P13-2024-22

Ю. Н. Пепелышев¹, А. В. Виноградов¹, А. Д. Рогов¹, Д. Сумхуу^{1,2}

ПРЕДВАРИТЕЛЬНЫЕ РАСЧЕТЫ ПО ИМПУЛЬСНОМУ РЕАКТОРУ ИБР-4. ОПТИМИЗАЦИЯ НЕЙТРОННОГО ПОТОКА

Направлено в журнал «Письма в ЭЧАЯ»

¹ Объединенный институт ядерных исследований, Дубна ² Институт физики и технологии МАН, Улан-Батор

Пепелышев Ю. Н. и др.

Предварительные расчеты по импульсному реактору ИБР-4. Оптимизация нейтронного потока

Импульсный реактор ИБР-4 при мощности 4 МВт и частоте повторения импульсов 10 с⁻¹ рассматривается как импульсный источник нейтронов на замену реактору ИБР-2М, который будет выведен из эксплуатации к концу 2030-х гг. Конструкция ИБР-4 построена на базе реактора МБИР с некоторой перекомпоновкой активной зоны (а. з.). А. з. с внесенными изменениями обеспечивает ядерную безопасность реактора и минимизирует низкочастотные колебания энергии импульсов, присущие импульсным реакторам периодического действия. Оптимальная компоновка а. з. ИБР-4 сформирована на основе базовой компоновки с добавлением бериллиевых отражателей и небольших по объему водяных замедлителей. Реактор ИБР-4 при относительно небольшой средней мощности 4 МВт позволяет получить плотности потока тепловых нейтронов на поверхности водяного замедлителя для выведенных нейтронных пучков на уровне $1, 2 \cdot 10^{14}$ см⁻² · с⁻¹, а в области, близкой к поверхности, — $3, 0 \cdot 10^{14}$ см⁻² · с⁻¹. Таким образом, ИБР-4 является мощным импульсным источником тепловых нейтронов.

Работа выполнена в Лаборатории нейтронной физики им. И. М. Франка ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 2024

Pepelyshev Yu. N. et al.

P13-2024-22

P13-2024-22

Preliminary Computations for the Pulsed Reactor IBR-4. Optimization of the Neutron Flux

The IBR-4 pulsed reactor with a power of 4 MW and a pulse repetition frequency of 10 s⁻¹ is considered as a pulsed neutron source to replace the IBR-2M reactor, which will be decommissioned by the end of the thirties. The design of the IBR-4 is based on the MBIR reactor with some rearrangement of the core. The core, with the changes made, ensures the nuclear safety of the reactor and minimizes the low-frequency fluctuations in pulse energy inherent in periodic pulse reactors. The optimal design of the IBR-4 core is based on the basic design with the addition of beryllium reflectors and small volume water moderators. The IBR-4 reactor, with a relatively small average power of 4 MW, makes it possible to obtain thermal neutron flux densities on the surface of the water moderator for the derived neutron beams at the level of $1.2 \cdot 10^{14} \text{ cm}^{-2} \cdot \text{s}^{-1}$, and in the area close to the surface — $3.0 \cdot 10^{14} \text{ cm}^{-2} \cdot \text{s}^{-1}$. Therefore, IBR-4 is a powerful pulsed source of thermal neutrons.

The investigation has been performed at the Frank Laboratory of Neutron Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2024

введение

Импульсный реактор ИБР-4 рассматривается как импульсный источник нейтронов на замену реактору ИБР-2М, который будет выведен из эксплуатации к концу 2030-х гг. Основу ИБР-4 составляет так называемая базовая компоновка реактора, для которой в работе [1] была показана принципиальная возможность реализации референтных технических решений, применяемых в современном реакторостроении [5]. В базовом варианте ИБР-4 активная зона, как и в ИБР-2М, остается в традиционном окружении водяных замедлителей и рассматривается исключительно для тестового сравнения параметров этой установки с параметрами действующего реактора ИБР-2М. Сравнение показало возможность успешного использования положительных технических решений, применяемых на реакторах на быстрых нейтронах МБИР, БОР-60, БН-600, БН-1200. В данной работе рассматривается дальнейшее улучшение параметров ИБР-4 с целью повышения плотности потока нейтронов на выведенных нейтронных пучках. Принято считать, что в современных источниках нейтронов средняя плотность потока тепловых нейтронов на поверхности замедлителей должна быть на уровне $1,0 \cdot 10^{14}$ см⁻² · с⁻¹ [3,4]. Считается, что такие потоки позволят решить некоторые принципиальные вопросы физики и расширить диапазон физических исследований. Мы не задаемся целью получать такие или еще выше плотности потока нейтронов или обсуждать вышеназванную цифру. В первую очередь решаются вопросы безопасности источника и устраняются ограничения по его колебательной нестабильности, присущей импульсным источникам периодического действия. Поэтому в процессе проработки ИБР-4 средняя мощность реактора с целью безопасности изначально была ограничена 4 МВт, а повышение нейтронных потоков являлось оптимизационной задачей.

1. БАЗОВАЯ КОМПОНОВКА ИБР-4

Базовая компоновка ИБР-4 — это конструкция активной зоны (а.з.), которая обеспечивает требуемые параметры ядерной безопасности [1,5]. Корпус реактора с примыкающим к нему модулятором реактивности ПО-3 приведен на рис. 1. Поперечный разрез а. з. базового варианта ИБР-4 показан на рис. 2. Краткое описание базовой компоновки ИБР-4 состоит в следующем: в центр а. з. помещены 8 кассет-имитаторов, там же симметрично размещены 8 каналов, в которые вставлены блоки ручного и автоматического регулирования мощности. Два вольфрамовых блока компенсатора выгорания — помещены вне а. з., непосредственно вблизи корпуса реактора. Базовая компоновка ИБР-4 включает в себя также элементы выравнивания энерговыделения по а. з. Это сделано для уменьшения действия положительной компоненты быстрой мощностной обратной связи, вызывающей резонансные явления в колебаниях энергии импульсов мощности. Для выравнивания энерговыделения в центр а. з. вставлены 13 ТВС с вольфрамовыми вставками в твэлах. Всего в а. з. находятся 102 ТВС,

Рис. 1. Корпус ИБР-4 с примыкающим к нему модулятором реактивности ПО-3

Рис. 2. а) Базовая компоновка ИБР-4 с выравниванием энерговыделения в а.з.: всего 102 ТВС, 86 ТВС с диоксидом плутония, 8 стержней СУЗ с обогащенным бором-10, 8 ТВС — кассет-имитаторов для компенсации выгорания, 13 ТВС со вставками вольфрама длиной 6 см в центре каждого твэла. б) Запас устойчивости ИБР-4 по амплитуде низкочастотных колебаний в зависимости от мощности реактора. Красная горизонтальная прерывистая линия обозначает уровень запаса устойчивости, рекомендуемый для сложных технических систем [4], вертикальная линия — уровень средней мощности ИБР-4

Рис. 3. Поперечный разрез а.з. ИБР-4 с органами СУЗ и имитаторами: *a*) конструкция корпуса, аналогичная корпусу МБИР, с протеканием натрия сверху вниз вдоль корпуса; *б*) другой вариант корпуса с протеканием натрия в специально выделенных патрубках, обеспечивается дополнительный страховочный корпус. *1* — модулятор реактивности (МР); *2* — двойной корпус; *3* — слой В₄С; *4* — плоский водяной замедлитель; *5* — органы СУЗ В₄С (80% ¹⁰В); *6* — слой жидкого натрия; *7* — TBC; *8* — KO1; *9* — KO2; *10* — корпус модулятора реактивности

Таблица 1. Средние плотности потока нейтронов на поверхности в	водяных
замедлителей в базовой компоновке ИБР-4 при мощности 4 МВт и в	ыигрыш
в потоках относительно ИБР-2М	

Параметр	Плоский Н ₂ О-замедлитель	Гребенчатый Н ₂ О-замедлитель	$\Phi_{ extsf{MEP-4}}/\Phi_{ extsf{MEP-2M}}$
$\Phi_{2\pi}, \ \mathrm{cm}^{-2} \cdot \mathrm{c}^{-1}$ (средний по H ₂ O-замедлителю)	$6,9 \cdot 10^{12}$	$1,2 \cdot 10^{13}$	1,1-2,0
$\Phi_{2\pi}$, см ⁻² · с ⁻¹ (максимальный по H ₂ O-замедлителю)	$8,0 \cdot 10^{12}$	$1,4 \cdot 10^{13}$	1,3-2,3

86 ТВС с диоксидом плутония, 8 стержней СУЗ с обогащенным бором-10 и 8 ТВС-имитаторов для компенсации выгорания. Корпус реактора двойной и выполнен по схеме МБИР с прохождением натриевого теплоносителя сверху вниз вдоль корпуса по всему периметру и далее через а.з. снизу вверх. Другой вариант корпуса с прохождением теплоносителя сверху вниз через специально выделенные входные патрубки приведен на рис. 3. Модулятор реактивности ПО-3, используемый в настоящее время на реакторе ИБР-2M, тесно примыкает к одной из граней корпуса.

Водяные замедлители просматриваются горизонтальными радиального типа нейтронными каналами. Между а.з. и замедлителями установлена прослойка гадолиния толщиной 1 мм. Некоторые исходные установочные данные для базовой компоновки ИБР-4 состоят в следующем:

• Топливо — диоксид плутония. Изотопный состав плутония соответствует топливу в ИБР-2М.

• Мощность 4 МВт. Ограничение по мощности вызвано ростом низкочастотных и полных колебаний энергии импульсов с увеличением мощности.

• Частота повторения импульсов 10 с⁻¹ — исходя из оптимизации условий для пользователей нейтронных пучков и снижения отрицательного воздействия быстрой мощностной обратной связи (МОС) на колебания энергии импульсов.

В табл. 1 приведены средние плотности 2π -эквивалентного потока нейтронов на поверхности водяных замедлителей ИБР-4. Поясним, что здесь и далее плотности 2π -эквивалентного потока нейтронов — нейтроны, которые пользователи выведенных нейтронных пучков могут «увидеть» на поверхности замедлителей.

2. БАЗОВАЯ КОМПОНОВКА ИБР-4 С ОТРАЖАТЕЛЯМИ НЕЙТРОНОВ

Использование отражателей усиливает потоки нейтронов на поверхности водяных замедлителей. Современные стационарные исследовательские реакторы, а также импульсные источники нейтронов, например общеевропейский источник ESS [7], включают в компоновку замедлителей специально выделенные отражатели нейтронов. На рис. 4 приведен пример ИБР-4 с отражателем.

Габариты водяного замедлителя составляли $5 \times 6 \times 10$ см при оптимальной толщине замедлителя 5 см. Расчет потоков нейтронов на замедлителе, а также потоков вблизи или на удалении от замедлителя для всех вариантов а.з., рассмотренных в данной работе, проводился по единой методике. Потоки нейтронов рассчитывались в трех точках: непосредственно

Рис. 4. ИБР-4 с водяными замедлителями (голубой) и с отражателями нейтронов (желтый) в среднем сечении а. з.

Рис. 5. Расчетная модель ИБР-4 с отражателями нейтронов и пучковым коллиматором для одного нейтронного пучка

в центре поверхности водяного замедлителя, вторая точка — на расстоянии 30 см от поверхности по линии нейтронного пучка и третья точка — на расстоянии 10 м от поверхности замедлителя. Для наглядности потоки рассматривались только для одного нейтронного пучка (рис. 5). Плотности потока нейтронов в так называемом 2π -приближении, т. е. нейтроны, которые могут быть «видимы» на поверхности замедлителя на достаточно большом расстоянии от а. з., рассчитывались следующим образом. Вся поверхность замедлителя просматривалась прямоугольным коллиматором длиной 5 м, изготовленным из железа. Коллиматор играл роль тепловой защиты и защиты от влияния соседних нейтронных пучков. Плотности потока нейтронов рассчитывались на удалении 10 м от а. з. по оси пучка $\Phi_{\rm sample}$ и пересчитывались для оценки плотности 2π -эквивалентного потока на замедлителе $\Phi_{2\pi} = 2\pi (L^2/S) \Phi_{\rm sample}$. Наличие коллиматора снижает плотность 2π -эквивалентного потока в 1,6 раза. Поэтому все расчеты проводились только с учетом коллиматора.

Усиление нейтронного потока существенно зависит от материала отражателей. Рассматривались следующие виды отражателей: бериллий, тяжелая вода, графит и свинец. Влияние материала отражателей на потоки нейтронов на расстоянии 30 см от поверхности водяного замедлителя видно на рис. 6.

Расчеты показали, что наилучший для ИБР-4 отражатель — бериллий. Изменение плотности потока тепловых нейтронов на расстоянии 10 м от поверхности водяного замедлителя в зависимости от толщины отражателя из бериллия показано на рис. 6. Оптимальная толщина Ве-отражателя для получения максимального потока нейтронов с поверхности водяного замедлителя составляет 40 см. Средние значения плотности потока тепловых нейтронов на поверхности водяного замедлителя с Ве-отражателем оптимальной толщины, а также потоки в 2π -приближении приведены в табл. 2.

Рис. 6. Распределение по энергии потока нейтронов на один нейтрон деления на расстоянии 30 см от поверхности водяного замедлителя для разных типов отражателей: бериллия, тяжелой воды, графита и свинца (*a*) и изменение потока тепловых нейтронов на расстоянии 10 м от поверхности водяного замедлителя на один нейтрон деления в зависимости от толщины отражателя из бериллия (б)

Таблица 2. Средние плотности потока тепловых нейтронов (Φ_{th}^1) и плотность 2π -эквивалентного потока $(\Phi_{2\pi})$ на поверхности замедлителя в ИБР-4 с Ве-отражателями оптимальной толщины. $\Delta k_{sq}/k_{sq}, \tau$ — эффективность Ве-отражателя и время жизни нейтронов в а.з. соответственно, мощность 4 МВт

Параметр	Be	Без Ве	$\Phi_{ extsf{MBP-4}}/\Phi_{ extsf{MBP-2M}}$
$\Delta k_{ m sop}/k_{ m sop}$, %	+10,3	0	_
au, HC	142	66	_
$\Phi^1_{ m th}$, см $^{-2}\cdot{ m c}^{-1}$ (на поверхности замедлителя)	$3,1 \cdot 10^{14}$	$1,3 \cdot 10^{13}$	_
$\Phi_{2\pi}, \ \mathrm{cm}^{-2} \cdot \mathrm{c}^{-1}$	$1,2 \cdot 10^{14}$	$1,3 \cdot 10^{13}$	$\begin{array}{c} 20 \\ 1,2\cdot 10^{14}/6,0\cdot 10^{12} \end{array}$

Такие высокие плотности потока тепловых нейтронов на поверхности водяного замедлителя, находящегося в окружении Ве-отражателей (см. табл. 2), могут быть следствием существенного уширения длительности вспышки тепловых нейтронов за счет времени замедления и диффузии быстрых нейтронов на бериллии. Проведены следующие расчеты. На водяной замедлитель воздействует дельта-импульс быстрых нейтронов со спектром нейтронов в а. з. ИБР-4. Рассматривается временное распределение тепловых нейтронов с энергией в диапазоне $\sim 0-0,5$ эВ на поверхности водяного замедлителя при наличии или отсутствии бериллия. Результаты приведены на рис. 7 и 8. Без бериллия (красная линия на рис. 7) показано временное распределение тепловых нейтронов, генерируемых в процессах термализации и диффузии только в среде водяного замедлителя, другие распределения на этом рисунке — те же процессы, но с участием бериллиевых отражателей. Видно, что для воды время термализации сопоставимо со

Рис. 7. Распределение во времени потока тепловых нейтронов на один нейтрон деления на поверхности водяного замедлителя ИБР-4 при толщине бериллиевого отражателя 20 см (*a*) и толщине 0 см без отражателя (*б*). Цифрами показана ширина импульса на полувысоте. В момент времени ноль на замедлитель воздействует дельта-импульс быстрых нейтронов со спектром в а.з. ИБР-2М

Рис. 8. Распределение во времени потока тепловых нейтронов на один нейтрон деления на поверхности водяного замедлителя ИБР-4 при некоторых значениях толщины бериллиевого отражателя: красная линия — толщина 0 см (без отражателя), синяя — 20 см, черная — 40 см. Цифрами показана временная константа спада нейтронного потока

временем диффузии нейтронов, а длительность вспышки тепловых нейтронов составляет всего 160 мкс. С бериллием длительность вспышки определяется в основном временем диффузии нейтронов в бериллии. В целом для максимально возможной толщины бериллиевого отражателя, равной 40 см, полуширина вспышки составляет 1300 мкс. Интересно отметить, что, как видно из рис.8, варьированием толщины Ве-отражателя можно менять длительность вспышки тепловых нейтронов на поверхности водяного замедлителя от минимального значения 160 мкс до максимального — 1300 мкс. Плотность потока тепловых нейтронов на поверхности водяного замедлителя при таком изменении длительности вспышки увеличивается от $1,3\cdot 10^{13}$ до $3,1\cdot 10^{14}$ см $^{-2}\cdot c^{-1},$ т.е. в 30 раз.

Также отметим, что реальная форма вспышки тепловых нейтронов на поверхности водяного замедлителя $G_{\rm tot}(t)$ будет определяться вспышкой быстрых нейтронов, генерируемой в а.з. модулятором реактивности $G_{\rm fast}(t)$, и реакцией замедлителей и отражателей на дельтаимпульс быстрых нейтронов $h_{\rm term}(t)$. В данном случае функцию $h_{\rm term}(t)$ можно назвать импульсной характеристикой замедлителя. Соотношение между указанными вспышками будет выглядеть следующим образом: $G_{\rm tot}(t) = G_{\rm fast}(t)^* h_{\rm term}(t)$, где * есть оператор свертки. Эту вспышку $G_{\rm tot}(t)$ можно измерить, установив детектор на поверхность водяного замедлителя. Форму вспышки тепловых нейтронов в так называемом 2π -представлении, т.е. вспышки тех нейтронов, которые экспериментатор может «видеть» на удаленной базе от поверхности водяных замедлителей, непосредственно зарегистрировать практически невозможно (или очень сложно), но можно рассчитать.

3. ИБР-4 С УПЛОЩЕННОЙ АКТИВНОЙ ЗОНОЙ

Рассмотрение уплощенной а.з. ИБР-4 проведено в основном с целью увеличения числа выведенных нейтронных пучков, «просматривающих» водяные замедлители. Активная зона в этом случае удлинена в горизонтальном сечении в 2 раза: с 20 см по грани, примыкающей к замедлителю, до 40 см. В удлиненной геометрии а.з. высота твэлов уменьшается с 44,4 до 36 см, как следствие — увеличивается жесткость твэлов, соответственно, положительная компонента МОС, вызванная изгибами твэлов к центру а.з., уменьшается и реактор становится более стабильным. Таким образом, в уплощенной конструкции а.з. присутствует достаточно много плюсов. Приемлемость уплощенной конструкции а.з. для ее дальнейшего рассмотрения состояла в оценке ее нейтронно-физических характеристик,

Рис. 9. Расчетная модель ИБР-4 с бериллиевыми отражателями с уплощенной а.з. В центре виден модулятор реактивности, коллиматор не показан

Рис. 10. Распределение потока нейтронов на один нейтрон деления по энергии в а. з. ИБР-4 на расстоянии 10 м от поверхности водяных замедлителей, расположенных слева и справа от уплощенной зоны

Таблица 3. Средние плотности потока тепловых нейтронов на поверхности водяных замедлителей в ИБР-4 с уплощенной а.з. (h = 36 см) с бериллиевыми отражателями. $\Delta k_{s\phi}/k_{s\phi}$, τ — эффективность Ве-отражателя и время жизни нейтронов в а.з. соответственно. Приведена глубина модуляции модулятора реактивности из бериллия и никеля, мощность 4 МВт

Параметр	Be	Без Ве	$\Phi_{ extsf{MBP-4}}/\Phi_{ extsf{MBP-2M}}$
$\Delta k_{ m sop}/k_{ m sop}$, %	+7,3	0	—
Глубина модуляции для модулятора из Ве $\Delta k_{ m sop}/k_{ m sop}$, %	11	_	_
Глубина модуляции для модулятора из никеля $\Delta k_{ m s \phi}/k_{ m s \phi}, %$	4	Ι	_
au, HC	277 (73)	48	_
$\Phi_{\mathrm{np}},\ \mathrm{cm}^{-2}\cdot\mathrm{c}^{-1}$	$1,1\cdot 10^{14}$	$8{,}0\cdot10^{12}$	—
$\Phi_{\scriptscriptstyle \rm JRB},~{ m cm}^{-2}\cdot{ m c}^{-1}$	$5,1\cdot 10^{13}$	$3,8\cdot 10^{12}$	—
$\Phi_{2\pi}, \ \mathrm{cm}^{-2} \cdot \mathrm{c}^{-1}, \ \mathrm{правый}$	6,1 · 10 ¹³	3,8 · 10 ¹²	$\begin{array}{c} 10 \\ 6,1 \cdot 10^{13} / 5,0 \cdot 10^{12} \end{array}$
$\Phi_{2\pi},\ { m cm}^{-2}\cdot{ m c}^{-1},$ левый	2,9 · 10 ¹³	3,8 · 10 ¹²	$5\\2,9\cdot 10^{13}/5,0\cdot 10^{12}$

особенно в оценке плотности потока нейтронов на замедлителе. Расчетная модель уплощенной конструкции ИБР-4 показана на рис.9 (без коллиматора).

Распределение по энергии средней по поверхности водяного замедлителя плотности потока нейтронов на один нейтрон деления в уплощенной конструкции а.з. на расстоянии 10 м от поверхности замедлителей, расположенных слева и справа от модулятора реактивности, приведено на рис. 10.

Основные данные по потокам нейтронов в ИБР-4 с уплощенной а.з. приведены в табл. 3. Плотности потока нейтронов, как видно из табл. 3, $\Phi_{2\pi}=6,1\cdot10^{13}~{\rm cm}^{-2}\cdot{\rm c}^{-1}$ для уплощенной а.з. меньше потоков в основной компоновке реактора в 1,9 раза. Уплощенную конструкцию а.з., по-видимому, можно рассматривать лишь с точки зрения выгоды от повышения числа выведенных нейтронных пучков и дополнительного ослабления колебательной нестабильности.

4. ТЕСТОВЫЕ РАСЧЕТЫ

Тестовые расчеты необходимы для сравнительной оценки основных нейтронно-физических характеристик ИБР-4. Эта задача представляется достаточно важной, поскольку всегда существуют некоторые сомнения в расчетах таких сложных реакторных систем, как ИБР-4, систем с малыми а.з. с термализацией нейтронов в среде разнотипных замедлителей. В тестовых расчетах и в расчетах ИБР-4 использовалась единая программная среда и единый методический подход. Поэтому тестовые расчеты позволяют получить достаточно надежную экспертную оценку нейтронно-физических характеристик ИБР-4.

4.1. Тест № 1. Расчеты по реактору ИБР-3 («Нептун»). Реактор ИБР-3 (другое название — «Нептун») есть проект источника нейтронов взамен ИБР-2М [2,5]. Отличительная особенность ИБР-3 (в отличие от ИБР-2 и ИБР-2М) состоит в использовании в качестве топлива вместо плутония пороговый элемент нептуний. При этом в ИБР-3 модуляция реактивности выполняется с помощью вращающегося диска с положитель-

Рис. 11. Горизонтальное сечение ИБР-3 по центру а.з. (а) и расчетная модель ИБР-3 без коллиматора (б)

Рис. 12. Распределение по энергии потока нейтронов на один нейтрон деления на расстоянии 30 см (*a*) и 10 м от поверхности водяного замедлителя (*б*) ИБР-3 при наличии и отсутствии Ве-отражателя

Таблица 4. Средние плотности потока тепловых нейтронов на поверхности водяных замедлителей в ИБР-3 (Φ_{th}^{l}) и на расстоянии 30 см от замедлителей по оси пучка (Φ_{th}^{2}) и плотность 2π -эквивалентного потока ($\Phi_{2\pi}$) на поверхности замедлителя. $\Delta k_{s\phi}/k_{s\phi}, \tau$ — эффективность Ве-отражателя и время жизни нейтронов в а. з., мощность 15 МВт. Выигрыш относительно ИБР-2М равен 7

Параметр	Be	Без Ве
$\Delta k_{ m sol}/k_{ m sol},~\%$	+1,4	0
au, HC	9	9
$\Phi^1_{ m th},{ m cm}^{-2}\cdot{ m c}^{-1}$ (на поверхности замедлителя)	$1,5\cdot 10^{14}$	$9{,}5\cdot10^{12}$
$\Phi_{ m th}^2,~{ m cm}^{-2}\cdot{ m c}^{-1}$ (30 см от замедлителя)	$9,7\cdot10^{13}$	$1,\!3\cdot10^{13}$
$\Phi_{2\pi},\ \mathrm{cm}^{-2}\cdot\mathrm{c}^{-1}$	$4,2\cdot 10^{13}$	$9,3\cdot 10^{12}$

ным пустотным эффектом. Кратко отметим основные особенности ИБР-3: топливо — нитрид нептуния (NpN), охлаждение — натрий, мощность 15 МВт. Все необходимые данные для расчетов ИБР-3 взяты из работы [6]. Геометрия ИБР-3 по горизонтальному сечению а.з. и расчетная модель ИБР-3 приведены на рис. 11.

Распределение по энергии средней плотности потока нейтронов на один нейтрон деления ИБР-3 на расстоянии 30 см и 10 м от поверхности водяного замедлителя показаны на рис. 12. Основные расчетные нейтроннофизические параметры ИБР-3 приведены в табл. 4.

4.2. Тест № 2. Плотность потока тепловых нейтронов на поверхности водяного замедлителя реактора ИБР-2М. Расчет плотности потока тепловых нейтронов на поверхности водяных замедлителей ИБР-2М проводился с целью тестовой проверки методики нейтронно-физических расчетов реактора с термализацией нейтронов с помощью водяных замедлителей. Вычисления выполнялись для замедлителя, просматриваемого нейтронными пучками № 2 и 3. Геометрия замедлителей показана на рис. 13. Все стенки замедлителя изготовлены из алюминия, между кор-

Рис. 13. Водяной замедлитель со стороны нейтронных пучков № 2 и 3, прослойка карбида бора 1 см, все стенки — алюминий

Таблица 5. Средние потоки тепловых нейтронов на поверхности водяных замедлителей ИБР-2М со стороны нейтронных пучков № 2 и 3. Нейтронный источник для ИБР-2М равен 0,96 · 10¹⁷ с⁻¹/МВт. Мощность 2 МВт

Параметр	Пучок №2	Пучок №3
$\Phi^{\rm l}_{ m th},$ см $^{-2}/$ нейтрон деления (на расстоянии 10 м от поверхности замедлителя)	$4,1 \cdot 10^{-9}$	$3,7 \cdot 10^{-9}$
Φ _{2π} , см ^{—2} /нейтрон деления (на поверхности замедлителя)	$3,1 \cdot 10^{-5}$	$2,4 \cdot 10^{-5}$
$\Phi_{2\pi}$, см $^{-2} \cdot c^{-1}$ (плотность 2π -эквивалентного потока на поверхности замедлителя для 2 МВт)	$5,96\cdot 10^{12}$	$5,1 \cdot 10^{12}$

пусом реактора и замедлителем вставлена прослойка из карбида бора толщиной 1 см. Расчет выполнялся для реальной системы тепловой защиты и первого кольца биологической защиты ИБР-2М, через которую проходит канал нейтроновода 20 × 40 см. Основные данные по потокам нейтронов на замедлителе для пучков № 2 и 3 приведены в табл. 5.

4.3. Тест № 3. Задача на адекватность программной среды для расчета реакторов на быстрых нейтронах с малой а.з. и с внешними замедлителями нейтронов. Смысл простой: просчитать критическую систему (реактор) на быстрых нейтронах в окружении разнотипных замедлителей. Расчет провести с помощью программных пакетов, аналогичных МСNP и SERPENT. Главная задача состояла в том, чтобы можно было методически «правильно», т.е. по единым правилам, сопоставить резуль-

Рис. 14. Геометрия тестовой задачи с постоянной площадью а.з. из PuO2 и NpN

Таблица 6. Эффективный коэффициент размножения $k_{s\phi}$, объем а. з., а также средние потоки тепловых нейтронов по объему шарового детектора для зоны из PuO₂ и NpN на один нейтрон деления (Φ_{th}^2) и на 1 МВт мощности (Φ_{th}^2) при расчетах по MCNP и SERPENT

Параметр	PuO ₂	NpN
$k_{ m s\phi},~\%$	$1,064 \pm 0,004 \qquad 1,065 \pm 0,0$	
Объем а.з., л	39,5 = 31,1 + 8,84 (медь)	39,5
$\Phi^1_{ m th},\ { m cm}^{-2}/$ нейтрон деления (средний по объему шара-детектора)	$(2,44 \pm 0,02)$	$\cdot 10^{-4}$
Источник нейтронов деления $arphi$, c $^{-1}/MB$ т	$0,96\cdot 10^{17}$	$0,90\cdot 10^{17}$
$\Phi_{\rm th}^2$, (см ^{-2} · с ^{-1})/МВт (средний по объему шара-детектора)	$(2,\!30\pm0,\!03)\cdot10^{13}$	$(2,\!20\pm0,\!03)\cdot10^{13}$

Рис. 15. *а*) Спектры нейтронов в а.з. из PuO₂ и в шаровом детекторе, нормированные на один нейтрон деления, полученные с помощью программ MCNP и SERPENT. Видно практически полное совпадение. *б*) Визуализация плотности потока тепловых нейтронов для а.з. из PuO₂ в программе SERPENT. Видна светящаяся область генерации тепловых нейтронов

таты расчетов по выходу тепловых нейтронов из замедлителей для а.з. на основе плутония и нептуния, а в данной работе сравнить расчеты по ИБР-3 и ИБР-4, полученные с помощью разных программных пакетов.

Отметим некоторые особенности расчетов а.з ИБР-3 (нептуний) и ИБР-4 (плутоний). Для понимания постановки задачи сравним плотность потока нейтронов $\Phi_{\rm rc}$ на поверхности критического шара радиусом r из диоксида плутония и шара из нитрида нептуния. Для плотности потока нейтронов на поверхности критического шара имеем

$$\Phi \left[c M^{-2} \cdot c^{-1} \right] = \varphi \left[c^{-1} \right] / 4\pi r^2,$$

где $\varphi[c^{-1}]$ — источник нейтронов деления: для зоны из PuO_2 $\varphi \, [c^{-1}/MBT] = 0.96 \cdot 10^{17}$ и для NpN $\varphi \, [c^{-1}/MBT] = 0.90 \cdot 10^{17}$. Для радиусов критических шаров из PuO₂ 9,6 см и из NpN 14,0 см соотношение плотностей потоков нейтронов на поверхности шаров равно $\Phi(PuO_2)/\Phi(NpN) = 2.2$. Таким образом, принципиально важно отметить, что потоки нейтронов на выведенных нейтронных пучках при одной и той же мощности для плутониевой а.з. будут заметно больше, чем для нептуниевой. Кроме того, видно, что основную роль в оптимизации плотности потока нейтронов играет общая площадь а.з. Значит, из всего множества малых а.з. разного объема и площади, можно выбрать вариант, при котором критические а.з. с PuO₂ и NpN будут иметь равные площади. В этом случае плотности потока нейтронов на поверхности а.з. обоих реакторов при одной и той же мощности должны быть с точностью до источника нейтронов деления $\varphi[c^{-1}]$ равны или равны полностью из расчета на один нейтрон деления. Для проверки этого предположения была выбрана схема параллельных расчетов по программам, аналогичным MCNP и SERPENT. Геометрия тестовой задачи, удобной для расчетов с помощью указанных выше пакетов, представлена на рис. 14. Рассматривается цилиндрическая а.з. с Ве-отражателями и водяным замедлителем. В центре а. з. выделена цилиндрическая область, заполненная медью. Варьированием диаметра этой области достигаем критичности на запаздывающих нейтронах сначала для NpN-топлива, затем для PuO₂-топлива. Указанная процедура последовательно выполняется для MCNP и SERPENT. На поверхности водяного замедлителя ставится шаровой детектор, полностью перекрывающий раструб Ве-отражателя (см. рис. 14). Рассматриваются поток быстрых нейтронов в а.з. и средний по объему шара-детектора поток тепловых нейтронов. Результаты расчетов представлены в табл. 6.

На рис.15 для примера приведены спектры нейтронов в а.з. из PuO₂ и в шаровом детекторе, полученные по программам MCNP и SERPENT. Видно полное совпадение.

5. АНАЛИЗ РЕЗУЛЬТАТОВ И ВЫВОДЫ

Конструкция ИБР-4 построена на базе реактора МБИР с некоторой перекомпоновкой а.з. Такая зона, названная в работе [1] базовой компо-

Таблица 7. Некоторые нейтронно-физические характеристики реакторов ИБР-2М, ИБР-3 и ИБР-4: $\Phi_{2\pi}$ — средние плотности потока тепловых нейтронов на поверхности водяных замедлителей в 2π -эквивалентном приближении, τ — время жизни нейтронов в а.з. и выигрыш в потоке относительно ИБР-2М

				ИБР-4	
Параметр	ИБР-2М	ИБР-3	Базовый	Базо-	Уплощен-
				вый + Ве	ный + Ве
au, HC	65	9(10)		140	48
Мощность, МВт	2	15	4		
$\Phi^1_{\mathrm{th}}, \mathrm{cm}^{-2} \cdot \mathrm{c}^{-1}$		$15,0 \cdot 10^{13}$			
(на поверхности					
H ₂ O-замедлителя)	$0, 6\cdot 10^{13}$	$(12, 0 \cdot 10^{13})$	$1,2\cdot 10^{13}$	$31\cdot 10^{13}$	$11\cdot 10^{13}$
$\Phi_{2\pi}, \ \mathrm{cm}^{-2} \cdot \mathrm{c}^{-1}$	$0,6 \cdot 10^{13}$	$4,2 \cdot 10^{13}$	$1,2 \cdot 10^{13}$	$12 \cdot 10^{13}$	$6,1 \cdot 10^{13}$
Выигрыш относи-					
тельно ИБР-2М					
при номинальной					
мощности реактора	1	7	2	20	10
	•	•			

Примечание. В скобках даны результаты расчета НИКИЭТ. Допустимая по условиям безопасности мощность ИБР-3 согласно [5] должна быть намного меньше указанной в таблице.

Таблица 8.	Сравнительные	характеристики	реакторов	ИБР-2М,	ИБР-3
		и ИБР-4			

Параметр	ИБР-2М	ИБР-3	ИБР-4
Средняя тепловая мощность, МВт	2	15	4
Теплоноситель	Натрий	Натрий	Натрий
Расход теплоносителя, м ³ /ч	100	350	200
Частота импульсов, с ⁻¹	5	10	10
Топливо	PuO_2	NpN	PuO_2
Масса топлива, кг	80	—	111
Объем а.з., л	21,4	2 зоны ×31	$\sim 23,4$
Максимальное выгорание топлива, %	9	—	9
Высота а.з., см	44,4	36,0	44,4
Эффективная доля запаздывающих			
нейтронов $\beta_{ m s\phi}$	$2,16 \cdot 10^{-3}$	$1,4 \cdot 10^{-3}$	$2,16 \cdot 10^{-3}$
Импульсная доля запаздывающих			
нейтронов β_{μ}	$1,65\cdot 10^{-4}$	$4,0 \cdot 10^{-5}$	$1,85 \cdot 10^{-4}$
Модулятор реактивности	ПО-3	_	ПО-3
Плотность потока тепловых			
нейтронов $\Phi_{2\pi},\ 10^{13}\ { m cm}^{-2}\cdot{ m c}^{-1}$	0,5	4,2	12
Выигрыш относительно ИБР-2М	1,0	7	20
Устойчивость к автоколебаниям			
энергии импульсов	Слабая	Данных нет	Высокая

новкой а. з., обеспечивает ядерную безопасность реактора и минимизирует низкочастотные колебания энергии импульсов. Оптимальная компоновка а. з. ИБР-4 с точки зрения получения максимальных плотностей потока тепловых нейтронов на выведенных нейтронных пучках есть базовая компоновка а. з. плюс бериллиевые отражатели и небольшие по объему водяные замедлители. Оптимальная компоновка позволяет получить при сравнительно небольшой мощности (4 МВт) значения плотности потока тепловых нейтронов на выведенных нейтронных пучках в 2π -эквивалентном приближении на уровне $1,2 \cdot 10^{14}$ см⁻² · c⁻¹, а в области, близкой к поверхности водяного замедлителя, $-3,0 \cdot 10^{14}$ см⁻² · c⁻¹. Таким образом, реактор ИБР-4 является мощным импульсным источником тепловых нейтронов и мощным облучателем, на два порядка превышающим флюенсы тепловых нейтронов ИБР-2М. ИБР-3 и ИБР-4 для сравнения приведены в табл. 7 и 8.

Расчеты позволяют выбрать также оптимальную с точки зрения пользователей нейтронных пучков конструкцию а.з. ИБР-4. Дело в том, что при реализации уплощенной а.з. потери тепловых нейтронов в нейтронных пучках, согласно данным табл. 7, уменьшаются всего вдвое: с $1,2 \cdot 10^{14}$ до $6,1 \cdot 10^{13}$ см⁻² · с⁻¹, но число выведенных нейтронных пучков существенно увеличивается.

СПИСОК ЛИТЕРАТУРЫ

- 1. Пепелышев Ю. Н., Виноградов А. В., Рогов А. Д., Сидоркин С. Ф. Концепция импульсного реактора периодического действия ИБР-4 // Письма в ЭЧАЯ. 2021. Т. 18, № 1(233). С. 98–112.
- Шабалин Е. П., Аксенов В. Л., Комышев Г. Г., Рогов А. Д. Высокопоточный импульсный исследовательский реактор на основе нептуния // АЭ. 2018. Т. 124, вып. 6. С. 309–313.
- 3. Аксенов В. Л., Ананьев В. Д., Комышев Г. Г., Рогов А. Д., Шабалин Е. П. О пределе нейтронных потоков в импульсных источниках на основе реакции деления // Письма в ЭЧАЯ. 2017. Т. 14, № 5(210). С. 556–570.
- Шабалин Е. П., Верхоглядов А. Е., Булавин М. В., Рогов А. Д., Кулагин Е. Н., Куликов С. А. Спектр и плотность потока нейтронов в облучательном канале пучка № 3 реактора ИБР-2 // Письма в ЭЧАЯ. 2015. Т. 12, № 2(193). С. 505-516.
- 5. Пепелышев Ю. Н., Виноградов А. В., Рогов А. Д., Сумхуу Д. Предварительные расчеты по импульсному реактору ИБР-4. Базовая компоновка. Препринт ОИЯИ Р13-2024-7. Дубна, 2024.
- Расчетные исследования технических решений реакторной установки с импульсным реактором периодического действия с топливом на основе нептуния ИБРЗ-От-5775: Отчет о научно-исследовательской работе. 2024. Шифр: 1-00.05-05-06.10-1957К. Номер темы 23.097-054.
- 7. European Spallation Source (ESS). Conceptual Design Report. ESS-2012-001; http://esss.se/documents/CDR Final 120206.pdf.

Получено 20 мая 2024 г.

Редактор Е. В. Григорьева

Подписано в печать 02.07.2024. Формат 60 × 90/16. Бумага офсетная. Печать цифровая. Усл. печ. л. 1,25. Уч.-изд. л. 1,22. Тираж 110 экз. Заказ № 60894.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@jinr.ru www.jinr.ru/publish/