2455 keV,
Eres = 6200−7200 keV. Fit-normal distribution with 〈δ〉 = 0.00416, σ = 0.40 and

I = 1.275
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Ta b l e 5. E2/M1 multipole mixture δ in 61Cu, Ep = 1451−2455 keV,
Eres = 6200−7205 keV [5, 15, 25]

61Cu
Elev, keV, 1663, 2357, 476, 2089, 970, 1395,

Jres 0, 3/2− 3/2− 3/2− 1/2− 5/2− 5/2− 5/2−

Ep, keV,
Jres 3/2−

δ δ δ δ δ δ δ

1491 0.00+10−9

1515 0.12+7−8

1577 0.56(10) 0.58+18−12 −0.03+4−6

1588, IAR,
p3/2

0.14(3) 0.37+20−15 0.05+17−13 –0.13(11) –0.17(7)

1599, IAR,
p3/2

0.41+3−5 0.20+14−9 0.00(4) –0.17(7) –0.12(4)

1605, IAR,
p3/2

0.11(4) –0.03(1) –0.03(10) –0.02(5)

1620, IAR,
p3/2

0.16(1) –0.17(10) 0.00(10) 0.01(25) –0.02(10)

1649 0.57+23−15

1694 0.07(2) 0.16+10−9 0.01(4) –0.07(8)

1698 0.09(9)

1734 0.51(6) 0.35+22−15 0.04+12−9 0.17+16−16 0.05(19)

1764 0.19(4) 0.08+8−6 −0.39+6−9 –0.14(8)

1770 0.02(3) 0.32(7) 0.07+9−8

1793 0.23+8−10 –0.14(7)

1815 0.36(9)
1835 0.19(5) 0.12(8)
1850 0.51(3)

1931 0.18(7) 0.25(12) 0.19+18−10 –0.06(5) –0.29(18) –0.01(15)

1944 0.41+18−13 1.25+9−73 –0.19(44) 0.8+0−5

1972 0.83+16−18 0.25+19−13 0.8+0−3

2150 0.70+25−15 –0.07(10)

2173 0.37(9) 0.05(9) 0.00(12) 0.14(13)

2242 0.42+11−8 0.49+17−14 –0.07(9) 0.15+19−13

2253 0.18(7) 0.03(9) –0.08(11)

2270 0.69+26−14 0.03(12)

2283 0.44(9) 0.50+14−10 –0.11(10)

2299 0.55(12) 0.14(10) –0.25(15)
2359 0.51(11) –0.17(8)

2442 0.65+21−13 0.75+54−19 0.08+11−8 –0.07(11) −0.28+14−17

2455 0.24(8) 0.14(10) 0.05(12) −0.52+15−21
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Fig. 20. E2/M1 multipole mixture δ for γ decay of 3/2− non-analog resonances to the
1663 keV (3/2−) level in 61Cu. 60Ni(p, γ)61Cu reaction, Ep = 1451−2455 keV, Eres =
= 6200−7200 keV. Fit-normal distribution with 〈δ〉 = 0.373, σ = 0.22 and I = 1.00

Fig. 21. E2/M1 multipole mixture δ for γ decay of 3/2− non-analog resonances
to the 476 keV (1/2−) level in 61Cu. 60Ni(p, γ)61Cu reaction, Ep = 1451−2455 keV,
Eres = 6200−7200 keV. Fit-normal distribution with 〈δ〉 = −0.031, σ = 0.144 and

I = 1.6

Experimental data on the values of δ obtained in the study of γ decay of
non-analog resonances in 58,60,62Ni(p, γ)59,61,63Cu reaction are given in Tables
4–6. The distribution functions of the δ values are shown in Figs. 16–26.

The Cauchy distribution is symmetric with respect to δ = 0 and is shown
in Fig. 13 for different values of parameter a. For the value Φ = arctan (δ/a)
it is a straight line in the range from −90◦ to +90◦. The radical difference
between the experimental values of δ and the Cauchy distribution is obvious.

For 61Cu, estimates [5] give the value of the parameter
1
a
=

σ(M1)
σ(E2)

= 1.9.

It is obvious that the distribution of experimental values δ for the reaction
60Ni(p, γ)61Cu differs significantly from the statistical model.
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Ta b l e 6. E2/M1 multipole mixture δ in 63Cu, Ep = 1943−3175 keV,
Eres = 8040−9250 keV [5, 25]

63Cu Elev, keV,
Jres 0, 3/2−

1547, 3/2− 668, 1/2− 962, 5/2− 1410, 5/2−

Ep, keV,
Jres 3/2−

δ δ δ δ δ

1943 0.89+40−31 −0.25+15−10 –0.22(6)

1953 0.60+20−14 0.11+15−13 –0.14(8) 0.15(12)

1958 0.26(6) 0.22+58−28

1976 0.25(5) 0.60+24−16 0.80(19)

2022 0.06(9) 0.57+23−31

2085 0.34(6) 0.12(11) −0.49+12−15 0.32+28−14 0.16+13−10

2113 0.42(9) 0.20(2) 0.09(10) 0.26+54−32 0.37+43−18

2169 0.98(30) 0.15(11) –0.03(7) –0.01(8)

2231 0.72+22−13 0.13+16−13

2238 0.46(10) 0.55+16−10 –0.07(10) 0.13+21−17 0.19+27−20

2251 0.69+18−9

2268 0.55(10)
2275 0.21(7) 0.00(14)

2285 0.50+15−12

2512 0.50+15−12 0.25+20−14 –0.14(11)

2584 0.55+23−16 0.37+37−22 –0.28(12) 0.03+35−20

2613 0.89+40−19 0.33+24−18 0.05+21−18

2620 0.65+15−11 0.21(14) –0.11(16)

2635 0.49+13−10 0.21(14)

2642 0.57+14−10 0.13(11)

2675 0.76+59−19 1.15(17) –0.03(7)

2682 0.85+40−17

2690 0.42+10−8 –0.04(8)

2696 0.56+17−12 0.10(12) −0.33+12−16 –0.04(15)
2710 1.05(20) –0.07(8)

2722 1.29 −0.39+24−41

2730 1.25(5) –0.04(9)

2765 0.38(10) −0.13+5−8

2783 0.17(9) –0.35(15)

2811 0.48(9) 0.40+50−20 0.30+30−15
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Table 6 (continued)

63Cu Elev, keV,
Jres 0, 3/2−

1547, 3/2− 668, 1/2− 962, 5/2− 1410, 5/2−

Ep, keV,
Jres 3/2−

δ δ δ δ δ

2818 0.43(9) 0.80(37) 0.09(10)

2833 0.87+42−20 0.03(12)

2839 0.63(13) 0.41+35−20 –0.14(14)

2865 1.07(23) 0.80(36)
2880 0.30(10) 0.45(20)

2933 0.87(38) −0.06+20−14 −0.16+16−20

2951 0.17+23−17

3154 1.29

3185 0.29+19−16

Fig. 22. E2/M1 multipole mixture δ for γ decay of 3/2− non-analog resonances
to the 970 keV (5/2−) level in 61Cu. 60Ni(p, γ)61Cu reaction, Ep = 1451−2455 keV,
Eres = 6200−7200 keV. Fit-normal distribution with 〈δ〉 = 0.032, σ = 0.12 and I = 0.7

5. DISCUSSION

At nuclear excitation energies above 3–5 MeV, a large number of other,
non-analog states and resonances are observed. They have two possible
interpretations: statistical or non-statistical. In the first case it is assumed
that they are statistical states, while in the second it is assumed that they
are structures like the giant resonance, related to a distribution of simple
excitations. In the second case, the physical interpretation of the experiments
must differ from that of the statistical approach. In all cases, for γ decay
of non-analog resonances from Iπ = 3/2− to the ground state of 59,61,63Cu
(Iπ = 3/2−) nuclei, a pronounced asymmetry with respect to the zero value
in the distributions of δ values was observed (Figs. 16, 18, 23). This fact
clearly indicates a significant contribution of the non-statistical component to
the wave function of the considered non-analog resonances. However, since
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Fig. 23. E2/M1 multipole mixture δ for γ decay of 3/2− non-analog resonances
to the g. s. (3/2−) of 63Cu. 62Ni(p, γ)63Cu reaction, Ep = 1943−3175 keV,
Eres = 8040−9250 keV. Fit-normal distribution with 〈δ〉 = 0.603, σ = 0.32 and
I = 4.0533. The type of Cauchy distribution is shown in Fig. 13. For 63Cu, estimates [5]
give the value of the parameter 1/a = σ(M1)/σ(E2) = 1.8. The distribution of
experimental values of δ for the reaction 62Ni(p, γ)63Cu is radically different from the

Cauchy distribution

Fig. 24. E2/M1 multipole mixture δ for γ decay of 3/2− non-analog resonances to the
level with excitation energy 1547 keV (3/2−) in 63Cu. 62Ni(p, γ)63Cu reaction, Ep =
= 1943−3175 keV, Eres = 8040−9250 keV. Fit-normal distribution with 〈δ〉 = 0.41,

σ = 0.32 and I = 2.01

in the second case the resonance wave function may contain an admixture
of the statistical component (2), this admixture leads to fluctuations in the
distribution of both the angular distribution coefficients and the values of the
mixture of multipoles δ (Fig. 27). These fluctuations are especially clearly
manifested in the graphs of the dependence of the experimental values of δ
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Fig. 25. E2/M1 multipole mixture δ for γ decay of 3/2− non-analog resonanсes to
the level with excitation energy 668 keV (1/2−) in 63Cu. Fit-normal distribution with

〈δ〉 = −0.098, σ = 0.15 and I = 1.9

Fig. 26. E2/M1 multipole mixture δ for γ decay of 3/2− non-analog resonances to the
level with excitation energy 962 keV (5/2−) in 63Cu. 62Ni(p, γ)63Cu reaction, Ep =
= 1943−3175 keV, Eres = 8040−9250 keV. Fit-normal distribution with 〈δ〉 = 0.16,

σ = 0.28 and I = 1.4

on the resonance energy (or the energy of the incoming proton, Fig. 27). By
data on the magnitude of these fluctuations, it is possible [2, 14] to estimate
the fraction of the non-statistical component in the resonance wave function.
It turned out that for the considered non-analog resonances in the 59,61,63Cu,
the fraction of the non-statistical component is about several tens of percent
(from 20 to 50% [2, 14, 18]).

The experiments investigated the strongest γ transitions in the decay of
non-analog resonances. In cases where γ decay is inhibited due to a non-
statistical component [2, 14], the statistical component may make a dominant
contribution to the probability of a γ transition. Such γ transitions for the
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Fig. 27. Experimental dependence of the multipole mixing ratio δ on the proton energy
Ep in the 62Ni(p, γ)63Cu reaction [18]

studied resonances should be weaker in intensity, and for weak γ transitions,
the statistical nature of the distribution of angular correlation coefficients and
the values of a multipole mixing ratio δ is quite possible.

At the same time, resonances excited in reactions with neutrons, as a
rule, are well described by the statistical model [19, 20]. Such a difference
between the properties of neutron and proton resonances can be explained
by the existence of an excess of neutrons. Indeed, by irradiating nuclei with
protons with (N − Z) > 0, the simplest configurations of the [(πp)⊗ (νh)]1+
type can be excited. These configurations in the studied energy range can
be excited with a noticeable cross section only in the presence of an excess
of neutrons in the nucleus, i.e., at (N − Z) > 0. On the other hand, non-
statistical effects indicate the presence of a certain type of symmetry of
the nuclear interaction. Non-statistical effects caused by proton-particle and
neutron hole configurations coupled into spin 1+, i.e., [(πp) ⊗ (νh)]1+, can
be caused by [2, 28] spin–isospin SU(4) symmetry of the nuclear interaction,
and with an increase in the neutron excess, the effects of SU(4) symmetries
can increase [2]. In reactions of 58,60,62Ni(p, γ)59,61,63Cu, non-statistical effects
can be caused by configurations of the type

{
[(πp)⊗ (νh)]1+ ⊗ (πp)J

}
3/2

in wave functions of resonances [2, 28]. Thus, the analysis of the γ decay
of non-analog resonances in 58,60,62Ni(p, γ)59,61,63Cu reactions indicates the
presence of partial SU(4) symmetry of the nuclear interaction. Since the
non-statistical effects for non-analog resonances are less pronounced than for
analog resonances, the spin–isospin SU(4) symmetry is, as expected, more
approximate than isospin symmetry of the nuclear interaction.
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CONCLUSIONS

Experimental data are presented that clearly indicate the manifestation of
non-statistical effects in the γ decay of non-analog resonances of a compound
nucleus in reactions with protons. Non-statistical effects are associated with
elementary modes of nuclear excitations, for example, a proton particle and a
neutron hole coupled into spin 1+, i.e., [(πp)⊗ (νh)]1+ and their corresponding
configurations of the type {[(πp)⊗ (νh)]1+ ⊗ (πp)J}3/2. Spreading of the
elementary modes of nuclear excitations by the levels of the compound nuclei
is responsible for non-statistical effects. If the fraction of such elementary
excitations is enough high in the wave function of non-analog resonance, it
will lead to the pronounced non-statistical effects. In this case, the physical
interpretation of the experiments should differ from the statistical approach.

The considered set of experimental data allows us to conclude that
the observed non-statistical effects are associated with the presence of an
intermediate structure due to the distribution of the simple excitation among
the levels of the compound nucleus [2, 5]. In non-analog proton resonances,
which are observed in the (p, γ) reaction in medium-mass nuclei (A ∼ 60) at
proton energies of 1–5 MeV, the intermediate structure is manifested in the
following experimental facts:

1. The signs of multipole mixing ratio δ of γ transitions from a number of
resonances to the same nuclei levels turn out to be the same. The distributions
of the multipole mixing ratio δ values are different from the predictions of the
statistical model.

2. The values of the reduced probabilities B(E2) and B(M1) of γ
transitions are correlated.

3. The distribution of the values of the angular correlations coefficients A2
is different from the predictions of the statistical model.
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