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теоретических исследований джозефсоновских наноструктур

Представлен обзор результатов, полученных в рамках сотрудничества
ОИЯИ–UNISA в области теоретического исследования джозефсоновских
наноструктур. В частности, наша работа включала исследование широкого
спектра нелинейных динамических эффектов различных систем джозефсо-
новских переходов, в частности системы внутренних джозефсоновских пе-
реходов в высокотемпературных сверхпроводниках и переходы сверхпровод-
ник/ферромагнетик/сверхпроводник, которые в настоящее время интенсивно
исследуются в связи с их применением в сверхпроводниковой электронике и
спинтронике.

Работа выполнена в Лаборатории теоретической физики им.Н.Н. Боголю-
бова ОИЯИ.
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JINR-UNISA Results of Collaboration
on Theoretical Study of Josephson Nanostructures

An overview of the results obtained within the framework of the
JINR–UNISA collaboration in the field of theoretical study of Josephson
nanostructures is presented. In particular, our work has involved studies of
a wide variety of nonlinear dynamic effects in various systems of coupled
Josephson junctions, including superconductor/ferromagnet/superconductor
junctions, which are currently being investigated intensively due to the potential
applications in superconducting electronics and spintronics.

The investigation has been performed at the Bogoliubov Laboratory of
Theoretical Physics, JINR.
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INTRODUCTION

Collaboration between the Joint Institute for Nuclear Research (JINR)
and the University of South Africa (UNISA) in the field of theoretical
studies of superconducting nanostructures started with the discussions held
at the 56th Annual Conference of the South African Institute of Physics
(SAIP), from 12–15 July 2011. At this conference, which was hosted by
UNISA, A. E. B. presented computer simulations of optimized periodic and
hyperchaotic modes in a triple pendulum system [1] and Yu.M. S. presented a
talk on parametric resonance features in the coupled Josephson junctions [2].
Because the single, damped, driven pendulum is a well-known mechanical
analogy of the Josephsnon junction, these computer simulations drew the
attention of Yu.M. S., who was also participating in the conference to
present simulations of intrinsic Josephson junctions. During the subsequent
discussions, we realized that the two systems in fact share a number of
similarities. Mathematically, both are composed of the same basic entity,
differing only in the way they are coupled together. Thus, the fact that very
similar simulation and analytic techniques could be applied profitably to both
systems formed the basis of our collaboration.

Prior to the 56th Annual Conference of the SAIP, and largely due to the
efforts of the late Professors S.A. Sofianos (UNISA) and V.B.Belyaev (JINR),
the foundations for collaboration between the two institutions had been firmly
cemented [?]. The first DST-UNISA–JINR Symposium was organized at
Skukuza, in the Kruger National Park, during February of 2007 (see Fig. 1),
and the second South Africa – JINR Symposium was held in Dubna, during
September of 2010 (see Fig. 2).

Both symposiums helped to establish a fruitful and ongoing collaboration
between the two (predominantly nuclear/particle) physics communities.
However, by the time of the third Symposium, which was held in Stellenbosch
during November of 2012, several new areas of scientific cooperation had also
been established. At the third symposium, we presented our first collaborative
research on resonance-related chaos in certain systems of intrinsic Josephson
junctions [3]. Since then, our research has encompassed the investigation of
many different dynamical effects related to the Josephson junction structures,
including the occurrence of breathing chimera states in intrinsically coupled
Josephson junctions [4, 5] and simulations revealing a signature for the
possible experimental detection of the Majorana fermions in superconducting
quantum interference devices (SQUIDs), with nontrivial barriers [6].
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Fig. 1. Sitting on their haunches, from left to right, are: D. V.Kamanin (JINR Deputy
Chief Scientific Secretary) and Professor S. A. Sofianos (Department of Physics,
UNISA). Fourth from the left (standing) is Dr. Rob Adam, who was at that time the
Director General of the Department of Science and Technology (DST) in South Africa

Fig. 2. Some of the participants standing outside the BLTP building on the occasion
of the 2nd SA–JINR Symposium “Models and Methods in Few- and Many-Body

Systems”, 8–10 September 2010, Dubna, Russia
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Recently, in an effort to further extend the scope of the SA–JINR
collaboration, a new series of workshops was started. In January of 2020,
we participated in the first South Africa–JINR workshop on theory and
computation (see Fig. 3). Due to the drawn-out COVID-19 pandemic that
reached South Africa in March of the same year, the second workshop
was delayed until December of 2023. However, we anticipate that this new
series of workshops will continue at more regular intervals in the future,
and that they will assist in strengthening future collaborations. To date, our
own collaboration has produced 26 journal articles [3, 5, 7–25, 27–31], 11
conference proceedings [1, 4, 6, 26, 32–38] and many conference abstracts,
e.g., [39–43].

In what follows we will provide a comprehensive overview of our
collaborative research during the past twelve years. The order in which it is
described under the following section headings is more or less chronological.
In Section 1, we discuss the emergence of chaos in a system of coupled
(intrinsic) junctions, caused by the parametric resonance. Section 2 introduces
the idea of structured chaos that we discovered in a single Josephson
junction under the influence of external electromagnetic radiation. Section 3
continues with our analysis of the single, driven junction by demonstrating the
existence of a Farey staircase, resulting from the two-extremum (as opposed

Fig. 3. The first SA–JINR workshop on theory and computation held on 27–29 January
2020 near the beautiful town of Franschhoek — Western Cape wine lands
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to unimodal) return map of the junction. In Section 4, we return to the
intrinsic junctions and show that they are capable of exhibiting spontaneous
and controlled chaos synchronization, in response to externally applied
electromagnetic radiation. We found and first described the spontaneous and
controlled chaos synchronization in intrinsic Josephson junctions, a property
that is useful for chaos encryption. Section 5, discusses chaos that occurs
along the resonance circuit branch of a system of intrinsic Josephson junctions
shunted by resistive (R), inductive (L) and capacitive (C) elements. Here the
dynamics is complicated by the fact that the frequency of the RLC resonance
circuit couples to the oscillations of the intrinsic junctions, which have their
own current-dependent natural frequency. Section 6 shows specific ladder
structures that appear in the superconductor–ferromagnetic–superconductor
(S–F–S) Josephson junction under the action of a circularly polarized
magnetic field. In these S–F–S structures, the chaotic and bifurcation features
are obviously important for the develpoment of reliable superconductor
electronic devices, as discussed in Section 7. Hysteresis and chaos in
anomalous Josephson junctions without capacitance, i.e., underdamped, are
discussed in Section 8. Here we see that there is multistability due to
the coupling with the magnetic moment. Such multistability is crucial to
applications that involve switching, e.g., memory devices.

In Section 9, we have analyzed the bifurcation structure and chaos that
occurs in a nanomagnet, coupled to a Josephson junction. Here the coupling
is through the magnetic vector potential, rather than being intrinsic. In our
studies discussed in Section 10, we were able to show that, over a considerable
range of coupling strengths, a model of the intrinsic Josephson junctions with
a more extended coupling range could support the occurrence of the so-called
breathing chimeric states. In Section 11, we discuss how our results on the
resonance phenomena that occurs in high-Tc superconductors allowed us to
propose a novel method for the determination of charging the superconducting
layers, based on the voltage dynamics. Charging of the superconducting
layers in shunted high Tc superconductors is discussed in Section 12. A full
magnetization reversal in an S–F–S structure with spin-orbit coupling, via
the application of an optimized electric current pulse was demonstrated in the
work discussed in Section 13. Such a reversal may be important for certain
applications in quantum computing.

In Section 14, we show that the ϕ0 junction possesses rich variety
of dynamical states determined by both the parameters of the Josephson
junction and those of the intermediate ferromagnetic layer. Interestingly, it
shows features reminiscent of the famous Kapitza pendulum. In Section 15,
we investigate the effects of the ferromagnetic resonance and magnetization
dynamics on the current–voltage characteristics (CVCs) of the S–F–S
ϕ0 junction. This leads to a “kink” structure in the CVCs. Then, in
Sections 16 and 17, we shift our attention to a related model, know as
the Frenkel–Kontorova (F–K) model. We study first the overdamped case
(Section 16) and then the underdamped case (Section 17). The F–K model is
important because of its generality and the fact that it shares many feastures
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with various models of Josephson junctions. It is often used as a model
to study tribology (friction) in various systems. In Section 18, we explain
the relevance of Josephson junctions to the important real-world problem
of achieving synchronicity in electrical power distribution grids. In the final
section we provide a conclusion and outlook towards future collaboration on
some of the potential applications that our more recent work could have on
the revelopment of superconducting electronic and spintronic devices.

1. CHAOS AND RESONANCES
IN COUPLED JOSEPHSON JUNCTIONS

Based on our collaboration we have created a significant groundwork
for the investigation and modeling of chaotic phenomena in a system of
coupled Josephson junctions [3, 5, 7–10, 32]. In particular, the emergence
of chaos in a system of coupled junctions, caused by parametric resonance,
as well as structured chaos under the influence of external electromagnetic
radiation has been demonstrated. We have found that in a stack of intrinsic
Josephson junctions the chaotic features are triggered by the coupling
between different junctions in the stack. Spontaneous and controlled chaos
synchronization in intrinsic Josephson junctions were described. Chaotic and
bifurcation features that are important for superconducting electronics were
demonstrated in superconductor–ferromagnet–superconductor nanostructures.
Below we present some of our collaborative results in this area.

Chaotic features of the systems of coupled Josephson junctions were
studied in [3]. Manifestation of chaos in the temporal dependence of the
electric charge, related to a parametric resonance, was demonstrated through
the calculation of the maximal Lyapunov exponent, phase–charge and charge–
charge Lissajous diagrams and correlation functions. We have shown that
a number of junctions in the stack strongly influences the fine structure in
the current–voltage characteristics and a strong proximity effect results from
the nonperiodic boundary conditions. The observed resonance-related chaos
exhibits intermittency over a range of conditions and parameters. General
features of the system were analyzed by means of a linearized equation and
the criteria for a break point region (BPR) with no chaos were obtained. Such
criteria clarified experimental observations of variations in the power output
from intrinsic Josephson junctions in high-temperature superconductors [44].

Figure 4 (top) shows the maximal Lyapunov exponent (blue line) as a
function of the bias current and the upper-most branch of the current–voltage
characteristic (red line) in comparison with the time dependence of the
electric charge at the 8th JJ (green). The inset shows the position of the
break point on the upper branch of the current–voltage characteristic. Both
the current–voltage characteristic and the time dependence of the charge
demonstrate chaotic behavior in the current range in which LE > 0.

The study of correlations between the superconducting currents in
neighboring intrinsic Josephson junctions allowed us to explain some of
the chaotic features observed in the current–voltage characteristics (CVC).
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Fig. 4. Top: Lyapunov exponent as a function of bias current and current–voltage
characteristics together with the time dependence of the charge on the 8th
superconducting layer Q8. The insert shows the position of the break point on the
upper branch of the current–voltage characteristic. Bottom: the charge correlation
functions Cc

l,l+1 = 〈Ql(t)Ql+1(t)〉 for l = 2 (labeled by 2, 3) and l = 7 (labeled 7, 8)
for the stack with nine IJJ as a function of the bias current. Adapted from [3]

The lower result, towards the left of Fig. 4, is from a calculation of the
correlations between the l = 2 and l = 7 junctions, within a stack of nine
intrinsic junctions. Based on these results, the expected feature of the
correlation functions in the chaotic region was confirmed: at the transition to
chaotic behavior (point C1), the values of all correlation functions approach
each other, i.e., 〈Ql(t)Ql+1(t)〉 = 〈Ql(t)〉 〈Ql+1(t)〉. Thus, within the chaotic
region, all correlations are lost.

We have also demonstrated, for the first time, that intermittency can
occur as a result of resonance related chaos in systems of coupled JJs. Many
such transitions can be seen in Fig. 5,a, where we present results of a high
precision calculation of the largest Lyapunov exponent (LE) together with the
CVC, for a stack of nine junctions, using nonperiodic boundary conditions, at
γ = 0.5.

To gain more information about the transitions we investigate the
dependence of all the charge–charge correlation functions (CCF) and the LE,
on the bias current in the BPR. As the LE shows, in Fig. 5, b, the absence
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Fig. 5. a) Intermittency is shown by windows of LE = 0 inside the chaotic dynamics.
Arrows point to the respective scales for each curve and the dashed line shows the
LE = 0 axis. Double arrows show the correspondence between features of the CVC
and the LE. b) Demonstration of the intermittency within the interval of bias current
0.5659 < I < 0.5565 (shown by a double arrow) for the charge–charge correlation

functions (Cc) and LE for a periodic stack of 13 junctions. Adapted from [3]

of the charge correlations in different S-layers is a signature of the chaotic
behavior. We see a restoration of correlations in the middle of the chaotic
region for a stack with 13 JJs. All presented characteristics (CCF, CVC and
LE) reflect this transition from the chaotic behavior to regular and back. Our
results stress the agreement between the correlation functions and LE.

2. STRUCTURED CHAOS AND THE DEVIL’S STAIRCASE
IN A DRIVEN JOSEPHSON JUNCTION

In [7] the detailed numerical simulations of the CVC of a Josephson
junction under external electromagnetic radiation show the devil’s staircase
within different bias current intervals. We have found that the observed steps
form very precisely continued fractions. Increase of the amplitude of the
radiation shifts the devil’s staircase to higher Shapiro steps. An algorithm
for the appearance and detection of subharmonics with increasing radiation
amplitude is proposed.

The steps in the ladder structure form continuous fractions of voltage and
are determined with

V =

⎛
⎜⎜⎜⎜⎜⎜⎝
N ± 1

n± 1

m± 1
p± ...

⎞
⎟⎟⎟⎟⎟⎟⎠

ω, (1)

where N ,n,m, p, ... are positive integers. By reducing eq. (1) by N , one can
obtain the conditions of the first level of the continued fraction, corresponding
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Fig. 6. a) I–V characteristics of the JJ at β = 0.3, ω = 0.5 and A = 0.8. The arrows
indicate the harmonic number of the Shapiro step. The inset shows the current–voltage
characteristic without radiation. b) Enlarged part of the current–voltage characteristic
(“Svetlana” structure) circled in (a), showing steps alternating with chaotic regions.

Adapted from [10]

to the main Shapiro step, or harmonics. Similarly, by reducing the formula
by n, we can obtain second-level conditions that correspond to subharmonics
of the Shapiro steps. We showed that the experimental results are easy to
classify based on our continued fraction formula. We have demonstrated that
the subharmonic steps registered in the well-known experiments by Dayem
and Wiegand [Phys. Rev. 155, 419 (1967)] and Clarke [Phys. Rev. B 4, 2963
(1971)] also form continued fractions.

In [10] it was found that the subharmonic Shapiro steps at certain
parameters are separated by structured chaotic windows which exhibit scaling
similarity. This structure in I-V characteristic was called “Svetlana”. The
onset of chaos for subharmonic steps occurs through the Feigenbaum
period doubling scenario. Universality in the sequence of periodic windows
(U-sequence) was also demonstrated and concluded that the structured
chaos is a stable formation over a wide range of parameter values. The
current–voltage characteristic of the JJ at ω = 0.5 and A = 0.8 is shown in
the main part of Fig. 6,a.

An enlarged part of the current–voltage characteristic region marked with
a circle in Fig. 6, a is presented in Fig. 6, b. In this region, the current–voltage
characteristic shows alternating stable and chaotic regions, i.e., structured
chaos.

3. FAREY STAIRCASE
FROM THE TWO-EXTREMUM RETURN MAP OF A JJ

We report new synchronization phenomena occurring over a relatively
small region of previously unexplored parameter space in the RCSJ model
of a single Josephson junction under external electromagnetic radiation. Two
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identical Farey staircases, one displaced relative to the other, are observed in
the current–voltage characteristics of the junction. As the current (dissipation
parameter) of the system is increased (decreased), the two staircases merge
into one staircase. The existence of the Farey staircase itself can be understood
in terms of a one-dimensional iterative map which contains two extrema, and
the displacement of the two staircases is related to folding (double-valuedness)
in the return map, reflecting the higher fractional dimensionality of the
system.

In Fig. 7, we show manifestations of Farey staircases in the CVC at various
amplitudes A. The subharmonics seen here all occur between the second
(V = 1) and third (V = 1.5) harmonics. The inset to the figure shows an
enlarged view of the CVC at A = 0.1.

There are also chaotic intervals present between the two staircases,
without the staircase having ever been complete. This suggests that Chirikov’s
resonance overlap scenario [60] may apply, even though the universal
quasiperiodic route to chaos is not followed. At higher currents, the Farey
staircase eventually joins the third harmonic, after an infinite number of
steps. At the bifurcation point, between the last step and the lower (in
current) edge of the third harmonic the system exhibits an instance of the
bifurcation known as blue-sky catastrophe [42]. This is the first such instance
to be reported in the RCSJ model. The sinusoidal coupling in the model
makes it distinct from other low order models that can exhibit BSC. In other

Fig. 7. Farey staircases in the CVC at four different amplitudes A. Here V denotes the
time-averaged voltage. Adapted from [15]
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models of BSC, there are quadratic [61] or cubic [44] response functions.
The details of the time series in voltage, as the staircase is ascended and
third harmonic is approached, show resemblances to the bursting phenomena
observed in a neuron model [43, 55]. It is interesting that for a bursting neuron
the minimal dynamical model is three-dimensional, and there are coupled
slow–fast mechanisms [62], just as we have observed at currents close to
the blue-sky catastrophe bifurcation, for the RCSJ model. Bursting dynamics
has recently been studied in an all-to-all coupled network of single Josephson
junctions, each within the RCSJ model [63]. The burst-like behavior observed
here for the single junction may be an essential element of the emergent
behavior seen in the globally coupled RCSJ model.

4. SPONTANEOUS AND CONTROLLED CHAOS
SYNCHRONIZATION IN INTRINSIC JOSEPHSON JUNCTIONS

Synchronization properties of model systems containing large numbers
of phase oscillators have many potential biophysical and other applications.
Biophysical examples include networks of pacemaker cells in the heart and
suprachiasmatic nucleus of the brain. In physical systems the phase dynamics
of high-Tc superconducting materials continue to attract attention, since
systems of intrinsic Josephson junctions form natural arrays of coupled phase
oscillators. As such, they have the potential to act as systems in which various
exotic synchronization effects may be naturally observed.

In our study [19] we have made a more detailed exploration of the
parameter space containing regions of spontaneous chaos synchronization in
the CCJJ+DC model of intrinsic Josephson junctions. Extensive regions
of phase synchronization — corresponding to the Shapiro steps with zero
charge density in the S-layers — are found through numerical simulation.
By computing the Lyapunov exponent spectra, we have found that the
spontaneous chaos synchronization occurs only within certain sub-regions
that overlap with ‘uncharged’ steps in the I–V characteristics. The control
is exerted through a phase shift, proportional total voltage, in the applied
electromagnetic radiation. The effect of the control is found to be three-fold:
(i) it tends to broaden the current interval over which lower harmonic Shapiro
steps occur, (ii) it does not change the width in the current range over which
the chaos synchronization occurs, and (iii) it makes the chaos synchronization
more robust to noise. The chaos synchronization we reported here may be
useful in any applications requiring more powerful, high-frequency, chaotic
signals, such as in secure communication.

In Fig. 8 we show two views of a section in the I−A parameter space.
In Fig. 8,a the magnitude of the derivative of V , with respect to the dc-bias
current I, is shown. This derivative is a convenient way of showing the
Shapiro steps, on which it is zero (indicated by the black regions in the
figure). Some of the main harmonics are shown by the white labels to
the right bottom of the figure. In Fig. 8, b the chaos synchronization areas
are shown for the corresponding region of the parameter space. Here one
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Fig. 8. a) Shapiro steps (or Arnold tongues), for β = 0.3. b) Corresponding regions of
chaos synchronization (shown in red). Adapted from [19]

notices that the chaos synchronization occurs mostly at the edges of Shapiro
steps, often where a main step gives way to an infinite sequence of higher
harmonics (or subharmonics). Such infinite sequences of steps are well known
in the literature on Josephson junctions and are loosely referred to as devil’s
staircases.

All of the chaos synchronization regions which we have observed in the
present work [19] seem to be associated with such structured chaos. It
appears that near the end of such “Svetlana” structures, where the steps
start to span smaller and smaller current intervals, the in-between chaotic
regions become fully synchronized, giving rise to the spontaneous chaos
synchronization we observe. As one approaches the very end of the staircase
(by increasing or decreasing the bias current), the regions of phase locking
become insignificantly small and the structured chaos manifests itself as chaos
synchronization.

5. CHAOS ALONG THE RC-BRANCH
OF RLC-SHUNTED INTRINSIC JOSEPHSON JUNCTIONS

Recently, several different forms of chaos control have also been proposed,
not only with the view of suppressing chaos but also to establish more
robust synchronization between the junctions, which could be either in a
chaotic state, for applications involving chaos synchronization, or in a regular
state, where the junctions might be used, for example, to detect weak
electromagnetic signals in the presence of noise, or to unscramble specific
types of noise components within a noisy signal [28]. Synchronized Josephson
junctions in high-temperature superconductors are promising candidates for
sufficiently light and compact THz wave generators. While the radiation
from a single Josephson junction is extremely weak, systems of synchronized
Josephson junctions posses practically viable radiation power.

In [28] we have studied the appearance of chaos on the resonant branch
of a shunted system of intrinsic Josephson junctions in a high-temperature
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Fig. 9. Maximum Lyapunov exponent λmax and maximum charge density Q along
the resonant branch as a function of capacitance and decreasing DC bias current.

Adapted from [28]

superconductor. Based on the calculated electrical characteristics of the
superconducting layers and various indicators of chaos, such as Lyapunov
exponents and Poincar? sections, the regions of current–voltage characteristics
with a predominance of chaos, which are determined by the frequency of
the resonant circuit, are indicated. The study of metric entropy and the
maximum Kaplan–York dimension shows that the sizes of chaotic attractors
associated with chaos do not reach a plateau, as in the case of systems with
strong damping, but increase without limit with an increase in the number
of Josephson junctions, demonstrating multidimensional chaos. The results
obtained indicate the possibility of controlling chaos in studied systems. Color
images of the maximum Lyapunov exponent and maximum charge density
along the resonant branch as a function of capacitance and decreasing DC
bias current are presented in Fig. 9.

6. STAIRCASE STRUCTURE AND CHAOS OF THE SFS ϕ0
JOSEPHSON JUNCTIONS

We have discovered the specific ladder structures in the superconductor–
ferromagnetic–superconductor (SFS) Josephson junction that appear under
the action of a circularly polarized magnetic field [18]. In our study we
consider two superconductors separated by a ferromagnetic layer, as shown
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Fig. 10. a) Geometry of the SFS Josephson junction with cross-sectional area LyLz in
uniform magnetic field H0 and circularly polarized magnetic field Hac. b) Subharmonic
ladder structures in various parts of the current–voltage characteristic of the SFS

junction at ferromagnetic resonance. Adapted from [18]

in Fig. 10. The coupling between the Josephson phase and magnetization in
SFS junctions plays an important role in the dynamics of this system. In the
presence of this coupling, the manifestation of ferromagnetic resonance in the
dynamics of magnetization and critical current is shown in both nonlinear and
linearized schemes. The width of the ferromagnetic resonance curve and the
position of the resonant frequency are strongly affected by the ratio of the
Josephson and magnetic energies.

Analytical formula was demonstrated for the appearance conditions of
fractional steps in the I–V characteristic of the SFS Josephson junction. The
DS structure is a universal phenomenon and appears in a wide variety of
different systems, including infinite spin chains with long-range interactions,
frustrated quasi-two-dimensional spin-dimer systems in magnetic fields, and
even in the fractional quantum Hall effect. We consider that the subharmonic
ladder structures can be used in various fields of superconducting spintronics,
particularly, for detecting Majorana states in Josephson nanostructures. We
note that in [45], authors reported the experimental observation of half-integer
Shapiro steps in the strong ferromagnetic Josephson junction (Nb–NiFe–Nb)
by investigating the current–phase relation under radio-frequency microwave
excitation.

7. CHAOS AND BIFURCATIONS
IN SUPERCONDUCTOR–FERROMAGNET–SUPERCONDUCTOR

NANOSTRUCTURES

The possibility of achieving electric control over the magnetic properties of
the magnet via Josephson current and its counterpart, i.e., achieving magnetic
control over Josephson current, recently attracted much attention [20, 46–52].
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The ordinary (superconductor–insulator–superconductor) Josephson
junction cannot exhibit chaos in the absence of an external ac-drive, whereas
in the superconductor–ferromagnet–superconductor Josephson junction,
known as the ϕ0 junction, the magnetic layer effectively provides two extra
degrees of freedom that can facilitate chaotic dynamics in the resulting
four-dimensional autonomous system. The results of [31] show that, due to
the conservation of magnetic moment magnitude, two of the numerically
computed full spectrum Lyapunov characteristic exponents are always zero.
The two-dimensional bifurcation diagrams, which are similar to traditional
isospike diagrams, display the different periodicities and synchronization
properties of the junction over parameter ranges that are experimentally
accessible. It was demonstrated that as bias current I is reduced, the onset
of chaos occurs shortly before the transition to the superconducting state.

In Figs. 11, a and b we illustrate the emergence of chaos in the ϕ0

Josephson junction with increasing ratio G, of the Josephson energy to the
magnetic energy. Here the full spectrum of Lyapunov exponents can be seen,
with two being trivially zero for any I. In (c) we show the regions of chaos,
as indicated by positive values of the maximal Lyapunov exponent, as funtions
of G and the decreasing dc-bias I. Fig. 11, d demonstrates the periodicity and
synchronization in the ϕ0 Josephson junction.

8. HYSTERESIS AND CHAOS IN ANOMALOUS JOSEPHSON
JUNCTIONS WITHOUT CAPACITANCE

Usually, overdamped Josephson junctions do not exhibit chaotic behaviour
in their phase dynamics, either because the phase space dimension is less than
three (as in the case of a single overdamped ac-driven junction) or due to the
general tendency of systems to become less chaotic with increasing dissipation
(as in the case of coupled overdamped junctions [16]). We have found that, in
the case of strong spin-orbit coupling, the current–voltage characteristics of
certain types of superconductor/ferromagnetic/superconductor ϕ0 Josephson
junctions are strongly influenced by the current-induced magnetization motion
within the interlayers [30]. This influence may lead to chaotic regions
and hysteresis, even though the junction is overdamped. We have also
demonstrated that it is possible to induce switching between voltage states
stemming from different magnetic modes via a current pulse. This switching
behavior may open new perspectives for practical applications such as memory
devices.

Figure 12 shows an example of the multistability that gives rise to this
possibility of switching. In this case, the different branches seen in the CVCs,
shown in (a), are due to the different magnetic modes, each having their own
basins of attraction, as shown in (b) and (c).
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Fig. 12. a) Additional branches in the CVCs due to different magnetization modes. The
arrows indicate the sweep directions of the dc-bias idc. The additional branches, shown
by the dashed lines, were obtained by choosing a particular IC, at idc = 1.25, and then
sweeping idc up (blue dashed line) and down (red dashed line). In both directions we
find period 4 behavior in m(t). The vertical dashed grid line just shows the position
of idc = 1.25. In (b) and (c), the basins of attraction corresponding to idc = 1.25 are
shown for the periodicity of m(t) and the time averaged voltage, respectively. Adapted

from [30]
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9. BIFURCATION STRUCTURE AND CHAOS IN NANOMAGNET
COUPLED TO JOSEPHSON JUNCTION

One of the most important tasks in the field of data coding and commu-
nication security is the development of methods for controlling and managing
chaos. We have demonstrated a rich variety of periodic and chaotic behavior in
the dynamics of the magnetic moment in the Josephson junction–nanomagnet
(JJ–NM) system [29]. It was also shown that the chaotic behavior of the
system can be controlled by applying an external periodic signal of the
desired frequency and amplitude. It is assumed that such a system can be
used as chaotic logic gates in computers based on chaotic systems. Irregular
easy axis reorientation features are observed in numerical simulations of the
nanomagnet coupled to the Josephson junction.

Figure 13, a–c (right) shows the bifurcation tree of the Poincaré section
of the magnetization components (mi−Poin, i = x, y, z) as a function of G

Fig. 13. Left column: a schematic diagram of the system (toP and the time-averaged
magnetization as a function of G (bottom). Middle column: Bifurcation diagrams of the
magnetization components (a) mx−Poin, (b) my−Poin, (c) mz−Poin. The average value
of the mz–component is shown in (d), and (e) shows the largest Lyapunov exponent
as a function of G at ΩJ = 1. Right column: the two-dimentional bifurcation diagrams
showing the periodicities in (a) mx and (b) mz . Portraits: Drs.M.Nashaat (top) and

K.V. Kulikov (bottom). Adapted from [29]

17



before the complete reorientation. In our work we have described all types
of motion which are revealed in the bifurcation tree. The transition from one
type of motion to another, in this system, is accompanied by abrupt changes
in the values of the average magnetization components. We demonstrate such
changes in Fig. 13, d (right), where the irregular reorientation behavior of
< mz(t) > appears before the complete reorientation. The λmax calculation
confirms the chaotic behavior of the magnetization (see Fig. 13, e (right). The
intervals with positive values of λmax coincide with the chaotic bands observed
in the bifurcation diagrams.

The magnetic moment dynamics drastically changes at ΩJ > ΩF in
comparison with the case ΩJ = ΩF . Figure 13, a–c (right) shows the
bifurcation trees of the magnetization as a function of G at ΩJ = 1.5. Chaos
does not appear and the bifurcation trees at ΩJ = 1.5 demonstrate motions
with different periods. The average < mz(t) > as a function of G in Fig. 13, d
(right) reflects the transformation of the system from one kind of periodic
motion to another.

10. CHIMERA STATES
IN SYSTEMS OF JOSEPHSON JUNCTIONS

Following the relatively recent discovery of chimera states [53, 54], we
were interested to know whether these exotic states may also exist is systems
of Josephson junctions. In a mathematical sense, a chimera state refers to a
certain type of behavior in any system that is composed of identical oscillatory
elements. What makes it so unusual is that the chimera emerges as two
or more distinct groupings, even though all the oscillators are identical. It
is a form of emergent behavior in which, say, one group of oscillators may
oscillate coherently (frequency synchronized) and the other, incoherently (not
being synchronized).

In our studies of this phenomenon we were able to show that, over a
considerable range of coupling strengths, a model of the intrinsic Josephson
junctions with more extended coupling could support the occurrence of the
so-called breathing chimeric states [4, 5]. Usually, the coupling within the
CCJJ+DC model [55] only extends to the nearest neighbors. By extending
the coupling within the CCJJ+DC model to include nonlocal (farther away)
interaction between the junctions, we were able to demonstrate the existence
of chimera states. The modified equations for the junctions with the extended
coupling are

dV�

d
t = I + In� − sinϕ� − β

dϕ�

dt
,

dϕ�

dt
= V� + 2α

N∑
m=1

H�mVm, (2)
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Fig. 14. Generalized coupling function at two coupling ranges. Junctions are positioned
in a ring (periodic boundary conditions) withing the interval [0,1), where x� is the
position of the �th junction. For mathematical convenience the coupling is treated as a
continuous function, with the coupling matrix in Eq. (2) given by H�m ≡ H(x� − xm).
The coupling in the original CCJJ+DC model [55] is reproduced exactly when the
continuous coupling range is on the order of one junction separation, i.e., ∼ 1/N

where N is the number of junctions and H�m is the generalized coupling,
shown in Fig. 14.

In Figs. 15,a and b, the phase differences and velocities are shown for
two different coupling types. These results correspond to a time domain with
10 000 dimensionless units after selecting the initial conditions. There are
two clearly distinguishable areas in each drawing. In one region, the JJs are
in a coherent rotating state, while in the other, they are in an incoherent
rotating state. Our calculations show that the JJs in the incoherent region
oscillate quasi-periodically with respect to the position of the coherent groups.
Therefore, as the system evolves over time, the phase difference distributions,
shown at the top of Fig. 15, a and b, move as a whole from −π to π, like a
rotating junction. While the relative phase difference of a coherently rotating
JJ remains almost the same during rotation, the relative phase difference of
an incoherent JJ oscillates almost periodically, i.e., quasi-periodically.

It is interesting to note that in the model system (2) the nonlocal coupling
is between the voltage differences V� of the different junctions. This is in
contrast to the usual type of coupling that leads to chimera states in, for
example, the Kuramoto–Sakaguchi model of phase oscillators, in which the
nonlocal coupling is directly between the phases, ϕ. Thus, in the present model
there is a second-order nonlocal coupling, since V� = ϕ̇� for the uncoupled
junctions (Eq. (2) with α = 0).
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11. RESONANCE PHENOMENA
AND CHARGING OF SUPERCONDUCTING LAYERS

IN HIGH TC SUPERCONDUCTORS

One of the most interesting and promising studies of modern science is
research in the field of high-temperature superconductivity. High-tempera-
ture superconductors have a layered structure consisting of thin supercon-
ducting (S) layers separated by the dielectric ones. Because the thickness
of superconducting layers is comparable with a Debye screening length, the
electric charge cannot be screen there. The issue of the appearance of the
electric charge in the superconducting layers is of fundamental importance and
it is not completely clarified till now. The presence of charge and the nature
of its relaxation determine nonequilibrium phenomena in these systems.

In our collaborative paper [14], we have found that the coupled system
of Josephson junctions under external electromagnetic radiation demonstrates
a cascade of parametric instabilities. These instabilities, in particular, appear
along the I–V characteristics within bias current intervals corresponding to
the Shapiro step subharmonics and lead to charging of the superconducting
layers. The amplitude of the charge oscillations increases with increasing
external radiation power. We demonstrate the existence of longitudinal plasma
waves at the corresponding bias current values. An essential specific feature of
the parametric instabilities in the case of subharmonics is the lower amplitude
of radiation that is needed for the creation the longitudinal plasma wave. This
fact gives a unique possibility to create and control of the longitudinal plasma
waves in layered superconductors. We propose a novel experiment for studying
parametric instabilities and the charging of superconducting layers based on
the simultaneous variation of the bias current and radiation amplitude.

Fig. 16. “Charging” of the Shapiro step subharmonics as a function of radiation
amplitude and dc bias current. Arrows indicate the points when the steps are becoming
“charged”. The green dashed line stresses the parabolic dependence of A(I) along
the transition boundary. Pictured on the right is a co-author Dr.Hermann Azemtsa

Donfack on a research visit to Dubna. Adapted from [14]
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To visualize the subharmonic steps clearly, and over a continuous range
of the relevant parameter values, we have plotted, using the red color map
in Fig. 16, the magnitude of the differential resistance as a function of the
radiation amplitude and bias current.

To see when charge develops on each of the step we have superimposed
a plot of the magnitude of the maximum charge in the S–layers Qmax on
the same figure, using the blue colormap. Regions of no charge, or charge in
excess of 0.08 (as may occur for inner branches), have been rendered as being
transparent, so as not to obscure the underlying plot. The V -shape that can
be seen on the right hand side of the figure is the main SS harmonic, which
has a linearly increasing width for small A.

Important results were found in [11], demonstrating that the chaotic
features are triggered by the coupling between different junctions in the
stack. While the radiation is well known to produce chaotic effects in the

Fig. 17. Charge–time dependence (left and lower axes) together with I–V
characteristics (black curves, right and upper axes) with increasing amplitude of
radiation: a) A = 0.18; b) A = 0.19; c) A = 0.27. c) Manifestation of the chaotic
features in the I–V characteristic. d) Lyapunov exponents (LE, left and lower axes) and
I–V characteristic (CVC, right and lower axes) of the stack with 10 JJs at ω = 2 and
A = 0.27 around of the Shapiro step subharmonic 2/3. The regions in bias current for
which the LE become positive correspond to regions over which the phase-locked step
in the underlying I–V characteristic have been replaced by chaotic dynamics. Adapted

from [11]
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single junction, the effect of inter-junction coupling is fundamentally different
and it can lead to the onset of chaos via a different route to that of the
single junction. We have demonstrated the creation of a longitudinal plasma
wave along the stack of junctions and proved that the observed chaos is
induced by the coupling between the junctions. The important new point is
that the use of Shapiro step subharmonics may allow the longitudinal plasma
waves to be excited at low radiation power. The appearance of charge in
the superconducting layers in the current interval corresponding to the SS
harmonics was shown in [56].

In Fig. 17, we demonstrate the appearance and growth of charge in the first
superconducting layer of the stack, within a current interval corresponding
to the subharmonic step 2/3, with an increase in the amplitude of radiation.
With increase in A the value of charge grows and it eventually occupies the
total current interval corresponding to the SSS. We see this in Fig. 17, c,
which shows the result for A = 0.27. At this largest A we see fragmentation
of the SS subharmonic. To confirm the chaotic behavior of the stack of
Josephson junctions at A = 0.27, we demonstrate the Lyapunov exponent
spectrum of the system in Fig. 17, d which shows all nontrivial LEs together
with I–V characteristic as functions of the dc-bias current for the stack with
ten JJs at ω = 2 and A = 0.27 around the subharmonic step. We see that one
portion of the step 2/3 in I–V characteristics is associated with hyperchaotic
dynamics in the coupled junctions. Three LEs (blue, red and green online) are
positive within a subinterval of the current interval corresponded to this SS
subharmonic.

12. CHARGING OF SUPERCONDUCTING LAYERS
IN SHUNTED HIGH TC SUPERCONDUCTORS

Results of our study of the resonance phenomena in high-temperature
superconductors allowed us to propose a novel method for the determination
of charging the superconducting layers based on the voltage dynamics [17].
The phase dynamics and I–V characteristics were investigated in detail when
the Josephson frequency approaches the frequency of the resonance circuit.
We have demonstrated a realization of parametric resonance through the
excitation of a longitudinal plasma wave, within the bias current interval
corresponding to the resonance circuit branch. Manifestation of S-layer
charging by changing the amplitude of voltage oscillations is presented in
Fig. 18, where part of I–V characteristics and maximal voltage amplitude
without added noise (a) and with added noise (b) are demonstrated. It is found
that the temporal dependence of the total voltage of the stack, and the voltage
measured across the shunt capacitor, reflect the charging of superconducting
layers. The amplitude of the voltage oscillations, measured at each value of
the base current, changes the slope depending on the bias current when a
charge occurs. This phenomenon might be useful as a means of detecting
such charging experimentally.
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Fig. 18. Manifestation of S-layer charging by changing amplitude of voltage
oscillations. a) Part of I–V characteristic and maximal voltage amplitude without
added noise. b) The same as in (a) with added noise. In both figures one current cycle
is performed: 1.2 −→ 0.7 −→ 1.2. The starting value (I = 1.2) and initial direction of
the current cycle (decreasing current) is indicated by the arrows, to the right of the

figure. Adapted from [17]

Figure 19 shows the time dependence of the charge in the region of the
resonant branch [17]. As can be seen in Fig. 19,a, at L = 42 there is no
electric charge on the superconducting layer. The amplitude of the charge
on the capacitor monotonically increases with increasing current until the
resonance point ωJ = ωrc. A charge appears on the superconducting layers
and increases with increasing L. At L = 45 (ωrc = 3.367), as we see in
Fig. 19, b, the charge on the superconducting layer exists simultaneously with
the charge on the capacitor. Note that the interval of monotonic increase in
the charge amplitude is highlighted by a dotted line. We see an area of reduced
amplitude in the time dependence of the capacitor charge. The region with
reduced amplitude is clearly shown in Fig. 19, c at L = 48. The analysis of
the charge distribution along the stack shows that a longitudinal plasma wave
appears with a wavelength of λ = 2d, where d is the stack period. The dotted
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Fig. 19. Time dependence of the charge on the shunt capacitor (light, blue) and the
charge on the superconducting layer (dark, orange) together with the corresponding
part of the current–voltage characteristic including the resonant branch, calculated for
a 10 JJs shunted system C = 0.002, a) L = 42, b) L = 45. c) Time dependence of
voltage and charge with the corresponding part of the current–voltage characteristic
for a system of ten JJs shunted by a resonant circuit with a frequency of ωrc = 3.2596.
The inset shows a longitudinal plasma wave with a wavelength of λ = 2, which is

formed in the stack at I = 0.85. Adapted from [17]

line shows the current interval in which a longitudinal plasma wave exists in
the stack. A decrease in ωrc leads to an increase in this current interval.

Shunting of Josephson structures leads to the appearance of additional
resonances and opens up new possibilities in controlling their properties. In
our joint study [27] the double and triple resonances were demonstrated and
their influence on the appearance of an electric charge in superconducting
layers was shown. For a larger number of junctions, shunting causes the
appearance of a charge in the states corresponding to the upper and resonant
branches of the current–voltage characteristic. A transformation of a traveling
wave into a standing longitudinal plasma wave was observed in the system.

As it was demonstrated, LC shunting leads to the formation of a
resonant branch on the current–voltage characteristic [13, 17]. The calculated
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current–voltage characteristic is presented in Fig. 20 and it was obtained
by changing the current along 01OEBABCDEBF0. The current–voltage
characteristic demonstrates the resonant branch of AC as a result of the
resonance of Josephson oscillations and natural oscillations of the formed
oscillatory circuit. The resulting resonant branch is the stable side of the
resonant peak, since the other side has a negative slope and is therefore
unstable. This peak corresponds to parallel resonance. In the case of series
resonance, the resonance peak is generated in the opposite direction. The
dotted line in Fig. 20,a corresponds to the unstable part of the resonant peak
and the top of the peak is indicated by the letter C.

The selected shunt parameters L = 0.2 and C = 1.25 lead to the natural
frequency of the resonant circuit ωrc = 3. At V = 3, the reactance of the
circuit is Z(ω)−1 = (1/jωCj)

−1 + (jωL+ 1/jωC)−1 tends to infinity. At this
point we see a voltage jump on the current–voltage characteristic.

In particular, the influence of external radiation on the dynamics of a
Josephson junction shunted by an LC circuit was studied. It was shown that
the dependence of the width of the Shapiro step on the amplitude of external
radiation changes dramatically when the step is located on the resonant
branch. We believe that the results obtained can be useful for methods
and technologies that use the response of Josephson junctions to microwave
radiation, in particular, in quantum metrology for volt standards.

The dependence of the Shapiro step width on the amplitude of external
radiation AR at its frequency ωR = 3 is presented in Fig. 20, b, where the dots
indicate the result of the numerical calculation and the squares correspond to
the theoretical formula. Note that the amplitude dependence of the width of
the Shapiro step for a JJ with shunting is designated SS-rc and without a
shunt SS. An important result is that when the frequency of external radiation
is equal to the frequency of the resonant circuit, then the maximum width of
the Shapiro step can be obtained at significantly lower amplitudes compared
to the case without shunting.

Plasma waves are the interesting objects which appear in Josephson
nanostructures. We have investigated the temporal dependence of the charge
oscillations at different values of bias current, as the bias current is swept
up and down along I–V characteristic. Figure 20, c shows the part of I–V
characteristic including rc-branch for a stack with N = 30, together with
maximal amplitude of charge in the S-layers. The symbols indicate the points
where the charge–time dependence was recorded. Results of our analysis of
some of these points are presented in Fig. 20. With sweeping down along
the outermost branch, we observe a travelling wave along the stack. Initially
the travelling wave has a wavelength λ = 30 at I = 0.97, but transforms to
another travelling wave with λ = 15 at I = 0.96. After the bifurcation to the
rc-branch, we observe a standing wave with wavelength λ = 2 at I = 0.71.
This wave exists along the rc-branch in the current interval corresponding to
the charge dome. Outside of the rc-branch we only observe charge oscillations
at the noise level.
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13. SPINTRONIC EFFECTS
IN ANOMALOUS JOSEPHSON JUNCTIONS

An important challenge in superconducting spintronics dealing with the
Josephson junctions coupled to magnetic systems is the achievement of
electric control over the magnetic properties by the Josephson current
and its counterpart, i.e., the achievement of magnetic control over the
Josephson current [46, 51, 57]. An example is a full magnetization reversal
in a superconductor/ferromagnet/superconductor (SFS) structure with spin-
orbit coupling by adding an electric current pulse [48]. Such a reversal
may be important for certain applications in quantum computing. We have
demonstrated in this field interesting and important results by concentrating
our work on superconducting structures with magnetic materials. An
important place of joint studies was occupied by topological and chaotic
phenomena in different types of Josephson structures.

In [24] the switching of magnetization by electric current pulse in the
ϕ0 Josephson junction formed by ordinary superconductors and a magnetic
noncentrosymmetric interlayer is studied. Based on the Landau–Lifshits–
Gilbert and resistively shunted junction model equations we build an analytical
description of the magnetization dynamics induced by an arbitrary current

Fig. 21. A slide from a presentation related to [24]. The photographs at the bottom
show the co-authors I. R. Rahmonov (left) and A.A.Mazanik (right)
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pulse, as shown at the left bottom of Fig. 21. We formulate the criteria
for magnetization reversal and, using the obtained results, the form and
duration of the current pulse are optimized. The analytical and numerical
results are in excellent agreement at GrIp � 1, where G is a Josephson-to-
magnetic energy ratio, r is a strength of spin-orbit interaction, and Ipulse
is a value of the current pulse. The analytical result allows one to predict
magnetization reversal at the chosen system parameters and explains the
features of magnetization reversal in the G−r and G−α diagrams, where α
is the Gilbert damping. We propose to use such a ϕ0 Josephson junction as a
memory element, with the information encoded in the magnetization direction
of the ferromagnetic layer.

In the [21] we have demonstrated three types of effects leading to
magnetization reversal in a ferromagnetic layer, including changes in the
magnetic moment by a superconducting current pulse (see Fig. 22, a),

Fig. 22. a) Dynamics of the mz magnetization component for a system with a
rectangular current pulse for two pulse amplitudes. The inset shows the pulse shape.
b) Magnetization reversal by linearly decreasing the bias voltage for ωJ = 0.1,
γ = 0.001 and model parameters G = 10, r = 0.1, α = 0.01. c) Magnetization reversal
in an RF SQUID by an external magnetic field pulse shown in the inset. Adapted

from [21]
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a linearly decreasing bias voltage in the ϕ0 junction (see Fig. 22, b), and an
external magnetic field pulse in an rf SQUID with ϕ0-junction (see Fig. 22, c).
The observed features can find application in various areas of superconducting
spintronics.

14. RE-ORIENTATION OF THE EASY AXIS IN A ϕ0 JUNCTION

Another interesting result in the framework of our collaboration was
obtained by studying manifestation of Kapitza pendulum features in SFS
junctions. As it is known, Kapitza’s pioneering work [58] initiated the field of
vibrational mechanics, and his method was used to describe periodic processes
in a variety of different physical systems, like atomic physics [59–62],
plasma physics, optics [63], condensed matter physics, biophysics [64] and
cybernetical physics (see [65–70]). In nonlinear control theory the Kapitza
pendulum is used as an example of a parametric oscillator that demonstrates
the concept of “dynamic stabilization”.

In [20] we study theoretically a dynamics of the ϕ0 Josephson junction
with direct coupling between magnetic moment and Josephson current, which

Fig. 23. a) Re-orientation of the easy axis of a ferromagnet. Comparison of theoretical
and numerical calculation data for certain values of the Josephson frequency and the
ratio of Josephson and magnetic energies (G). b) The ω −G-diagram for averaged my

shown by color. Adapted from [20]
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shows features reminiscent of a Kapitza pendulum. We find that, starting
with the magnetization along the z-axis, the character of the magnetization
dynamics changes crucially as a stable position of the magnetic moment
is realized between the z- and y-axes, depending on the values of the
system parameters. Changes in critical current and spin-orbit interaction
lead to different stability regions for the magnetization. Excellent agreement
is obtained between analytical and numerical results at low values of the
Josephson to magnetic energy ratio.

As is well known, the most important characteristic of the Josephson
structure measured experimentally is its current–voltage characteristic. For
the first time, subharmonic ladder structures were found in the cur-
rent–voltage characteristics, which are due to the influence of the magneti-
zation dynamics on the phase difference in the Josephson junction [18, 20].
Such structures can be used in various fields of superconducting spintronics.
They are sensitive to changes in the periodicity in the dynamics of the system
and can serve as an indicator of various exotic states. In particular, they can
be used to detect Majorana bound states in Josephson nanostructures.

Over the past few years, we have studied various Josephson nanostructures
and obtained a number of original results [20]. The manifestations of the
Kapitza pendulum properties were observed, in particular, the reorientation
of the easy axis of the ferromagnet with changes in the critical current
and spin-orbit interaction. Good agreement between analytical and numerical
results was obtained for certain values of the Josephson frequency and the
ratio of Josephson and magnetic energies.

Variation of average my as a function of frequency ω and G is shown in
Fig. 23,a. We see that an increase in G makes orientation of my along y-axis
stable, but that the frequency dependence shown in Fig. 23, b differs from the
characteristic Kapitza pendulum behavior.

15. KINK STRUCTURE IN THE I–V CHARACTERISTICS
OF A ϕ0 JUNCTION

The ϕ0 junction demonstrates a rich variety of dynamical states determined
by parameters of the Josephson junction and the intermediate ferromagnetic
layer. In [25] we found several peculiarities in the maximal amplitude of
magnetic moment m̂y, taken at each value of the bias current, which we
correlate to the features of the I–V characteristics of the ϕ0 junction. In
Fig. 24 we show a part of I–V characteristics together with the maximal
amplitude m̂y with decrease in bias current at I > Ic. An interesting feature
of this m̂y(I)-dependence are the kinks shown by the arrows.

We show that a kink behavior in the bias current (voltage) dependence of
m̂y along the I–V characteristics is related to the changes in the dynamical
behaviour of the magnetization precession in the ferromagnetic layer. We also
demonstrate a transformation of the magnetization specific trajectories along
the I–V curve, magnetization composite structures, and hysteretic behavior
in the bias current dependence of m̂y.
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Different types of magnetization trajectories in the my −mx, mz − mx,
and mz −my planes, realized along the I–V characteristics were found in [71],
such as “apple”, “sickle”, “mushroom”, “fish”, and “moon”, called like that
for distinctness. But the kinks in m̂y and their origin were not discussed at
that time. It was mentioned there that the specific trajectories demonstrate a
unique possibility of controlling the magnetization dynamics via external bias
current. Here we demonstrate the similarity in the appearance of the different
kinks and stress that their origin is related to the transformation in the
magnetization dynamics. In Fig. 24 we show the magnetization trajectories
around the kink in the R2 region, which present the “apple” type at I =
= 0.6 before the kink and the “mushroom” type after kink at I = 0.555. The
FFT analysis shows the doubling of the period of trajectories in case of the
“mushroom”.

Results in the regular region R1, at I = 0.95 (a, b) and I = 0.75 (c, d),
i.e., to the right and left sides of the kink, respectively, are shown in Fig. 24.
We find that the kink is the bifurcation point between the two types of
trajectories, i.e., as the system goes from period one to period two behavior.
At I = 0.75 an additional frequency f = fJ/2 appears in comparison to the
case at I = 0.95, confirming the period doubling.

Fig. 24. Demonstration of the kink structure in the current–voltage characteristics of
a ϕ0 junction. Adapted from [25]
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Due to the correlations between features of m̂y and the I–V characteristics,
the presented results open a way for the experimental testing of the peculiar
magnetization dynamics which characterize the ϕ0 junction.

16. THE OVERDAMPED DC + AC DRIVEN
FRENKEL–KONTOROVA (F–K) MODEL

The ac + dc driven F–K model is well known as a model of the sliding
charge-density wave systems in the radio frequency field and Josephson
junction systems in the microwave field. A detailed comparative analysis
between the chaotic behavior of the F–K model and the JJs systems is
helpful in reproducing the chaotic phenomena observed in the real systems
and in identifying the common mathematical features that lead to the chaotic
behavior in both models.

One common feature is the so-called devil’s staircase, which has been
observed in the I–V characteristics of the Josephson junction and in the
average velocity v as a function of average driving force F in the underdamped

Fig. 25. a) The average velocity as a function of the average driving force v(F ) for
N = 8, K = 4, ν0 = 0.2, ω = 1

2 , r = 0.5, and Fac = 1.1. Here N is the number of
particles, K is the pinning strength, ν0 is the frequency of the ac drive, ω is the
winding number, and (−1 < r < 1) is deformation parameter for the substrate potential
(r = 0, corresponding to a sinusoidal substrate potential). Numbers mark harmonic and
subharmonic steps. High resolution views (b), (c) and (d) represent devil’s staircase of

the selected area. Adapted from [16]
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F–K model. In Fig. 25, the staircase structure of the response function v(F )
is presented at a fixed, relatively large, amplitude (Fac = 1.1) of the ac force,
while the dc force is slowly varied (note, F = Fdc). The magnification of the
steps between the first and the second harmonics in Fig. 25,a, shows that an
infinite series of subharmonic steps (the devil’s staircase) start to appear in b,
c and d.

In our work we have shown that the devil’s staircase structure may
arise from the complete mode locking of an entirely nonchaotic system, i.e.,
the overdamped dc+ ac driven Frenkel–Kontorova model with a deformable
substrate potential [16]. Even though we found no chaos in this model, a
hierarchical ordering of the Shapiro steps was made possible through our
use of a previously introduced continued fraction formula. The absence of
chaos, deduced here from Lyapunov exponent analyses, was attributed to
the overdamped character and the Middleton no-passing rule. A comparative
analysis of a one-dimensional stack of Josephson junctions confirmed the
disappearance of chaos with increasing dissipation. Other common dynamic
features were also identified through this comparison. A detailed analysis
of the amplitude dependence of the Shapiro steps revealed that only for the
case of a purely sinusoidal substrate potential did the relative sizes of the
steps follow a Farey sequence. For nonsinusoidal (deformed) potentials, the
symmetry of the Stern–Brocot tree, depicting all members of particular Farey
sequence, was seen to be increasingly broken, with certain steps being more
prominent and their relative sizes not following the Farey rule [16].

17. SUBHARMONIC STEPS, CHAOS,
AND HYSTERESIS IN THE F–K MODEL

We have also examined the effects of the inertial terms on the dynamics
of the dc+ ac driven Frenkel–Kontorova model [22]. As the mass of particles
was varied, the response of the system to the driving forces and appearance
of the Shapiro steps were analyzed in detail. Unlike in the overdamped case,
the increase in mass led to the appearance of the whole series of subharmonic
steps in the staircase of the average velocity as a function of average driving
force in any commensurate structure. At certain values of parameters, the
subharmonic steps became separated by chaotic windows while the whole
structure retained scaling similar to the original staircase. The mass of
the particles also determined their sensitivity to the forces governing their
dynamics. Depending on their mass, they were found to exhibit three types
of dynamics, from dynamical mode-locking with chaotic windows, through
to a typical dc response, to essentially a free-particle response. Our analysis
of these dynamics in both the upforce and downforce directions showed that
the system may not only exhibit hysteresis, but also that large Shapiro steps
may appear in the downforce direction, even in cases for which no dynamical
mode-locking occurred in the upforce direction [22].
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18. SYNCHRONICITY IN ELECTRICAL POWER GRIDS

One of the key requirements to avoid cascading failures, i.e., blackouts, in
power transmission grids, is their ability to operate stably in a synchronous
mode [72–74]. In recent times, however, growing demands made on existing
power grids, such as increasing loads and pressure to incorporate more
environmentally-friendly energy sources, like wind and solar [75], have
threatened to collapse entire grids. In South Africa, for example, in order to
avoid a complete collapse, very high levels of the so-called “load shedding”
have had to be implemented, at a huge cost to the economy [76]. In this
context, the study of electrical power grids, with the view of developing
better future grids (as discussed in [77], for example), is a national, if not
international, priority.

In December of 2019, we were awarded three years of mobility funding
towards a new project involving the studiy of synchronization phenomena in
networks of coupled Josephson junctions. The main motivation for this project
was the idea that coupled systems of Josephson junctions could potentially be
used to create a model of real power grids, each Josephson junction playing
the role of one element in the real grid, i.e., either a power generator or
consumer. Unfortunately, to the the occurrence of the Covid-19 pandemic at
the start of 2020, this project was considerably delayed, since the funding
was specifically for collaborative visits, and for a long time all travel between
South Africa and Russia was prohibited. Nevertheless, after the pandemic
work did commence and we managed to publish a short proceeding on the
effects of frustrated interactions in a Kuromoto model with inertia [37]. This
Kuramoto model of phase oscillators can be mapped, in an approximate way, to
a resistively coupled array of Josephson junctions [78]. Due to this connection,
our first work on this important topic did involve Josephson junctions, and
the generality of the phase approximation that is made in the Kuramoto model
makes it of immediate relevance to the problem of achieving synchronicity in
electrical power grids.

In Fig. 26 we show the time averaged order parameter as a function
of the frustration and coupling strength K for a dilute network of
Kuramoto–Sakaguchi oscillators with added inertia. The order parameter,
which lies between 0 and 1, measures the degree of synchronicity in the
network, with r = 0 corresponding to a completely desynchronized network
in which each oscillator is oscillating independently. Here we have applied
a random initial condition, adjacency matrix (controlling which oscillator is
coupled to which) and distribution of natural frequencies for every pair of
points in the (K,α)-plain, in order to ascertain the effect of increasing the
frustration α. As we can see in the figure, there is a clearly defined region
where it is possible to get partial synchronization despite having frustration
in the network. In practice, this region is of importance as the reactance of
the transmission lines in a real power grid produces phase differences which
are well modeled by the frustration parameter(s) of this model.
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Fig. 26. Time-averaged order parameter, r over the (K,α)-plain with random initial
conditions, coupling and natural frequencies. Here the dilution of each randomly
coupled network was p = 0.2, and each network consisted of N = 500 oscillators.
This means that there were pN = 100 nonzero elements in each adjacency matrix
(consisting of zeros and ones) representing the random coupling. K is the coefficient
of each adjacency matrix and α the frustration or phase-lag in the network. Adapted

from [37]

In an attempt to improve the stability of synchrony in the so-called “smart”
grids, several studies have attempted to incorporate different forms of control.
In our recent work on power grids we have proposed using an improved
form of control that minimizes losses in comparison to a nonlinear dissipative
control scheme that was recently proposed by Arinushkin and Vadivasova [79].
Instead of applying the nonlinear damping to all the elements in the systems,
we apply it only the arbitrarily chosen 5th element, i.e., Dj = D0j if j �= 5
and Dj = D0j + k|δ̇j | if j = 5. Here D0j is the linear damping constant and
k is the nonlinear damping constant. As we can see in Fig. 27, the addition
of k causes a large improvement in the synchronicity of the grid. Comparison
of the results given in Fig. 27, with those in Fig. 4 of [79], show that one
can achieve the same degree of synchronicity in the grid by applying the
nonlinear damping to any single element of the grid, as opposed to, to all of
them, as was done in [79]. Paradoxically, the value of k required to achieve a
certain degree of synchronicity in the case when nonlinear damping is applied
only to one element is significantly smaller than when the nonlinear damping
is applied to all the elements. This implies that the nonlinear control of one
element can lead to a significant reduction in the dissipation that has to be
added to the network as part of the control scheme, meaning that it would
be much more efficient. Further details of our proposed control scheme have
been published in collaboration with an M.Sc. student who is currently still
participating in this activity [38].
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Fig. 27. Regime maps of the network of nonlinear oscillators discussed in [79], showing
the effect of increasing the nonlinear damping coefficient k, for only the 5th rotor:
k = 0.01 (a), k = 0.02 (b), k = 0.05 (c), k = 0.10 (d). Here H is the inertia parameter
(the same for each rotor) and the output power of the 5th generator is Pg,5, with: 1 —
area of the synchronous mode (blue); 2 — area of bi-stability (yellow); 3 — area of
asynchronous behavior of one or more oscillators (orange). Adapted from Fig. 4 of [38]

19. CONCLUSION AND FUTURE OUTLOOK

Since 2011, we have cooperated on joint research involving theoretical and
computational studies of Josephson nanostructures, with particular focus on
the various nonlinear dynamic effects that are important in the variety of
existing models for coupled Josephson junctions. Our collaboration has made
it possible to simulate their phase dynamics, current–voltage characteristics,
as well as several useful measures for the detection and analysis of chaos; such
as, the Lyapunov exponent spectrum, Poncaré section, recurrence plot, etc.
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We also appreciate that many of these results have required extensive
computational time — representing, in totality, several hundreds of CPU
years! — and would thus not have been possible without the excellent
high-performance computation (HPC) support provided by the JINR and
UNISA. During our collaboration over the past twelve years, we have also
had to travel frequently between Russia and South Africa, especially during
the pre-pandemic era, before it became easier to interact electronically via
many meeting platforms that are now available. Thankfully, there were always
opportunities, such as symposiums and conferences, and specific mobility
funding to make these collaborative research visits possible. We note that on
September 12, 2022, the 21st meeting of the Joint Coordination Committee
(JCC) on cooperation between the Republic of South Africa and the Joint
Institute for Nuclear Research was held in Cape Town (Fig. 28). Thus, in
our view, our collaboration has flourished principly as a result of three
favorable circumstances: (i) the realization of our common research interests
and shared expertise in different areas, (ii) the availability of excellent
computational facilities, and (iii) the ability to transcend boarders through
air-travel and (more recently) online meeting platforms. As a result, our
collaboration has been very productive. By involving the whole group at JINR
(see Fig. 29), we have been able to relate many important physical aspects
to the dynamics of systems of Josephson junctions. We have also made a
significant contribution to gaining a better understanding of the multi-faceted,
complex role played by chaos, synchronization, and other fascinating nonlinear
effects, in structures composed of coupled Josephson junctions; whether they
are coupled intrinsically, due to shunting, or as a result of incorporating
the ferromagnetic materials that make it possible to control the magnetic
properties via the superconducting current, and vice versa.

Fig. 28. On September 12, 2022, the 21st meeting of the Joint Coordination Commit-
tee (JCC) on cooperation between the Republic of South Africa and the Joint Institute

for Nuclear Research was held in Cape Town
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Fig. 29. The JINR group currently studying Josephson nanostructures

Today, superconductor electronics and spintronics based on Josephson
nanostructures are intensively developing areas of condensed matter
physics [46, 57, 80, 81]. An important part of this development is the study of
Josephson junctions (JJs) that are coupled to magnetic systems. The ability
to control the magnetic properties using the Josephson current, as well as
the influence exerted on the superconducting current by the precession of the
magnetic moment, attracts a great deal of attention.

Our main goal for our future collaboration is to create a base for
fundamental and applied research in the field of superconducting electronics
and spintronics in both countries. Currently, intensive joint work is being
carried out on the simulation of superconducting nanostructures, in particular,
coupled Josephson junctions, shunted systems, and hybrid Josephson
structures with various types of barriers. This makes it possible to study the
phase dynamics and current–voltage characteristics to obtain new information
about various resonant and synchronization phenomena that influence the
physical behavior of these structures. Such behavior includes, for example,
switching, which is of importance to cryogenic memory.
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31. Botha A. E., Shukrinov Yu.M., Tekić, J., Kolahchi M. R. Chaotic Dynamics from
Coupled Magnetic Monodomain and Josephson Current // Phys. Rev. E. 2023.
V. 107. P. 024205.

32. Botha A.E., Shukrinov Yu.M. Observation of Chaotic Behaviour in the
CCJJ+DC Model of Coupled Josephson Junctions // Chaotic Modeling
Simulation. 2013. V. 2. P. 265–272.

33. Azemtsa-Donfack H., Shukrinov Yu.M., Rahmonov I. R. Can Shapiro Step
Subharmonics be “Charged”? // Proc. of the 59th Ann. Conf. of the South African
Inst. Phys. SAIP2014, Univ. of Johannesburg, 2015. P. 22–28.

34. Shukrinov Yu.M., Rahmonov I. R., Kulikov K.V., Botha A. E., Gaafar M.,
El Samman H., Dawood R., Nashaat M., El Sherbini T. Intrinsic Josephson
Junctions for Superconducting Electronics and Quantum Computation // Proc.

41



of the 15th Intern. Supercond. Electronics Conf. (ISEC 2015), Japan, July, 6–9.
2015. P.DP-P02.

35. Botha A. E., Shukrinov Yu. M., Rahmonov I. R., Kulikov K.V., Kolahchi M. R.
Synchronization and Chaos Control Features in Arrays of Intrinsic Josephson
Junctions // 16th Intern. Supercond. Electronics Conf. (ISEC), Naples, Italy, June
12–16, 2017. IEEE Xplore, 2017. P. 1–4.

36. Shukrinov Yu.M., Rahmonov I. R., Botha A.E. Dynamics of Anomalous
Josephson Effect in Superconducting Nanostructures // AIP Conf. Proc. 2022.
V. 2551, No. 1. P. 020003.
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