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лом последних. Конфигурационное пространство бозонов расширено вплоть
до бозонов с мультипольностью J = 14+. В рамках данного метода рассмот-
рен эффект бэкбендинга в четных изотопах 112−128Xe, где он ярко проявля-
ется. В четных изотопах 220−236Th, где бэкбендинг наблюдается только для
самого легкого из данных ядер, пересечение полос получено только для двух
ядер. Причем для 222Th оно настолько плавное, что через момент инерции не
проявляется. Из свойств рассмотрены энергии ираст-полос и значения B(E2).

Работа выполнена в Лаборатории ядерных реакций им. Г.Н. Флерова
ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 2024

Efimov A.D., Izosimov I.N. E4-2024-27
Advanced Microscopic IBM1 Version. Description of the Crossing of Bands
in Xe and Th Isotopes

The boson representation of fermion operators is used. A method is described
for calculating the parameters of boson operators based on consideration of
matrix elements between phonon states with a minimum number of the latter.
The configuration space of bosons is expanded up to bosons with multipole
J = 14+. Within the framework of this method, the effect of backbending in
even isotopes 112−128Xe is considered, where it is clearly manifested. In even
220−236Th isotopes, where backbending is observed only for the lightest of these
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Among the properties, the energies of the yrast bands and the values of B(E2)
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INTRODUCTION

This paper outlines a theoretical scheme that makes it possible to
implement a microscopic method for calculating the parameters of the boson
operators of the Hamiltonian and E2 transitions for even-even nuclei. This
method is based on the use of elementary excitation modes and the interaction
of their combinations with each other. This is one of the ways of boson
representation of pair fermion operators. The first works in this field were
those of Belyaev and Zelevinsky [1], where the condition was set for the
equality of the commutators of fermion pairs on the one hand and the
corresponding boson series on the other. This idea was the basis of Sorensen’s
work [2], the purpose of which consisted in a boson representation of fermion
operators and, accordingly, a microscopic calculation of the properties of
collective states in even-even nuclei. The next stage was associated with the
works of Kishimoto and Tamura [3–6], where it was possible to formulate the
requirements for the theory that are necessary for more correct description of
the states under consideration. It was found that mapping onto bosons should
be carried out not from individual quasiparticle pairs, but from phonons. It
also turned out to be fundamental to take into account the connection between
collective and non-collective excitation modes. By collective here we mean the
quadrupole lowest D modes or phonons, and by non-collective all other BJ

with J moments, among which there are giant resonances.
This connection was taken into account using the perturbation theory

technique in the Brillouin–Wigner version [7] with separation of state spaces
into two types. One consisted only of collective D phonons, the other
contained additionally one of the other BJ=2 phonons and only of the
quadrupole type. This led to an effective boson Hamiltonian whose parameters
are replaced with energy-dependent renormalized values. Using the example
of specific calculations, it was shown that taking this connection into account
is necessary to obtain a quantitative description of collective states.

The most widely used approach to describing collective states at present
is a model derived from a finite representation of phonon operators in terms of
boson ones. Such a representation, based on the assumption that the algebra
of phonon operators D+

μ , Dμ, [Dμ1,D+
μ2] is closed, numbering thirty five

elements, was done in the works of Jolos, Janssen, Donau [8–11], which
is implemented through SU(6) algebra. Mapping phonon operators to boson
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ones was carried out in such a way that the boson operators formed the same
closed SU(6) algebra. This algebra is characterized by the maximum possible
number of lowest quadrupole phonons Ω. It was assumed that the use of only
the lowest quadrupole phonons could lead to correct values of the parameters
of boson operators. In addition to the problem of calculating boson parameters,
it turned out that this the model is convenient from a phenomenological point
of view, that is, the selection of the parameter values that provide the best
description of the energies of collective states and the probabilities of E2
transitions between them. This way of describing collective states in nuclei
will be called the IBM phenomenology.

An essentially similar model, but in terms of two types of bosons,
quadrupole (d) and scalar (s), was proposed in the works of Arima and
Iachello [12]. The maximum number of quadrupole bosons Ω becomes the
total number of quadrupole and scalar bosons, and its operator Ω̂ = s+s +
+
∑
d+μ dμ commutes with all generators of the SU(6) algebra of operators

d+μ s, s+dμ, d+μ1dμ2. The emphasis in recent works was on the algebraic
properties of the corresponding combinations of boson operators due to the
fact that the model described both the vibrational and rotational nature of
the spectra. The model has become widely used as a way to describe the
properties of collective states, including energies and probability of transitions,
demonstrating significant success in doing so. In the work of Arima and
Iachello, it received the generally accepted name of the Interacting Boson
Model (IBM) or IBM1, which considers the interaction of states constructed
from ideal bosons that do not differ in isospin, which were identified with
nucleon pairs bound at Jπ = 0+ and Jπ = 2+ moments.

From an algebraic point of view, the use the operational roots
√
Ω− n̂d

(n̂d =
∑
d+μ dμ) in [8–10] and s bosons is equivalent. The appearance of roots

is associated with the method of obtaining a closed algebra of boson operators,
and in addition it can be simultaneously considered as an approximate method
of taking into account the Pauli principle. With this interpretation, s bosons
are a formal instrument and do not correspond to pairs of quasiparticles or
particles bound at the zero moment. This is what distinguishes the approach
presented in [8] and [12].

In accordance with the conclusions of the works of Kishimoto and
Tamura, in order to successfully calculate the parameters of the collective
boson model describing quadrupole-type states, it is necessary to take into
account non-collective excitation modes. Our estimates have shown that,
in addition to quadrupole and hexadecapole excitations, it is necessary to
consider two-quasiparticle pairs with moments Jπ = 2+, 4+, 6+, i.e., B2, B4,
and B6 phonons. Taking these phonons into account provides corrections to
the model parameters obtained only taking into account collective D phonons.
These amendments cannot be neglected. We will call this procedure the
renormalization of values of IBM1 parameters.

The first attempt to take into account non-collective excitation modes when
renormalizing boson parameters was carried out for Se [13] isotopes, as well
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as in calculations for 126Ba [14], isotones with N = 70 [15], isotopes Te [16]
and Xe [17].

Extension of the basis of excitations due to explicit consideration of bosons
with spins Jπ � 8+ leads to the possibility of describing states with higher
spins than is possible when using standard versions of IBM1.

There are only a few works that use the boson approach to describe the
intersection of a collective band with a band based on a two-quasiparticle
high-spin mode. The first of these was the work of Gelberg and Zemel [18]
based on IBM1, where the Hamiltonian term responsible for the interaction of
the collective and non-collective bands was replaced with a constant and did
not depend on either the spin of the pair of quasiparticles J or the total spin
of the I states. It was naturally assumed that the limiting value is Jπ = 8+

for the case of Kr, Sr isotopes with a quasiparticle configuration g29/2 and
Jπ = 10+ for the case of isotopes Xe, Ba, Ce, etc. with configuration h211/2.
In [19], collective states were considered in the IBM2 approximation, and
the interaction of collective and quasiparticle excitation modes was considered
sequentially through a long chain of matrix elements, in such a way that first
the number of collective states, determined by the superposition of d bosons,
is associated with the state containing a pair of quasiparticles with Jπ =
= 4+. The latter state, in turn, is associated with a state containing a pair of
quasiparticles with Jπ = 6+ and so on. As a result, to couple a collective mode
with a mode containing a pair of quasiparticles with Jπ = 10+, fourth-order
perturbation theory will be required. As a result, in such a model, one band
is replaced with a quasiparticle one, practically without mixing them, or in
the case of a degenerate position of different modes, a strong mixing of 50%
is realized with one single spin of the yrast band. This obviously affects
the calculated values of B(E2) along the yrast bands. In this work, the
nuclei 126−128Ba and 130−134Ce are considered, and the results demonstrate
these statements. These studies did not receive further development. In [20],
using IBM1, the space was also expanded due to bosons up to Jπ = 10+,
but the parameters of the interaction terms of collective states with states
including quasiparticle pairs were calculated microscopically. In this case,
it was possible to reduce the interaction order to two for communication
with states including pairs with Jπ = 10+. However, even in this case, it
was not possible to obtain a strong interaction between collective states and
states containing non-collective excitation modes, regardless of the energies
of the latter. This indicated that the mixing of bands with different excitation
modes was insufficient. In this case, the parameters of the purely collective
Hamiltonian were selected phenomenologically. This problem was solved in
a series of works, the idea of which was outlined in more detail in [21]. It
turned out that it is necessary to take into account the connection between
high-spin quasiparticle modes and states that also contain quasiparticles, but
are used in renormalization of microscopically calculated parameters of the
traditional IBM1 Hamiltonian. This is quite a wide range of configurations.
A joint consideration of the processes associated with the renormalization of

3



boson parameters due to non-collective modes and the processes of coupling
of various excitation modes with high-spin modes leads to strong mixing
of states for several states at once in the region of intersection of bands
and large values of B(E2), regardless of the position of the energy of the
quasiparticle high-spin couples. The exception is nuclei with the number of
neutrons close to the closed shell, but this is also confirmed by experimental
data for isotopes from Xe to Ce. In moving to heavy and superheavy nuclei,
it became necessary to expand the two-quasiparticle basis of phonons and,
accordingly, bosons to pairs with Jπ = 12+ and 14+, which is associated with
the single-particle levels j15/2 and i13/2. For the first time such calculations
were made in [22]. In this case, the interaction of a collective mode and a
mode containing a pair with Jπ = 14+ requires a third-order interaction.

The transition in the structure of excitations from the ground state band
to a band built on a high-spin quasiparticle pair is experimentally observed by
the change in the values of B(E2; I → I − 2) with increasing spin and by the
violation of monotonicity in the change in the energies of the yrast states. The
most obvious picture illustrating the intersection of bands is the dependence of
the effective moment of inertia � = (2I − 1)h̄2/E(I → I − 2) on the square of
the rotation frequency h̄ω = E(I → I − 2)/

(√
I(I + 1) −√(I − 2)(I − 1)

)
.

In this case, irregularities in the curve � from ω2, especially the phenomenon
of backbending, can indicate how quickly with increasing spin the transition
in the yrast band from the collective state to the state including a high-spin
phonon mode occurs.

The present work, based on the approach presented in [21] and [22], offers
calculation results for Xe isotopes, previously presented in abbreviated form
in [23], as well as new calculation results for even Th isotopes in which
excitation energies are known. These are nuclei in the 220−236Th range. The
first of them has an almost ideal vibration spectrum and a first excitation
energy of 373 keV. The latter, respectively, has an energy of 48 keV. The
maximum observed excitation spin Iπ = 30+ was obtained for 232Th, and in
the same nucleus the values of B(E2) were measured almost to the end of
the yrast band. A preliminary analysis of the excitation energies showed that
it is possible to reproduce well the energies up to the maximum known spins,
and these are, respectively, 22+, 26+, 18+, 20+, 22+, 24+, 30+, 24+, 10+. In
nuclei with A = 224, 230, 232 for the last one or two states with extremely
observable spins, the energy values obtained within the phenomenology of
IBM1 turn out to be somewhat underestimated. In this regard, the question
arises about the role of high-spin quasiparticle modes and their influence on
the spectrum of observed states. For this purpose, appropriate calculations
were made using the methodology presented in [22]. It turned out that in
nuclei with A = 220, 222 the intersection of the bands occurs, but very
smoothly, so that for the second of these nuclei this does not affect the
dependence of the moment of inertia on the square of the frequency. For
heavier thorium isotopes, the band energies are significantly reduced, but the
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main component remains collective. The reasons for this are discussed in this
paper.

1. THEORETICAL CALCULATION OF PARAMETERS IN THE
MICROSCOPIC VERSION OF IBM1

1.1. Construction of the variational functional, determining phonon
amplitudes. Phonons that are not collective, that is, all phonons of arbitrary
multipolarity except for D phonons, are determined through the quasiparticle
Tamm–Dankov method:

B(J)+
μ (i) =

1√
2

∑
1,2;τ=n,p

[ψ
(J)
12 (i)a+1 a

+
2 ]τ (j1j2m1m2|2μ), (1)

using only multipole isoscalar forces.
The elementary excitation mode, corresponding to the lowest quadrupole

excitation — D phonon, is formally defined in the same way as is done within
the QRPA (quasiparticle random phase approximation):

D+
μ =

1√
2

∑
1,2;τ=n,p

[ψ12a
+
1 a

+
2 + ϕ12a2a1]τ (j1j2m1m2|2μ), (2)

where a+(a) are operators of creation (annihilation) of quasiparticles; 1, 2
denote the numbers of single-quasiparticle states in the spherical basis; states
1, 2 are time-conjugated to 1, 2. Amplitudes ψ12, ϕ12 or z(0) = ψ + ϕ, z(1) =
= ψ − ϕ do not depend on magnetic quantum numbers and are normalized in
a standard way,

∑
1,2;τ=n,p(ψ

2
12 − ϕ2

12) =
∑

1,2;τ (z
(0)
12 z

(1)
12 )τ = 1.

However, the amplitudes ψ and ϕ are determined from the variational
principle using a complex functional that includes additional conditions that
are absent in the traditional QRPA.

When justifying the final expansion [8, 9] of phonon operators in terms
of boson operators, an assumption is made about the closedness of algebras
of phonon operators. Namely, the operators D+

μ , Dμ, [Dμ1, D
+
μ2], thirty-five

elements in number, form a closed SU(6) algebra. This is done provided

[[Dμ1, D
+
μ2], D

+
μ3] = − 1

Ω
(δμ1, μ2D

+
μ3 + δμ1, μ3D

+
μ2), (3)

which allows us to obtain an estimate for the value of the maximum number
of bosons Ω:

1
Ω

= −1
6

∑
μ

q.p.

〈∣∣∣∣∣
[
Dμ1, [[Dμ, D+

μ ], D
+
μ1]

]∣∣∣∣∣
〉

q.p.

=

=
5
3

∑
123

1
2j2 + 1

z
(0)
12 z

(1)
12

(
z
(1)2
23 + z

(0)2
23

)
, (4)

where |〉q.p. denotes quasiparticle vacuum. Mapping of phonon operators
onto ideal boson structures is carried out from the requirement that the
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commutators of phonon operators in the vacuum of quasiparticles be equal
to the corresponding commutators of boson operators. This leads to a closed
algebra with respect to bosons if the correspondence rules are satisfied:

D+
μ −→ 1√

Ω
d+μ s, |〉 −→ 1√

Ω!
(s+)Ω| ), |I〉 −→ |I ), (5)

where | 〉 is phonon vacuum, |I〉 is phonon state with spin I, |) is boson
vacuum, |I) is boson collective state with spin I. In this case, the ground
state |0) with spin 0+1 in the boson representation is not a vacuum of bosons,
i.e., |0) �= | ), and similarly for phonons |0〉 �= |〉. These compliance rules are
adopted in this work.

The used interpretation of s bosons as formally introduced objects leads to
the fact that interaction terms for s bosons (s+s and s+s+ss) should not be
introduced, and the IBM1 Hamiltonian with respect to the vacuum energy of
d bosons in normal order in operators has the form

HIBM = εd n̂d + k1(d
+ · d+ss+H.c.) + k2

(
(d+d+)(2) · ds+H.c.

)
+

+
1
2

∑
L

CL(d
+d+)(L) · (dd)(L), (6)

where H.c. means Hermitian conjugation, the point between the operators
corresponds to the scalar product, and the quantities εd, k1, k2, C0, C2, C4
are parameters of the IBM1 Hamiltonian.

All parameters of boson operators, which determine both the Hamiltonian
and the operator of electric quadrupole transitions, are calculated based on
the mapping of fermion operators OF to OB operators in the ideal boson
representation through the Marumori procedure [24]. This is implemented in
such a way that the equality

〈I ′|OF |I〉 = (I ′|OB |I)
is satisfied. This allows us to find the parameters of each term of any operator
separately for both the boson Hamiltonian and the E2-transition operator.
When calculating the parameters, in order to ensure that among the fermion
states |I〉 there were no nonphysical components, states were considered that
would not contain components with more than two D phonons. Therefore,
the parameters of the boson Hamiltonian, taking into account the minimum
number of D phonons only, which corresponds to the index (0), are defined as

ε
(0)
d = 〈|[Dμ, [hRPA,D+

μ ]]|〉,

2
(
k1
√
Ω(Ω− 1)

)(0)

=
1
5

√
2
ℵ0

∑
μ

〈|[[hRPA,D+
μ ],D

+
μ ]|〉,
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(
k2
√
Ω− 1

)(0)
=

1√
2ℵ2

∑
m1,m2

〈|[[[DM ,H20+02 + V̂31+13],D+
m1],D

+
m2]|〉×

× (22m1m2|2M), (7)

C
(0)
L =

∑
m1,m2,m3,m4

1
ℵL

〈|[Dm2, [Dm1, [[hRPA,D+
m3],D

+
m4]]]|〉×

× (22m1m2|LM)(22m3m4|LM).

Here ℵL = 〈|DD(D+D+)(L)|〉 is normalization of the two-phonon state,
and the quasiparticle Hamiltonian of the QRPA approximation is defined
as hRPA = H11 + V̂22 + V̂40+04, where the corresponding indices denote the
number of quasiparticle creation and annihilation operators. Expressions for
boson parameters in terms of phonon amplitudes using the factorized [25]
quasiparticle residual interaction in the particle–hole and partial-particle
channels are given in [21] and [26].

One of the elements of the minimized functional is the phonon vacuum
energy E(B)

0 , associated with correlations in the ground state. The expression
for it, taking into account the forces in the partial-particle and partial-hole
channels, is given in [21] (Eq. (26)). When using the standard version of
QRPA, taking into account the completeness of phonon functions and up to a
constant relative to phonon amplitudes, E(B)

0 in the varied functional can be
replaced with 5/2ε(0)d , although there is some simplification.

The main part of the minimized functional, oriented to IBM1, is obtained
by averaging the boson Hamiltonian (6) with parameters from (7) over ar-
bitrary boson functions |I) — (I|HIBM|I). This functional will depend on in-
ternucleon forces, phonon amplitudes ψ, ϕ and boson averages from individual
boson operators of the Hamiltonian (6). In particular,

nd(I) =

(
I|
∑
μ

d+μ dμ|I
)
,

(8)
P1(I) =

1

2
√
Ω(Ω− 1)

(I|(d+ · d+ss+ s+s+d · d)|I).

The arbitrary boson wave function in the basis of vibration limit functions
to IBM1 — SU (5) — has the form

|I) =
∑

nd,v,ωΔ

αd(nd, v,ωΔ, I)
1√

(Ω− nd)!
(s+)Ω−nd |nd, v,ωΔ, I), (9)

where |nd, v,ωΔ, I) are normalized functions of quadrupole bosons
corresponding to the irreducible representation of the SU (5) group with
quantum numbers: number of quadrupole bosons (nd), boson seniority (v),
i.e., number of quadrupole bosons not bound at zero angular momentum, and
number of triplets v bound at zero angular momentum (ωΔ). The amplitudes
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of this function, in turn, depend on (ψ, ϕ) and (u, v) through the parameters
εd, k1, k2, C0, C2, C4 of the IBM1 Hamiltonian (6). When minimizing the
functional (10) in the boson average (I|HIBM|I), we will keep two terms,
associated with the parameters εd and k1.

The use of the functional (I|HIBM|I) already implies the presence in the
boson Hamiltonian (6) of a term proportional to k1, which is absent in the
standard QRPA.

If the constructed functional is also used to determine the Bogolyubov
parameters of superfluidity u and v, then the vacuum energy of quasiparticles
Evac.q.p. should be added to it, which is clearly independent of the phonon
amplitudes. Thus, the energy part of the functional has the form

ΦE = Evac.q.p. + E
(B)
0 + (I|HIBM|I). (10)

Minimization of the functional (10) based on the desired amplitudes is
carried out when a number of additional conditions are met. The first of
them take into account the presence of normalizations. These include the
normalization of D phonons, normalization of the amplitudes of boson wave
functions |I), and the condition on the Bogolyubov amplitudes u and v.

The following conditions are not related to normalizations of functions.
Since the work uses a quasiparticle representation, the conservation of the
number of particles on average is realized using chemical potentials λτ , which
will depend on both the number of quadrupole bosons and phonon amplitudes.
That is, the average number of particles also depends on the presence
of phonons. This is a feature of the theory when explicitly considering
multiphonon or multiboson states. That is why the corresponding Lagrange
term is essential to enter into the phonon problem. Let’s look at this statement
in more detail.

The mapping of the quasiparticle number operator n̂i onto boson operators
is also used in calculating the average values of the numbers of protons
and neutrons 〈I|N̂τ |I〉 = Nτ=p, n, fixation of which gives an equation for
determining the chemical potentials λτ . The operator of the number of
particles when passing to a quasiparticle representation, with a number of
simplifications, has the form N̂τ =

∑
j(2j + 1)v2j +

∑
j(u

2
j − v2j )n̂j ; n̂j =

=
∑

m a+jmajm. Average over phonon functions from the number operator of
quasiparticles a+jmajm is defined as

〈I|a+jmajm|I〉 = 1
2
(1− yj), 〈I|1− a+jmajm − a+jmajm|I〉 = yj . (11)

Passing to boson averages gives

yj = 1− 2
(
n
(1)
j nd(I) + n

(2)
j P1(I)

)
, (12)
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where

n
(n)
i =

1
2ji + 1

∑
s

(
z
(1)2
is − (−1)nz(0)2is

)
, n = 1, 2. (13)

Thus, the average of the number of particles through boson averages is equal
to

〈I|N̂τ |I〉 → (I|N̂τ |I) = Nτ =

=
∑
j

(2j + 1)

(
v2j + (1− 2v2j )

(
n
(1)
j nd(I) + n

(2)
j P1(I)

))
=

=
∑
j

(2j + 1)
(
yjv

2
j +

1− yj
2

)
, (14)

where nd(I) and P1(I) are defined in (8); in particular, nd(I) is the average
number of quadrupole bosons in the boson state |I). The factor yj can
be interpreted as a measure of the occupancy of a single-particle level
by quasiparticles. For a level completely free of quasiparticles, yj = 1; for
a completely occupied level, yj = 0. Otherwise, yj is considered as the
probability that the level jlm is free from quasiparticles and through the
number of latter (nj) at the level of the spherical field j is determined as
follows:

yj = (j + 1/2− nj)/(j + 1/2). (15)

As the single-particle level is filled with quasiparticles, which happens as nd

increases, the values of yj will decrease, but should not be negative, which is
a condition for the Pauli principle to be satisfied on average. In this case, it
lies in the fact that the number of quasiparticles at each single-particle level jl
should not exceed the value j + 1/2. This is consistent with Eq. (15), since the
value of yj (12) will be positive. The Pauli principle is also fulfilled on average
because the number of quasiparticles is calculated from those components that
form the structure of the D phonon and corresponds to their average number
nd(I), as well as the boson average P1(I).

If, as a result of the calculation, the values of yj turn out to be negative,
then it is necessary to reduce the correlations in the ground state, which
will be discussed below. In this case, the phonon amplitudes ψ and ϕ will
be distributed over a larger number of single-particle levels, increasing the
role of extravalent shells. The expression for Nτ (14) can be interpreted in
such a way that at the j level, taking into account blocking, there will be
(2j + 1)yjv2j nucleons forming Cooper pairs and (2j + 1)(1 − yj)/2 unpaired
nucleons. This leads to some change in the interpretation of the v2j values, but
a similar situation occurs when a level is blocked by one or more nucleons.

With increasing excitation energy and spin, the boson averages change,
which leads to a change in the average numbers of particles, determined by
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the expression (14). Their invariance can be achieved by varying the values
of the chemical potentials λτ . As a result, chemical potentials change during
the transition from one collective state to another. This circumstance should
be taken into account when calculating excitation energies if self-consistent
calculations are performed separately for each collective state.

Another condition reflecting the specificity of IBM1 is the fixation of Ω,
the maximum number of quadrupole bosons. The condition of invariance of
Ω when calculating the phonon amplitudes (ψ, ϕ) for each collective state
leads to a slight decrease in the number of quasiparticles at the valence shell
levels. This is important, since the maximum number of quasiparticles at each
single-particle level cannot exceed the value (2ji + 1)/2. The Lagrange term,
which allows us to fix the integer value of Ω, is taken in the form

δΦ′(ω′) =
6
5

1
Ω(z(η))

ω′(nd + 5/2),

where Ω(z(η)) is a function (4) of phonon amplitudes, ω′ is the Lagrange
multiplier, and the value (nd + 5/2) is introduced for convenience.

When using the minimized functional (10), one can set the task of
achieving self-consistency of all three amplitudes (z(η), u(v), {αd}). However,
as it turned out, this is impossible when using the designed functionality, as
well as when using the standard QRPA version, or the TD approximation. For
self-consistency to become possible, it is necessary to set a condition for the
regulation of correlations in the ground state. The fulfillment of this condition
for fixed values of the force constants is carried out by introducing into the
minimized functional an additional term that regulates the value of the sum
of squares ϕ:

Φϕ=2χ
(
nd(I)+

5
2

)(∑
τ12

ϕ2
12τ+

1
2

)
=
1
2
χ

(
nd(I)+

5
2

)(∑
τ12

(z
(1)2
12 +z

(0)2
12 )τ

)
, (16)

where, as before, the factor (nd + 5/2) is introduced for convenience. This
term for the parameter χ > 0 leads to a decrease in correlations, as well
as a decrease in the contribution of phonon amplitudes in the valence shell,
automatically increasing their contribution from two-quasiparticle components
outside the valence shell.

Thus, the functional Φ′ for the phonon problem, defined by all additional
conditions, has the form

Φ′ = −ω
(
nd(I) + 5/2

)∑
τ12

(z
(1)
12 z

(0)
12 )τ −

∑
τ

λτNτ −
∑
τ ,j

eτj(u
2
j + v2j)τ −

− EI

∑
nd,v,ωΔ

α2d(nd, v,ωΔ, I)+2ω′∑
τ12

(z
(1)
12 z

(0)
12 n

(1)
2 )τ

(
nd(I)+ 5/2

)
+

+
1
2
χ

(
nd(I)+5/2

)∑
τ12

(z
(1)2
12 +z

(0)2
12 )τ , (17)

where EI is the eigenvalue of the boson Hamiltonian.
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It should be kept in mind that, unlike the standard QRPA, the Lagrange
multiplier ω does not have the meaning of phonon energy. The single-boson
energy ε

(0)
d in Eqs. (7) acts as the phonon energy. In a number of cases,

namely, for nuclei that are traditionally considered to be deformed, the
single-boson energy becomes negative. Thus, the presented modification of
the QRPA allows us to remove the problem of the collapse of the lowest
collective mode at a force constant greater than the critical one.

To determine the phonon amplitudes, the minimized functional will have
the form

Φ = 〈I|Ĥ −
∑
τ

λτ N̂τ |I〉+Φ′ = E
(B)
0 + (I|HIBM|I) + Φ′, (18)

where a simplification is made that instead of the full Hamiltonian HIBM in
(18) its part is used, determined by the parameters ε(0)d and k

(0)
1 , obtained

only taking into account D phonons, and E(B)
0 is replaced with 5/2ε(0)d . Thus,

E
(B)
0 + (I|HIBM|I) →ε

(0)
d

(
nd(I) +

5
2

)
+2
(
k1
√
Ω(Ω− 1)

)(0)

P1(I) (19)

and the minimized functional is taken in the form

Φ = ε
(0)
d

(
nd(I) +

5
2

)
+2
(
k1
√
Ω(Ω− 1)

)(0)

P1(I) + Φ′. (20)

The role of the terms C
(0)
L , corrections δεd, δCL to the corresponding

parameters due to their renormalization in determining the amplitudes of
phonons is reduced to the renormalization of the residual interaction constants
and to additions to the two-quasiparticle energies included in equations for
amplitudes. This justifies the concept of effective forces. Additions to two-
quasiparticle energies turn out to be insignificant. When calculating boson
averages, it is necessary to have correct values of boson parameters, and this
is achieved after their renormalization by taking into account the connection
of collective states constructed from D phonons with states containing one of
the non-collective B phonons. Let’s briefly look at the relevant processes.

1.2. Renormalization of parameters. To take into account the con-
nection between collective (consisting only of D phonons) and non-collective
(containing additionally one of the possible BJ phonons) spaces, the extended
wave function

Ψ(I) = |ψc(I)〉 +
∑
i1,c1

αi1,c1|
(
B+

i1ψc1
)(I)〉 (21)

is considered, where |ψc〉 is a wave function containing a superposition of only
D phonons and which will be called the collective state function.

The energies of the lowest states of yrast bands with Iπ � 6+ turn
out to be significantly lower than the energies of BJ modes, which are at
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least greater than twice the pair gap. This separation of states by energy
of two spaces allows us to consider their connection implicitly through the
renormalization of boson parameters εd, k1, k2, CL (7), which was done
in [13, 16, 17, 23] using perturbation theory in the Brillouin–Wigner (BW)
variant. For this purpose, processes with a minimum number of D phonons
are considered, which include the configurations |〉, D+|〉, D+D+|〉. Another
set of configurations will additionally contain one of the positive parity B+

J
phonons with a Jπ multipole from 0+ to 6+.

Taking this interaction into account leads to the polarization of the phonon
vacuum, the energy of which E0 relative to the energy of the quasiparticle-
phonon vacuum E

(qp−ph)
0 is found through the solution of the equation

−E0 = R0(E0) +R01(E0),
where

R0(E0) =
∑
i

|〈|H |B+
J=2,iD

+〉|2
ωi + ε

(0)
d − E0

,

R01(E0) =
∑
J ,i

|〈|H |B+
J ,iD

+D+〉|2
ωi + 2ε(0)d + C

(0)
J −E0

,

where here and below J is the multipolarity of the phonon, and i is the index
numbering phonons with a given multipolarity. The first ME denotes the
interaction of a zero-phonon state with a state containing simultaneously two
phonons — D and BJ , the latter phonon being also quadrupole. The presence
of polarization of the phonon vacuum in the indicated sense is associated with
the modification of the QRPA, which leads to the inequalities

〈|H(D+D+)(0)|〉 �= 0, 〈|H(D+B+)(0)|〉 �= 0. (22)

The single-phonon energy E1, taking into account the considered
corrections, is determined from the equation

ε
(0)
d − E1 = R1(E1) +R2(E1),

R1(E1) =
∑
J ,i

|〈D|H |B+
J ,iD

+〉|2
ωi+ε

(0)
d −E1

,

R2(E1)=
∑
λ,J ,i

|〈D|H |B+
J ,i(D

+D+)
(λ)
n 〉|2

ωi+2ε(0)d +C
(0)
λ −E1

,

where ε(0)d is an estimate for the single-boson energy expressed in terms of the
amplitudes of the D phonon only. In the case when the coherent production
is a D phonon, the major role in the summation over BJ phonons is played
by those phonons whose energies are minimal. If, on the contrary, the BJ

phonon is the coherent production, then the phonons corresponding to the
giant quadrupole resonance play a large role in the summation over them.

12



The equation for the renormalized two-phonon energy E
(L)
2 , taking into

account that the unperturbed energy is defined as 2ε(0)d + C
(0)
L , has the form

2ε(0)d +C
(0)
L −E(L)

2 =R
(L)
3 (E

(L)
2 )+R

(L)
4 (E

(L)
2 )+R

(L)
5 (E

(L)
2 )+R

(L)
6 (E

(L)
2 ),

R
(L)
k (E

(L)
2 ) =

∑
λ,J ,i

|〈(DD)
(L)
n |H |B+

J ,i((D
+)k−3

n )(λ)〉|2
ωi + E(k−3) − E

(L)
2

, k = 3, 4, 5, 6,

where E(0) = 0, E(1) = ε
(0)
d is single-boson energy, E(2) = 2ε(0)d +C

(0)
λ is two

d-boson energy, E(3) = E
(0)
3λ is the energy of the three d-boson state bound at

the moment λ and obtained taking into account only the D-phonon amplitudes,
and L = 0, 2, 4 is multipolarity of the two-phonon triplet. When calculating
ME 〈(DD)

(L)
n |H |B+

iJ (D
+D+D+)

(λ)
n 〉, it is necessary to know three D-phonon

normalization, which turned out to be noticeably less than three d-boson
normalization. This is important for subsequent calculations. The index n for
combinations of D phonons means their normalization.

Non-collective Bi phonons were considered in the Tamm–Dankov
approximation; the technique of summation over them, which does not involve
calculating the energies and amplitudes of phonons, was used earlier in [13]
and is described in detail in [22].

From the energies found in this way, the values of the renormalized boson
parameters of the Hamiltonian are found:

ε̃d = E1 − E0, CL = E
(L)
2 − 2E1 + E0. (23)

These boson parameters turn out to depend on the spin and energy
of the state under consideration. Usually, the renormalizations of the
IBM1 parameters are associated with taking into account G phonons, i.e.,
quasiparticle pairs with Jπ = 4+. These calculations have shown that the
main contribution is made by phonons with a moment equal to 2+, i.e., again
quadrupole phonons, but those that do not belong to the lowest of them. Next
in importance are phonons with moments of 4+ and 6+. For the nuclei under
study, the admixture of non-collective states to collective ones (one and two
D-phonon states) turns out to be small. For one D-phonon state this impurity
is ∼ 9%, for two-phonon states it is somewhat larger: for the state (D+D+)(0)

this impurity is ∼ 25%, while for (D+D+)(L=2,4) it is ∼ 15%.
The found set of admixture amplitudes of non-collective components

makes it possible to obtain second-order interaction corrections to the IBM1
parameters k1 and k2. Since these parameters relate states with different
numbers of d bosons, in the D-phonon space they will accordingly be
determined by off-diagonal MEs. This leads to the fact that the resulting
corrections for these parameters contain a more complex dependence on the
energies of both phonons ωi and the Hamiltonian parameters ε(0)d and C

(0)
L

than was the case when determining the parameters εd and CL, which are
determined by diagonal MEs.

13



The IBM1 Hamiltonian term, proportional to the k1 parameter, ensures
the interaction of boson states that differ by two quadrupole bosons coupled
at zero angular momentum. This leads to a decrease in correlations in the
ground state compared to what the standard version of the QRPA produces.
Its renormalization due to non-collective phonons is given by the expression

δ(2κ1
√
Ω(Ω− 1) ) =

= −
√

2
5

∑
i

{
〈|H |(B+

J=2,iD
+)(0)〉〈(DD)(0)n |H |(B+

J=2,iD
+)(0)〉×

× x1 − E0 − E
(L=0)
2

(x1 − E0)
(
x1 − E

(L=0)
2

) +

+
∑
J

〈|H |(B+
J ,iD

+D+)(0)n 〉〈(DD)(0)n |H |(B+
J ,iD

+D+)(0)n 〉×

× x2 − E0 − E
(L=0)
2

(x2 − E0)
(
x2 − E

(L=0)
2

)},
x1 = ωi + ε

(0)
d , x2 = ωi + 2ε(0)d + C

(0)
J .

After this, the parameter κ1 is defined as

κ̃1 = κ
(0)
1 + δκ1. (24)

The term of the boson Hamiltonian, proportional to the parameter κ2,
carries out the interaction of states that differ by one quadrupole boson.
The eigenvalues of the boson Hamiltonian and the transition probabilities
between them are invariant with respect to the sign of κ2, but the signs of
the quadrupole moments of the states depend on its sign. Thus, for yrast-
band states, sign

(
Q(I)

)
= −sign(κ2). The calculated values of the quadrupole

moments depend weakly on the e∗χE2(d
+d)(2) part of the E2-transition

operator:

T̂ (E2) = e∗
(
d+s+s+d+χE2d

+d
)(2)

+ e∗0
(
s+(d+d)(0)d+d+(d+d)(0)s

)(2)
(25)

(a microscopic calculation of its parameters is presented in [27] taking into
account BJ phonons only with Jπ � 6+), without changing the number of
d bosons. This leads to the fact that the values of the quadrupole moments of
states are determined by the simultaneous presence in the state of components
that differ by one quadrupole boson and the ME operator e∗(d+s + s+d)(2),
which also changes the number of quadrupole bosons per unit. Therefore, the
magnitudes of the quadrupole moments are, in principle, equally determined
by both the proton and neutron structures of the D phonon. The estimate
for κ(0)2 presented in Eq. (7) includes the factor (u1u2 − v1v2), which leads
to a strong dependence of the resulting value on the details of the location
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of the mean-field levels. For this parameter, as well as for others, the terms
determined by the next order of interaction were taken into account. There
are three such members for it; their origin is clear from the MEs below:

δ(2κ2
√
Ω− 1 ) =

= − 1√
2

∑
i

{∑
J

〈(DD)(2)n |H |B+
J ,iD

+〉〈D|H |(B+
J ,iD

+)(2)〉×

× x1 − E1 − E
(L=2)
2

(x1 − E1)
(
x1 − E

(L=2)
2

) +
+
∑
λ,J

〈(DD)(2)n |H |B+
J ,i(D

+D+)(λ)n 〉〈(DD)(λ)n BJ ,i|H |D+〉×

× x2 − E1 − E
(L=2)
2

(x2 − E1)
(
x2 − E

(L=2)
2

) +
+
∑
λ,J

〈(DD)(2)n |H |B+
J ,i(D

+D+D+)(λ)n 〉〈(DDD)(λ)n BJ ,i|H |D+〉×

× x3 − E1 − E
(L=2)
2

(x3 − E1)
(
x3 − E

(L=2)
2

)},
x1 = ωi + ε

(0)
d , x2 = ωi + 2ε(0)d + C

(0)
λ , x3 = ωi + E

(0)
3λ .

After this procedure, the κ2 parameter is determined as

κ2 = κ
(0)
2 + δκ2. (26)

It should be noted that corrections to the parameters κ1 and κ2 are not
as significant as to εd and CL, but they are important when one of the
parameters, for example κ2, turns out to be small according to the estimate
obtained in first order by interaction.

1.3. Total energy and final parameters of the IBM1 Hamiltonian.
After determining all the required amplitudes, including boson ones, which
characterize the boson composition of the functions, the numerical values of
the energy of the states EI are found:

EI = E(vac.q.p.) + E
(B)
0 + (I|HIBM)|I) +

∑
τ

λτ (I|N̂τ |I). (27)

This approach is not, however, directly related to IBM1. The reason is that,
due to the implicit dependence of u, v, z(η) and λ on the energy and spin of the
collective state, the energy of the quasiparticle-phonon vacuum (E(vac.q.p.) +

+ E
(B)
0 ) and parameters ε̃d, k̃1, k2, CL change from state to state. At the

same time, the analysis of the spectra of collective states within the IBM1
is carried out under the assumption that the vacuum energy of bosons and
the parameters of the Hamiltonian remain unchanged for all states involved in
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this analysis. Therefore, the question arises whether it is possible to rearrange
the terms in EI in such a way as to isolate a certain background part in the
energy of the collective state, which does not change with increasing I, and
an “active” part, similar to the IBM1 Hamiltonian, with slightly changing
parameters εd, k1, k2, CL (all of these parameters now do not have an upper
tilde).

To do this, we take the total energy, measured from Σλ0τNτ (λ0τ are
chemical potentials for the ground state of the nucleus) in the form

EI = ẼI + (I|HIBM(ε̃d, k̃1, k2, CL)|I), (28)

where

ẼI = E
(q.p.)
I + E

(D)
0 +

∑
τ

(λτ − λ0τ )Nτ =

= E
(D)
0 +

∑
τ

((∑
i

(2ji + 1)(εi−λτ )v2i
)

τ

− Δ2
τ

G
(0)
τ

+(λτ−λ0τ )Nτ

)
, (29)

where εi is the particle energy. Calculations show that the extra-boson energy
ẼI increases noticeably with increasing spin, and the single-boson energy ε̃d
(23) decreases on the contrary with the spin of the collective state. These
tendencies are especially pronounced for nuclei whose boson structure is close
to the vibrational case, when, upon transition to the next spin of the collective
state, the average number of quadrupole bosons nd increases by one. In cases
where the nucleus is more collective, as it turns out to be for deformed nuclei,
the values of nd change significantly less, and the spin growth is realized
due to the angular reconnection of the existing quadrupole bosons. In this
case, the changes in ẼI and ε̃d with changes in spin are less pronounced.
In order for the extra-boson energy to remain unchanged and equal to that
which occurs for the ground state, the terms included in Eq. (28) must be
redistributed. This is done in such a way that, in addition to the extra-boson
energy, the parameter k1 remains unchanged, since k̃1 = k̃1(I

+) also changes
with spin:⎧⎪⎪⎪⎨⎪⎪⎪⎩

E0 = ẼI=0; k1 = k̃1(I
π = 0+),

ẼI − ξ1nd − ξ2P1 = E0, Iπ � 2+,

2k̃1(Iπ)
√
Ω(Ω− 1) + ξ2 = 2k1

√
Ω(Ω− 1) , Iπ � 2+,

εd(I
π) = ε̃d(I

π) + ξ1, Iπ � 2+;

(30)

i.e., E0 is determined from the extra-boson energy of the ground state and
is further assumed to be constant for all other collective states. For states
other than the main one, this is one of the conditions for determining two
parameters, ξ1 and ξ2. The second condition is the immutability of the
parameter k1. With the value ξ1 determined in this way, the one-boson energy
εd(I

π) is found.
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This transformation does not change the total energy EI . It fulfills its
assigned function of achieving the constancy of extrabosonic energy. If ẼI

noticeably increases with increasing spin, and ε̃d, on the contrary, falls, then
after the transformation ẼI goes into E0, and ε̃d into εd, which experience
only small variations with spin changes. In this transformation for the ground
state Iπ = 0+1 , it is assumed that ξ1 = ξ2 = 0. For all others, these parameters
are determined from Eqs. (30). With the parameters ξ1 and ξ2 defined in this
way, the final values of εd and k1 are found. In this case, the parameters εd,
k2, CL still differ for different collective states.

After the redefinitions, the total energy, measured from Σλ0τNτ , is equal
to

EI = E0 + (I|HIBM|I). (31)

The energies of excited states relative to the ground state will be
determined as

ΔEI = EI − E0. (32)

Now we can formulate a variational principle for finding the amplitudes
u, v, z(η), {αd}. They are found from the minimum energy in relation to
their variation under additional conditions. This gives equations for (u, v) and
amplitudes z(η). The amplitudes {αd} of the boson composition |I) are found
from minimization (31) provided that E0 does not change when the spin or
collective state number changes.

Varying the functional over phonon amplitudes leads to a system of
equations similar to the QRPA equations. Its solution is carried out at fixed
values of ω′ and χ. This allows us to determine ω. It has been said before that
in the context of the usual QRPA the ω, being a Lagrange multiplier, at the
same time turns out to be a single-phonon energy, which can only be positive,
but in the case of the QRPA modification used, the Lagrange multiplier ω is
not a single-phonon energy and has no physical meaning. The single-phonon
energy is the value ε(0)d calculated with the found phonon amplitude, which,
for nuclei traditionally considered deformed, is negative. It should be added
to this that the renormalization procedure further reduces the single-boson
energy εd relative to ε(0)d .

After determining ω, the numerical values of the phonon amplitudes z(η)

are found. The calculation is repeated, and χ is selected in such a way that
the ratio

∑
ϕ2/

∑
ψ2 is a strictly defined value, not exceeding 0.05 and the

same for all states under consideration. Moreover, the greater the low-energy
collectivity, i.e., the lower the energy of the first excitation and the greater
the value of B(E2; 2+1 → 0+1 ), the smaller the indicated value is, up to 0.002.
The value of the Lagrange multiplier ω′ is found from the requirement that the
maximum number of bosons Ω be integer, and such that Ω(ω′) � Ω(ω′ = 0).
The presence of a term with ω′ in the functional makes the system of equations
for amplitudes nonlinear, so it is solved iteratively. Once again, it should be
noted that the main feature of the MQRPA is the ability to change the level
of correlations in the ground state, regardless of the D-phonon energy. This is
implemented in such a way that to any two-quasiparticle energy participating
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in the equation for phonon amplitudes, quantities independent of this energy —
Lagrange multipliers χ and ω′ — are added:

eij → eij + ω′n(3)
ij + χ, where n

(3)
ij = 2

∑
1

(
z
(1)
i1 z

(0)
i1

2ji + 1
+
z
(1)
j1 z

(0)
j1

2jj + 1

)
.

This is especially significant when the single-particle levels i and j are states
of the valence shell. Such a replacement — modification result — significantly
reduces the values of amplitudes z(η)ij for valence shell states, redistributing
them over extravalence single-particle states. At the same time, this leads to
a significant increase in the maximum number of bosons Ω.

Another important feature of the modification considered is the presence
of boson averages in the minimized functional, which allows us to pose the
problem of self-consistency when the microscopically calculated parameters
of the boson Hamiltonian lead to the same bosonic averages that are used in
calculating the amplitudes and parameters.

It turned out that such an agreement can be achieved only with the help
of an additional condition that makes it possible to reduce the measure of
correlations. It was proven that both for χ = 0 in (17) and for all ϕ = 0,
which corresponds to the TD approximation, this agreement is impossible. It
is achieved in a certain corridor of values χ within which a stable solution to
the problem is realized.

The numerical value of
∑
ϕ2/

∑
ψ2 in each nucleus naturally depends

on the values of the force parameters, boson averages and the χ parameter.
Moreover, by changing the latter in the calculations, the value of

∑
ϕ2 is

regulated. Other things being equal, the excitation energy strongly depends
on the measure of correlations; the larger it is, the lower the excitation
energy. That is why, when considering a set of states, both excited and
ground, it is necessary to remain at the same level of

∑
ϕ2 values. This

significantly reduces the corridor of possible values of χ. In order to achieve
the indicated agreement for the ground and excited states, up to Imax, it
is necessary to increase the values of χ, but in such a way that the same
value of

∑
ϕ2 is realized for all considered states. In this case, the question

remains about the upper limit of the values of χ, accordingly, the minimum
of
∑
ϕ2. It can be solved practically, based on specific numerical calculations.

The most important of them is the requirement that up to Imax the number
of quasiparticles at each single-particle level does not exceed j + 1/2.

2. BOSON DESCRIPTION OF BAND CROSSING

Renormalization of IBM1 parameters is carried out due to extensions of
the wave function of phonon states (21) by inclusion of BJ phonons with
Jπ � 6+. At large spins of the yrast-band states, collective and non-collective
excitations may turn out to be energetically close. Therefore, the components
of these non-collective modes must be explicitly introduced into the basis
under consideration, and the values of Jπ will already change from 0+ to 10+
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in the 50–82 shells and up to Jπ = 14+ for the next shell, i.e., for heavy and
super-heavy nuclei. This leads not only to additional spectrum compression of
collective states, but also to the intersection of bands of different nature.

The class of states under consideration is limited to collective states
constructed from D phonons and non-collective ones, including in addition to
D phonons one non-collective B phonon. Of the possible interaction channels,
those processes that contain coherent sums correspond to the creation or
destruction of various phonons in accordance with Figs. 1 and 2. Restricting
ourselves to the minimum number of D phonons, we have five types of matrix
elements connecting collective and non-collective states:

〈D|H |B+
J ,iD

+〉, 〈D|H |B+
J ,i(D

+D+)(L)〉, 〈(DD)(L)
n |H |B+

J ,i〉,
〈(DD)(L)

n |H |B+
J ,iD

+〉, 〈((DD)(L)D)n|H |B+
J ,i〉.

(33)

Their graphical representation is given in Fig. 1. It is necessary to consider
three types of matrix elements connecting various non-collective states:

〈DBJ1,i1 |H |B+
J2,i2〉, 〈(DD)(L)BJ1,i1 |H |B+

J2,i2〉,
〈DBJ1,i1 |H |(B+

J2,i2D)(I)〉. (34)

Their graphical representation is given in Fig. 2. Thus, the considered basis
of states contains an arbitrary number of D phonons in a purely collective
space |(D+)k〉 and a space containing one non-collective phonon along with an
arbitrary number of collective phonons |B+

J ,i(D
+)k

′ 〉. Passing from phonons
to ideal bJ ,i and d bosons, we obtain the boson Hamiltonian in extended form

Hb =H
(0)
IBM1 +

∑
i

(ω′
i + E

(b)
0 )b+i bi+V

(1) + V (2)+V (3), (35)

where H(0)
IBM1 (6) is the IBM1 Hamiltonian with parameters defined only in

terms of D phonons, i.e., without taking into account non-collective phonons;

Fig. 1. Graphic representation of the matrix elements of the interaction of D and
B phonons

Fig. 2. Graphic representation of the matrix elements of the interaction between
various non-collective states
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E
(b)
0 is the energy shift of collective states in the presence of at least one

bi boson. Here ω′
i are the energies of bi bosons, and further we will use the

notation
ωi = ω′

i + E
(b)
0 . (36)

It should be borne in mind that, when solving the problem of eigenvalues
and functions, perturbation theory in the Brillouin–Wigner version is used;
the second-order interaction terms that lead to renormalization of the standard
IBM1 Hamiltonian are discarded. In this case, H(0)

IBM1 is replaced with HIBM1;
i.e., the renormalization of parameters is taken into account at the stage
preceding the consideration of the connection between collective and non-
collective high-spin states.

The interaction of V (1) and V (2) expresses the connection between
collective states and non-collective ones:

V (1) =
∑
i

√
5

2Ji + 1
ν1(i)[(d

+d)(Ji)s+ · bi +H.c.] +

+
∑
iL

√
5

2Ji + 1
ν
(L)
2 (i)[(d+(dd)(L)s+s+)(Ji) · bi +H.c.] +

+
∑
i

ν3(i)[(d
+d+)(Ji)s · bi +H.c.] +

+
∑
iL

√
2L+ 1
2Ji + 1

ν
(L)
4 (i)[(d+d+)(L)d)(Ji) · bi +H.c.], (37)

V (2) =
∑
iL

ν
(L)
5 (i)[((d+d+)(L)d+)(Ji) · biss+H.c.]. (38)

The V (3) operator defines the interaction between states containing
different bJ bosons:

V (3) =
∑
i1�=i2

√
2J2 + 1

5
(−1)J1+J2u

(1)
i1,i2[(b

+
i1bi2)

(2) · d+s+H.c.] +

+
∑

L,i1�=i2

√
2J2 + 1
2L+ 1

(−1)J1+J2u
(2)
i1,i2(L)[(b

+
i1bi2)

(L) · (d+d+)(L)ss+H.c.] +

+
∑

L,i1�=i2

(−1)L+J2u
(3)
i1,i2(L)[(b

+
i1bi2)

(L) · (d+d)(L) +H.c.]. (39)

The parameters in V (1) and V (2) are determined by ME in fermion space
using the Marumori procedure:

ν1(i) =
1√

Ω− 1
〈D|H |(B+

i D
+)(2)〉,
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ν
(L)
2 (i) =

1√
2(Ω− 1)(Ω− 2)

〈D|H |(B+
i (D+D+)(L)

n )(2)〉,

ν3(i) =
1√

2(Ω− 1)
〈(DD)(J)n |H |B+

i 〉,

ν
(L)
4 (i) =

1√
2
〈(DD)(L)

n |H |(B+
i D

+)(L)〉, (40)

ν
(L)
5 (i) =

1√ℵJL(bos)(Ω− 1)(Ω − 2)
〈[(DD)(L)D](J)n |H |B+

i 〉, (41)

ℵJL(bos) = (|(d(dd)(L))(J)((d+d+)(L)d+)(J)|),

where H is the quasiparticle Hamiltonian, ℵJL(bos) is the value of the
three-boson normalization, and the value L is defined in terms of J so that
J(L) = 0(2), 2(0), 3(2), 4(2), 6(4). Combinations of phonon functions are
normalized, denoted by the subscript symbol n.

The parameters in V (3) are defined as

u
(1)
i1,i2 =

1√
Ω− 1

〈DBi1|H |B+
i2〉,

u
(2)
i1,i2(L) =

1√
2(Ω− 1)(Ω − 2)

〈[(DD)(L)
n Bi1]

(J2)|H |B+
i2〉, (42)

u
(3)
i1,i2(L) =

∑
x

〈(DBi1)
(x)|H |B+

i2D
+〉(−1)x(2x+ 1)

{
2 2 L
J2 J1 x

}
.

The boson Hamiltonian (35) and expressions for its parameters were first
given in [23], and in the most detailed form they are represented by relations
(38)–(44) in [21].

Multipole Bi phonons in MEs (40) and (41), defining the interactions V (1),
V (2), vary from Jπ = 0+ to Jπ = 6+, and in (42) for interaction V (3) from
Jπ = 2+ to Jπ = 14+.

The Hamiltonian (35) contains a large number of bosons bJ ,i of each
multipole, equal to the number of quasiparticle pairs. Instead of direct
diagonalization, the eigenvalues and eigenfunctions of the Hamiltonian (35)
are found using perturbation theory in the Wigner variant. Summation over
all non-collective phonons of each multipole is carried out using an analytical
procedure in the approximation that all non-collective B phonons are
determined in the Tamm–Dankov method using isoscalar type particle–hole
forces. The corresponding equations are given in [22].

To implement this procedure, the Hamiltonian (35) is used to highlight the
matrix elements in the representation of ideal d bosons. The matrix elements
(33) and (34) remain in the phonon representation in order to explicitly
preserve expressions through the amplitudes of B phonons, and subsequently
sum the available expressions over all non-collective phonons. Thus, we get
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〈ψC(I)|H |B+
J ,iψC1(I1)〉 =

= 〈ψC(I)|H |B+
J ,iψC1(I1)〉V1 + 〈ψC(I)|H |B+

J ,iψC1(I1)〉V2 , (43)

〈ψC(I)|H |B+
J ,iψC1(I1)〉V1 = (−1)I−I1+J 1√

(2I + 1)(Ω − 1)
×

×
{√

5
2J + 1

〈D|H |B+
J ,iD

+〉〈ψC(I)||s+(d+d)(J)||ψC1(I1)〉+

+
1√

2(Ω− 2)

√
5

2J + 1

∑
L=0,2,4

〈D|H |B+
J ,i(D

+D+)(L)
n 〉×

× 〈ψC(I)||s+s+[d+(d+d)(L)](J )||ψC1(I1)〉+
+

1√
2
〈(DD)(J)n |H |B+

J ,i〉〈ψC(I)||(d+d+)(J)s||ψC1(I1)〉+

+

√
Ω− 1

2(2J + 1)

∑
L=0,2,4

√
2L+ 1 〈(DD)(L)

n |H |B+
J ,iD

+〉×

× 〈ψC(I)||[(d+d)(L)d](J)||ψC1(I1)〉
}
, (44)

〈ψC(I)|H |B+
J ,iψC1(I1)〉V2 = (−1)I−I1+J 1√

(2I + 1)(Ω − 1)(Ω− 2)ℵJL

×

× 〈[(DD)(L)D]n|H |B+
J ,i〉〈ψC(I)||[(d+d+)(L)d+](J)ss||ψC1(I1)〉. (45)

The subscript symbols V1 and V2 for matrix elements correspond to boson
interaction channels V (1) and V (2) in Eqs. (37) and (38);

〈(ψC2(I2)BJ2,i2)
(I)|H |B+

J1,i1ψC1(I1)〉 =
= (−1)J2+I2+I

{
J2 I2 I
I1 J1 2

}
1√

Ω− 1
×

×
{
〈DBJ2,i2 |H |B+

J1,i1〉
√
2J1 + 1 〈ψC2(I2)||d+s||ψC1(I1)〉+

+ 〈DBJ1,i1 |H |B+
J2,i2

〉
√
2J2 + 1 〈ψC2(I2)||s+d||ψC1(I1)〉+

+
1√

2(Ω− 2)

∑
L

〈(DD)(L)
n BJ2,i2 |H |B+

J1,i1〉
√
2J1 + 1 ×

× 〈ψC2(I2)||(d+d+)(L)ss||ψC1(I1)〉+
+

1√
2(Ω− 2)

∑
L

〈(DD)(L)
n BJ1,i1 |H |B+

J2,i2〉
√
2J2 + 1 ×
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× 〈ψC2(I2)||s+s+(dd)(L)||ψC1(I1)〉+
+ (−1)J2

∑
L

√
(2L + 1)(Ω− 1)

∑
x

(
(−1)x(2x+ 1)

{
2 2 L
J1 J2 x

}
×

× 〈(DBJ2,i2)
(x)|H |B+

J1,i1
D+〉

)
〈ψC2(I2)||(d+d)(L)||ψC1(I1)〉

}
, (46)

where the creation and annihilation operators of non-collective phonons have
both moments (J) and their numbers (i); ψC(I) is the collective state on
the left of Eqs. (43) and (46) constructed from D phonons, in the right-hand
sides of the same equations from d bosons. On the left side, all functions are
connected in angular momentum I; the subsequent summation extends over
collective states from three to five pieces (symbol C1) for each of the possible
spins I1, characterizing these collective states. In addition, the index C1 means
that this is a purely collective state. Additionally, the sums are extended over
all phonons (i) and their multipolarities (J). The presented procedure makes
it possible to explicitly isolate the phonon amplitudes in the corresponding
matrix elements and then perform summation over all of them.

In the expressions (43)–(46) we can explicitly select amplitudes of non-
collective phonons in a uniform way:

〈ψC(I)|H |B+
J ,iψC1(I1)〉 =

∑
τ ,1,2

γ(C,C1,J , τ , 1, 2)ψτ12(J , i), (47)

〈(ψC2(I2)BJ2,i2)
(I)|H |B+

J1,i1
ψC1(I1)〉 =

=
∑
τ ,1,2

β(C,C2,C1,J2,J1, τ , 1, 2, 3)ψτ12(J2, i2)ψτ23(J1, i1), (48)

where γ(...) = γ1(...) + γ2(...) and each term is determined in accordance with
the expressions (44) and (45); the values γ(...) and β(...) do not depend on the
structures of phonons, which are contained only in the amplitudes ψτ12(J , i)
of non-collective phonons; summation over τ means summation over neutrons
and protons; indices “1”, “2” mean the totality of all quantum numbers of
single-particle states except for magnetic ones; J and i are the multipolarity
of the phonon and its number.

The relations (43)–(48) demonstrate the effectiveness of the boson
representation of phonon operators. This representation allows multiphonon
states constructed from D operators to be considered as multibosonic, and at
the fermion level the matrix elements with a minimum number of D phonons
are considered as in the presented matrix elements (33) and (34).

In order to take into account in the wave function the components
containing both purely collective modes and non-collective modes up to
extremely high spins relative to phonons (up to J = 14+ in nuclei with the
number of nucleons of the same type greater than 82), it is convenient to use
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matrix elements (43, 46) or (47), (48) divided into three types:

(I) 〈BJ�6D
k|H |D+k′〉, (49)

(II) 〈BJ=8,10D
k|H |B+

J�6D
+k′〉, (50)

(III) 〈BJ=12,14D
k|H |B+

J=8,10D
+k′〉, (51)

where instead of collective functions an arbitrary number of D phonons is
represented.

MEs of type I are used to obtain corrections to boson parameters;
joint consideration of matrix elements of types I and II is also for the
connection of collective states formed only from D-phonon components with
states containing fermion pairs with Jπ � 10+. This is sufficient to describe
collective states and the effect of band crossing in nuclei with a number
of nucleons less than 82. For heavier nuclei, the nucleons of which are in
the range from 84 to 124 or more, it is necessary to consider the set of
type-III matrix elements. When renormalizing the parameters of the boson
Hamiltonian (6), non-collective phonons are considered implicitly, and when
considering the effect of band crossing, all phonons are considered explicitly.
Since to describe the intersection of bands it is necessary to use the entire
set of matrix elements of type I, ideal bosons bJ with Jπ � 2+ are introduced
accordingly. In this case, non-collective quadrupole phonons are understood
as all phonons except for the lowest one. It should be borne in mind that in
the second order of perturbation theory, an interaction of type I is used to
renormalize boson parameters and it is necessary to implement the theoretical
scheme in such a way that this interaction is not taken into account twice.

The extended wave function with total angular momentum I in the phonon
representation has the following form:

|Ψ(I)〉 = α0|ψC(I)〉+
∑

J1=2,4,6,c1

αJ1,c1B
+
J1
|ψc1〉+

+
∑

J2=8,10,c2

αJ2,c2B
+
J2
|ψc2〉+

∑
J3=12,14,c3

αJ3,c3B
+
J3
|ψc3〉, (52)

where summation over J means summation not only over angular momenta,
but also over all phonons of the given multipole.

Part of the Hamiltonian, namely, V (1) (through the ME product
〈V (1)〉〈V (1)〉 in the second order according to perturbation theory), is used to
renormalize the parameters of the boson Hamiltonian (6) [16, 17]. For the
connection of collective states with bJ=8,10 and with bJ=12,14, the interaction
V (1) is important along with V (2) and V (3) in (35) due to the cross matrix
elements 〈V (1)〉〈V (2)〉. Part of the Hamiltonian, V (2), through the interaction
second order leads to an additional interaction of three d bosons with each
other, which does not reduce to terms of the traditional IBM1 Hamiltonian.
The influence of this interaction channel leads to an additional decrease in
energies as the spin and excitation energy increase. There is also a direct
channel for the additional interaction of three d bosons with each other, but
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its estimate turned out to be significantly less than that given by the second
order.

The connection between collective states and configurations containing
high-spin bosons bJ=8,10 is also carried out through the second order in
interaction through the product of ME from V (1) + V (2) with V (3), i.e.,
〈V (1) + V (2)〉〈V (3)〉. In nuclei whose structure is close to the vibrational case,
it is the products 〈V (2)〉〈V (3)〉 that are important, but in the case when the
ground state is already far from the boson vacuum, the product 〈V (1)〉〈V (3)〉
will also be important, especially since among the bosons that determine
V (1) there are also those with Jπ = 6+, namely, 〈d|V (1)|d+d+b+J=6〉 and
〈d 2|V (1)|d+b+J=6〉.

There is a direct channel of interaction between components containing
only d configurations with bJ=8,10, but its estimates turned out to be negligible
compared to the values given by the second-order perturbation theory.

Finally, the presence of components in the wave function containing
BJ=12,14 is carried out through the product of MEs with V (3), but differing
in values of angular momentum J .

The equation for the eigenvalues E of the quasiparticle Hamiltonian in the
space of the extended wave function (52) is as follows:

H |Ψ(I)〉 = E|Ψ(I)〉. (53)

Multiplying this equation from the left by an arbitrary component
containing the non-collective phonon B+

Ji
|ψci〉, we obtain 〈ψciBJi |H |Ψ(I)〉 =

= E〈ψciBJi |Ψ(I)〉. If in this equation the non-diagonal matrix elements are
considered only of three types (49)–(51), then in a more expanded form we
have

α0〈ψCiBJi |H |ψC(I)〉+ (ωi + Eci − E)αJi,ci +

+
∑
J1,C1

′
αJ1,C1〈ψCiBJi |H |B+

J1
ψC1〉 = 0,

where the quantity ωi is related to the one-phonon energy and is given
in (36); the prime in the sum means that there is no term with ME
〈ψCiBJi |H |B+

Ji
ψCi〉 in it. This leads to the expression for the amplitudes

αJi,Ci = − 1
(ωi + Eci − E)

(
α0〈ψCiBJi |H |ψC(I)〉+

+
∑
J1,C1

′
αJ1,C1〈ψCiBJi |H |B+

J1
ψC1〉

)
. (54)

From this equation we successively obtain all amplitudes according to
perturbation theory.

At the first stage for Jπ
1 = 2+, 4+, 6+,

αJ1,C1 = − α0
(ω1 + Ec1 − E)

〈ψc1BJ1 |H |ψC(I)〉. (55)
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At the second stage for Jπ
2 = 8+, 10+,

αJ2,C2 =
α0

(ω2 + Ec2 − E)

∑
J1=4,6,C1

〈ψC1BJ1 |H |ψC〉
(ω1 + EC1 − E)

〈ψC2BJ2 |H |B+
J1
ψC1〉. (56)

In this case, the ME 〈ψC1BJ1=8.10|H |ψC〉 was not considered, as mentioned
earlier, due to its smallness.

Finally, at the third stage, the connection of the already considered states
with phonons with multipole Jπ

3 = 12+, 14+ is realized:

αJ3,C3 = − 1
(ω3 + EC3 − E)

∑
J2=8,10,C2

αJ2,C2〈ψC3BJ3 |H |B+
J2
ψC2〉 =

= − α0
(ω3 + EC3 − E)

∑
J2=8,10,C2

1
(ω2 + EC2 − E)

∑
J1=4,6,C1

〈ψC1BJ1 |H |ψC〉
(ω1 + EC1 − E)

×

× 〈ψC2BJ2 |H |B+
J1
ψC1〉〈ψC3BJ3 |H |B+

J2
ψC2〉. (57)

The eigenvalues of Eq. (53) with the amplitudes (55)–(57) of the wave
function (52) and taking into account its normalization are a solution to the
equation

E − 〈ψC |HIBM|ψC〉 =

=
∑

C1,i1,J1�6)

|〈ψC(I)|H |B+
J1,i1ψC1(I1)〉|2 − |〈ψC(I)|H |B+

J1,i1ψC1(I1)〉V1 |2
E − ωi1 − EC1

+

+
∑

C2,i2,J2=8,10

1
E − ωi2 − EC2

( ∑
C1,i1,J1=4,6

〈ψC(I)|H |B+
J1,i1ψC1(I1)〉

E − ωi1 − Ec1
×

× 〈(ψC1(I1)BJ1,i1)
(I)|H |B+

J2,i2ψC2(I2)〉
)2

+

+
∑

C3,i3,J3=12,14

1
E − ωi3 − EC3

×

×
(

1
E − ωi2 − EC2

∑
C1,i1,J1=4,6

〈ψC(I)|H |B+
J1,i1ψC1(I1)〉

E − ωi1 − Ec1
×

× 〈(ψC1(I1)BJ1,i1)
(I)|H |B+

J2,i2
ψC2(I2)〉×

× 〈(ψC2(I2)BJ2,i2)
(I)|H |B+

J3,i3
ψC3(I3)〉

)2

, (58)

where 〈ψc|HIBM|ψc〉 is the energy of IBM1, obtained taking into account
the renormalizations of the Hamiltonian parameters (6), determined by
〈ψC(I)|H |B+

J1,i1ψC1(I1)〉V1 . The first line of Eq. (58) makes a subtraction so
that the same interaction channel is not counted twice.
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In [20], the connection between collective and high-spin excitation modes
was realized only through the channel 〈ψC(I)|H |B+

J1,i1ψC1(I1)〉V2 , which was
insufficient. Now, as can be seen from Eq. (52), this is also realized through
the interaction channel 〈ψC(I)|H |B+

J1,i1ψC1(I1)〉V1 , which turned out to ensure
an invariably strong mixing of collective and high-spin modes, at least in the
region of the isotopes Xe, Ba, and Ce.

As already mentioned, the method of summing over all solutions of
non-collective phonons is given in the Appendix of [22], where Eq. (58) is also
given taking into account this summation.

When calculating the ME of the quadrupole electric operator, we will be
mainly interested in transitions along the yrast band or transitions with large
values of B(E2). To do this, it is sufficient to consider transitions between
components of the wave function with the same non-collective phonons
or bosons, taking into account the action of the E2-transition operator
between D-phonon or d-boson states. Matrix elements of the quasiparticle E2
operator between the functions (52) are also given in [22]. Transitions from
non-collective components to collective ones are taken into account when
renormalizing the effective charges [27], which makes it possible to consider
the ME only between collective components expressed in terms of d bosons,
without affecting the bJ bosons. The boson operator T̂ (E2) is represented
by Eq. (25).

Below is an analysis of two isotopic chains from different mass regions;
these are Xe isotopes and Th isotopes, closely adjacent to superheavy nuclei.

3. CALCULATION RESULTS FOR 112−128Хе
The presented theoretical scheme was applied to a number of nuclei, among

which are the 112−128Xe isotopes, but the results were given only for the
120Xe and 124Xe nuclei [23], regarding which there was sufficiently complete
experimental information on the values of B(E2) between the states of the
yrast bands. To date, several new works have appeared [28, 29], which indicate
that a number of inconsistencies between experimental and theoretical data on
transition probabilities can be removed using new data. This provides grounds
for presenting here the results of calculations based on all the data considered
regarding the properties of yrast bands in even isotopes of Xe. Figure 3 shows
the effective moments of inertia as a function of (h̄ω)2 for yrast bands in
the isotopes 112−128Xe. In the figure for 112Xe, the experimental curve shows
a reverse bend at spin Iπ = 10+, and the theoretical data rather indicate
“upending”. The difference is due to the fact that the calculated value for
this spin exceeds the experimental value by only 34 keV, and for the next
level there is no difference in energies. For 114−120Xe nuclei, backbending, in
accordance with experiment and calculation, is essentially not observed. But
for nuclei starting with 122Xe and all subsequent ones it is clearly visible.

In order to reveal the nature of the states as the spin increases, Fig. 4
shows the composition of the wave functions in terms of d and bJ bosons,
where the collective component and those that correspond to non-collective
boson states are indicated with Jπ = 2+, 6+, 8+, 10+.
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In the 112−120Xe isotopes, as the spin increases, as can be seen from
the figure, the collective component smoothly decreases, leveling off at spin
I = 16+ or 18+ with components containing b6, b8 and b10 bosons. In 122Xe,
with spin I = 12+, the collective component is aligned with the component
containing the b10 boson. In 124Xe this is realized with spin I = 10+.

In the 126,128Xe isotopes, two bands were calculated. The situation for
these nuclei is similar; therefore, of the two, information on the composition
of the wave functions is given only for 128Xe. In the last of this series of
figures, the information relates to the collective band that, starting from the
spin I = 10+, ceases to be yrast. The other band is built on the b10 boson
and immediately turns out to be yrast with spin I = 10+. For the heaviest of
the considered 126,128Xe isotopes, the most rapid transition from a collective
state to a non-collective one occurs with very weak interaction between them,
which is manifested in the values of B(E2).

The B(E2) values for transitions within the yrast bands in Xe isotopes are
shown in Fig. 5. It is clear that for 112−120Xe isotopes the theoretical values of
B(E2) do not experience a sharp decrease at any spin. As the spin increases,
they continue to grow slowly, or experience a slight drop from a certain
spin. This is due to the smooth replacement of the collective component by
components with high-spin bosons.

In 114Xe, the correlation of theoretical and experimental data encounters
the exotic behavior of the latter depending on the spin, where the inequalities
B(E2; 61 → 41) < B(E2; 41 → 21) < B(E2; 21 → 01) hold [30], although the
energy of the first excitation is E(2+1 ) = 0.45 MeV, while the corresponding
inequalities take place only for semimagic nuclei, when E(2+1 ) > 1 MeV.

The question of such a relationship for a number of nuclei, including 114Xe,
was discussed in the literature [41], although no satisfactory explanation was
given. A similar effect was analyzed in [42] in relation to the 172Pt and
168Os nuclei. It was found that, by remaining within the framework of only
collective states, but introducing strong nonaxiality, such an effect can be
reproduced. In this case, the transition 61 → 41 is also greatly suppressed. In
the 118Xe isotope, the 41 → 21 transition is also strongly suppressed. In other
isotopes of Xe, as well as in all isotopes of Te, Ba and Ce, this phenomenon
is not observed. Therefore, the anomaly under discussion still awaits further
investigation, both at the level of phenomenology and microscopy, and in the
experimental aspect.

It should be noted that already in the nucleus with A = 116 the
ratio B(4+ → 2+)/B(2+ → 0+) noticeably exceeds one. The new measure-
ments [28] completely restore the correspondence between theory and
experiment. Due to large experimental uncertainty, the next transition does
not contradict the calculation result.

A noticeable difference between the experimental and calculated values of
B(E2) in the yrast band is also observed for 118Xe, where a drop in the value
under consideration occurs already at spin I = 6+. This behavior is also quite
exotic and requires both experimental clarification and a search for a possible
theoretical explanation.
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In 120Xe, the description of B(E2) up to the spin I = 6+ is satisfactory,
but starting from I = 8+ the experimental values again experience a strong
decrease.

In 122Xe, the description of B(E2) can be considered acceptable due to
large experimental errors. Data are available only up to the spin I = 10+, and
the predicted theoretical drops in these values begin with the following spins,
which is associated with the obvious intersection of the bands as discussed
earlier.

In 124Xe, the value of B(E2) from the state 10+ is significantly suppressed,
and starting from 12+ the values of B(E2) are again significant, which
coincides with the experimental data. As can be seen from Fig. 4, the reason
is that, during the transition from the 8+ state to the 10+ state, a significant
change occurs in the structure of the wave function. The collective component
falls, and the state with b10 becomes the main component, which corresponds
to the intersection of bands. At large spins, the transition probabilities
become significant again. New experimental estimates, partly due to increased
experimental uncertainties, somewhat improve the quality of the description.

For 126Xe, the values of B(E2) are described in accordance with the latest
experimental data quite accurately, although they extend only to the spin
I = 6+. But in 128Xe the values of B(E2) are described precisely up to the
spin I = 10+, and its value turns out to be very small. This corresponds to the
fact that the yrast band, starting from spin I = 10+, is practically exhausted
by a component containing the b10 boson and a very small admixture of the
collective state, as shown in Fig. 4. Three high-spin bands are observed in
128Xe; therefore, Table 1 shows the calculated values of B(E2) for a number
of transitions. The data presented say that the collective band, starting from
the spin 10+, ceases to be yrast; these are the states 10+2 (3.365), 12+2 (4.251),
14+2 (5.097), 16

+
3 (5.573), 18

+
3 ; the states 10

+
1 (3.197), 12

+
1 (3.809), 14

+
1 (4.618),

16+2 (5.573), 18
+
2 (6.606) are based on two-quasiparticle excitation (h211/2)

(10+).
The band of states 16+1 (5.288), 18

+
1 (6.187), 20

+
1 (7.257) can be interpreted as

a band built on (h411/2)
(16+).

We would like to emphasize once again that, when calculating B(E2),
effective nucleon charges were not introduced. In this case, the probabilities
of transitions from the first excited state are reproduced correctly, but the
remaining transitions for a number of Xe isotopes give an excess of the
theoretical values of B(E2) over the experimental ones. Similar data were
obtained in the Bohr model [43]. It is noteworthy that in the Xe isotopes the
increase in the available experimental values of B(E2) in the yrast bands is
noticeably less than in the neighboring Te and Ba isotopes.

The conclusion of the calculations for the properties of the yrast-band
states is that in light and heavy isotopes of xenon the bands intersect
differently. In light isotopes, the decrease in the contribution of the collective
component as the spin increases can occur smoothly, which also corresponds
to a smooth change in the values of B(E2). This is done in cases where
the value of the chemical potential is far in energy from the state of unique
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Ta b l e 1. Probabilities of E2 transitions in 128Xe

Ii → If
B(E2; Ii → If )

Exp. [37] Exp. [38] Exp. [39] Exp.[39] Th.

2+1 (0.443) → 01 1830+550
−340 1760(200) 1540(80) 1840

4+1 (1.033) → 21 2430(200) 2370(100) 2390(100) 2260(200) 2770
6+1 (1.737) → 41 4060(500) 2360(120) 2950+420

−330 2970(280) 2380
8+1 (2.513) → 61 3670+450

−360 3620
10+1 (3.197) → 81 > 0.94 182
12+1 (3.809) → 101 1864
14+1 (4.618) → 121 2788
10+2 (3.365) → 81 1410+700

−350 3390
12+2 (4.251) → 102 3464
14+2 (5.097) → 122 3868
16+3 (5.968) → 142 4037
18+3 → 163 3956
16+2 (5.573) → 141 3300
18+2 (6.606) → 162 3656

parity (in this case it is h11/2). In Хе isotopes, this is the case for A � 120.
On the contrary, if the chemical potential turns out to be near the state of
unique parity, then the transition in the wave function of the yrast bands
from the collective component to that with the b10 boson occurs abruptly at
a certain spin I0, which is reflected in a significant decrease in the value of
B(E2; I0 → I0 − 2). In xenon isotopes this occurs starting from 122Xe.

Similar studies of the 120−130Ba isotope chain presented in [44] indicate
an obvious intersection of the bands in such a way that in light isotopes the
collective component is lost by more than half in states with a spin of 12+,
and in 128,130Ba with a spin of 10+. This is confirmed by the consistency of
the experimental and theoretical values of B(E2).

The properties of the 122−132Ce isotope chain were considered in [21]. In
all these nuclei, the bands invariably intersect. Although backbending is not
observed for the 122Ce nucleus, analysis of the obtained wave function shows
that at the spin 12+ in this nucleus the intersection of bands still occurs,
which corresponds to a decrease in B(E2) from this state. In general, all
available values of B(E2) correspond to theoretical values, except for two
transitions in 126Ce.

4. CALCULATION RESULTS FOR 220−236Th

A number of works were devoted to the theoretical study of nuclei in the
actinide region and the possible reasons for the lack of reverse bending, among
them [47], where the properties of a number of nuclei were considered in the
context of the HFB method, among which was the 232Th nucleus. In [48],
using the method of pairing self-consistent independent quasiparticles, the
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possibility of the occurrence of the reverse bending effect in actinide nuclei
was studied. The deformed Woods–Saxon potential was used, followed by
pairing. The calculation results explained why there is no reverse bending in
most actinide nuclei, and at the same time it was suggested that in some light
nuclei, Th and Ra, the backbending effect may occur. Of the thorium isotopes,
the 224Th nucleus was considered. The analysis presented below confirms this
assumption.

Among heavy and superheavy nuclei, starting at least from Z = 90, there
are only two nuclei for which backbending is observed. These nuclei include
220Th and 244Pu. Indeed, in a number of even isotopes Pu, Cm, Fm, No, the
energies of states of the yrast bands are known up to the spin 32+, as for
example in the 248Cm nucleus, which is demonstrated in Fig. 6, showing the
moments of inertia for the 220Th, 244Pu and 248Cm nuclei.

Fig. 6. Effective moments of inertia for 220Th, 244Pu, 248Cm

For other nuclei with Z � 90, no backbending is observed. To consider
the evolution of the nature of states as spin increases, thorium isotopes with
A from 220 to 236 are considered. It should be noted that a preliminary
analysis of excitation energies in a number of even thorium isotopes within
the IBM phenomenology shows that the calculated energy values at high
spins not only do not exceed the experimental ones, but, on the contrary, turn
out to be less than the experimental ones. There may be several reasons for
this. One is the exhaustion of quasiparticle space in the valence shell as the
spin of states increases. This would be automatically taken into account if
it were possible to carry out consistent calculations regarding the boson and
phonon amplitudes for each collective state considered separately, as was done
for the Xe–Ce isotopes. For heavy nuclei, it is possible to achieve matching
only based on the ground state. Another possible reason, and this has been
realized for a number of nuclei, is the weakening of the connection between
collective and non-collective states with increasing spin. This made it possible
to satisfactorily reproduce the energies of experimental states at high spins.

The mean-field parameters are taken from [49], the single-particle basis
includes 40 levels for both neutrons and protons, and multipole forces are
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determined with constants close to the estimates given in [25]. With the
structure of D phonons determined in this way, all parameters of the extended
Hamiltonian were calculated, which determine the interaction channels of
configurations containing BJ phonons. Since the purpose of this work is
to clarify the nature of the states of the yrast band, a calculation method
was implemented in which the parameters of the boson Hamiltonian were
selected phenomenologically, but close to microscopic estimates in accordance
with the matching of boson and phonon amplitudes for the ground state.
Unless otherwise stated, two sets of HIBM parameters are considered, one
for those components of the wave function in which non-collective bosons
(Lp1) are not clearly present and a second set where such bosons are present
(Lp2). This technique introduces a significant element of phenomenology into
the theory used, naturally leading to a better agreement between theoretical
and experimental data. The parameters corresponding to the interaction with
high-spin excitation modes are found as a result of calculations based on
internucleon forces and the average field. It is worth immediately commenting
on the notation and data given in Table 2. For each nucleus, sets of
Hamiltonian parameters Lp1 and Lp2 are given. For 220,226−236Th nuclei these
are the same. For 228−236Th nuclei, the values obtained on the basis of
microscopic calculations are also given. This was done to compare them with
phenomenological values. For any of the nuclei considered in this section,
except for 220Th, due to the large values of the total number of bosons, a large
number of configurations with different values of the numbers of quadrupole
bosons nd are realized already in the ground state, even at a single-boson
energy εd 
 0.4 MeV.

4.1. Nucleus 220Th. The 220Th nucleus is one of two Z � 90
nuclei for which backbending is observed and the only one in this region
where a second backbending is also observed. The 220−230Th isotopes were
previously considered in IBM phenomenology [50]. The total number of
bosons corresponded to the number of pairs of valence particles or holes. It
changed from 6 to 11 units as the mass number of isotopes increased. In this
case, the spin of the calculated states exceeded the permissible value. It can
be assumed that the eigenvalues of the Hamiltonian were found not as a result
of diagonalization, but based on approximations between various IBM limits.
Nevertheless, this stimulated the possibility of describing the energies of the
nuclei in question using IBM phenomenology in the present calculations. In
particular, this was done for 220Th. The corresponding energies are given
in Table 3. To represent the nature of the spectrum of this nucleus, Fig. 7
shows the energies of the states of the yrast band depending on the spin. It
is seen that the nature of the spectrum corresponds to vibration with weak
anharmonicity. This is realized using a bosonic Hamiltonian corresponding to
the SU(5) limit of the IBM1 with parameters εd and C4.

The figure does not show any anomaly that leads to the first
“backbending”. This is due to a very small anomaly of energies for a given
nucleus, and the scale of the figure does not play a role here. When carrying
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Ta b l e 3. Comparison of experimental [31] and theoretical energy values in keV
for 220,222,224Th nuclei

Iπ
220Th 222Th 224Th

Exp. IBM-ph. Th. Exp. Th. Exp. Th.

2+ 373.3 373.9 371 183.3 183.1 98.1 97.5
4+ 759.8 762.8 762 439.8 450 284.1 283.7
6+ 1166 1166 1175 750 763 534.7 533.7
8+ 1598.2 1584 1597 1093.5 1102 833.9 834.2
10+ 2012.7 2014 2013 1461.1 1468 1173.8 1175.4
12+ 2441.9 2456 2433 1850.7 1850 1549.8 1551.3
14+ 2885 2908 2887 2259.7 2252 1958.9 1956.9
16+ 3376.4 3370 3366 2687.8 2677 2398 2396.5
18+ 3867.1 3841 3875 3133.5 3124 2864 2853
20+ 4319.6 4319 4416 3596 3599
22+ 4716.1 4804 4977 4077.6 4080
24+ 5294 5586 4577.9 4586
26+ 5097.9 5113
28+ 5655
30+

32+

34+

out theoretical calculations, it should be borne in mind that it is apparently
impossible to implement a self-consistent calculation scheme for a given
nucleus, since it assumes non-zero values of the boson Hamiltonian parameter
k1, which ensures the connection of states that differ by two d bosons.
Therefore, a calculation method was implemented when the parameters
of the boson Hamiltonian HIBM, determined only by the d and s bosons,
were selected phenomenologically, and the parameters corresponding to
the interaction with high-spin excitation modes were found as a result of
calculations based on internucleon forces and the average field, for example,
as was carried out in [20]. The parameter E(b)

0 was taken equal to −0.25 MeV.
The interaction of collective and quasiparticle modes, which are considered
through non-collective bosons, is also additionally suppressed by ς2 = 0.7
(see (59)). The energies of collective states through the parameters of the
IBM Hamiltonian that determine them usually differ depending on whether
non-collective phonons with multipolarities J = 2+−14+ are explicitly present
in the corresponding components of the wave function. The theoretical
energies of the states are given in Table 3, and the corresponding moments
of inertia versus the square of the frequency in Fig. 8.

All this leads to a good reproduction of experimental energies and, what
is especially interesting, to the reproduction of the moment of inertia at spins
of 10+ and 12+, although the effect is caused by an energy anomaly of only
10 keV. Experimental and calculated energies for 220Th are shown in Fig. 7
and in Table 3. They also correspond to the moments of inertia shown in
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Fig. 8. From the last figure it is clear that the calculation reproduces the
reverse bending of the moment of inertia. The phenomenological calculation,
though it gives a seemingly satisfactory quality of description of the energies
of states, cannot describe this effect.

Figure 9 shows the boson composition of the wave functions. The
component in the wave function with BJ=8 becomes the main one at the
value of the spin of the yrast band Iπ = 12+; at Iπ = 10+ the corresponding
component is significant. In this nucleus, a smooth replacement of the
collective component with a quasiparticle component occurs.

Fig. 10. Values of B(E2) for the lowest transition in a number of Th and Ra isotopes

There are no experimental estimates of transition probabilities for this
nucleus. Therefore, an approximation of the B(E2) values was carried out
depending on the energy using the even isotopes of Th and Ra (Fig. 10). This
gives reason to assume that the value of BW (E2; 2+1 → 0+1 ) may be on the
order of 40 units. This value was adopted for orientation. A coordinated change
in the quadrupole forces in the partial-hole and partial-particle channels makes
it possible to leave the phonon energy unchanged, but within a certain limit
to change the values of B(E2). The paper [51] gives a theoretical estimate
for B(E2; 2+1 → 0+1 ) equal to 35.6 single-particle units. Figure 11 shows the
theoretical values of BW (E2; I → I − 2), which implies some decrease for
spins Iπ = 10+ and Iπ = 12+. Although, based on typical experimental errors,
this feature may not be noticed.

Obviously, the second backbending is not described in the theory under
consideration. The lowest two-quasiparticle pair in the used quasiparticle basis
is the proton pair h29/2π. Its maximum angular momentum is 8+. Accordingly,
a four-quasiparticle excitation at this single-particle level will have a spin
of 12+. It is with the admixture of four-quasiparticle states that one can
associate the presence of a second backbending in any nucleus. To explain the
second backbending by replacing components with one pair of quasiparticles
with another in the wave function, for example, h29/2 with j

2
15/2, seems hardly

feasible due to smallness of the corresponding matrix elements.
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4.2. Nucleus 222Th. In the 222Th nucleus, compared to a lighter isotope,
there is a significant decrease in excitation energies, which leads to a change
in the nature of the spectrum, which exhibits a weakly expressed parabolic
character of the E(I) function (Fig. 7).

When implementing self-consistency of the calculated parameters of the
boson Hamiltonian HIBM and boson averages in heavy nuclei, at least starting
from nuclei with Z = 90, there are certain difficulties, which turned out to
be associated with increased sensitivity of the calculated energies and boson
averages from the CL parameters of the HIBM Hamiltonian. This was not
the case when calculating the properties of collective states in intermediate
nuclei from Te [16], Xe [23], Ba [44], Ce [21] to 156Dy [45]. At the same
time, it was already noted in the cited works that the calculated values of the
parameters CL (L = 0, 2, 4) are determined by the difference between two
quantities, which largely compensate each other. Some of these quantities,
C

(0)
L for all L turn out to be significantly larger than those determined from

the analysis of experimental data within phenomenology. This effect, called
the kinematic effect [24, 46], is due to the fact that D phonons do not exactly
map onto d bosons. In two-phonon states, this effect is a consequence of
the Pauli principle regarding quasiparticles belonging to different D modes,
as well as the result of the action of attractive forces between quasiparticles
forming different phonons and specific phase relationships. All this does not
depend on whether the nucleus is spherical or deformed. Expressions for C(0)

L
obtained from various processes are given in [26].

Compensation of the C(0)
L values occurs due to dynamic effects, namely,

by taking into account the connection between collective modes containing
(D2)(L) with states containing BJ modes [21]. It is important to emphasize
here that the increased sensitivity of the calculated energies and boson
averages of the Hamiltonian HIBM terms, CL, leads to the problem of
achieving agreement between microscopic boson parameters and boson
averages. The estimates obtained for C(0)

L=0,2,4 are 0.525, 0.221 and 0.219 MeV.
As a result of their renormalization, the values of CL can become completely
negative. The total number of bosons Ω turns out to be 24.

Let us emphasize once again that all states containing non-collective
bosons were shifted by E(b)

0 . This shift can be either positive or negative. The
negative shift is explained by the unaccounted influence of four quasiparticle
configurations or components in the wave function containing two non-
collective bosons BJ1 and BJ2 . It was assumed that E(b)

0 = −0.4 MeV. At
the same time, at each iteration a constant number of particles on average
was achieved. The number of particles is determined not only by Bogolyubov
amplitudes, but also by the amplitudes of D phonons and boson averages.
The total number of bosons is a calculated quantity, which is kept constant
and equal, as already mentioned, to 24. In addition, at each iteration, the
measure of correlations in the ground state was kept unchanged small,
namely,

∑
ϕ2/

∑
ψ2 = 0.01, which is achieved through modification of the

quasiparticle random phase method [21].
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Theoretical and experimental energy values for 222Th are given in Table 3
and Fig. 7. The values of the moments of inertia are shown in Fig. 8.

Figure 9 shows the boson composition of the wave functions. The
component in the wave function with BJ=8 becomes the main one when the
spin of the yrast band is Iπ = 14+. In this case, a smooth replacement of the
collective component with a quasiparticle component occurs. It is so smooth
that it does not appear in the functional dependence of the moment of inertia
on the square of the frequency and in the theoretical values of B(E2), which
are shown in Fig. 11. Experimental values are known only for the two lowest
transitions, and these are reproduced. Everything that has been said regarding
the 222Th nucleus suggests that, despite the absence of a reverse bend in the
behavior of the moments of inertia from the square of the rotation frequency,
the intersection of the bands still occurs, but quite smoothly as the spins of
the observed states increase from Iπ = 8+ to Iπ = 16+.

4.3. Nucleus 224Th. Figure 7 shows experimental and calculated
energy values of 224Th nucleus depending on spin. Figure 8 shows the
corresponding values of the effective moments of inertia. It can be seen that
there is no manifestation of the intersection of bands. This gives grounds for
understanding that almost all observed states up to the spin Iπ = 18+ can be
reproduced within the usual IBM phenomenology with the Hamiltonian (6).
For this, it turned out to be sufficient to set the parameter E(b)

0 = 0.4 MeV.
The boson composition of the wave functions is shown in Fig. 8. Comparison
of its composition with that obtained for 222Th shows that starting from 224Th
no intersection of bands is observed. This is due, on the one hand, to the
low energies of the lowest excitations, as well as to the value of E(b)

0 , which,
starting from this isotope, in the chain of Th isotopes, turns out to be a
positive value. The values of B(E2) along the yrast band are shown in Fig. 11,
where the experimental value from the lowest excited state is noticeably larger
than that of the previous nucleus.

4.4. Nucleus 226Th. Figure 7 shows experimental and calculated energy
values of 226Th nucleus. A smooth and regular behavior of spin energy
values is observed. Regularity is manifested to an even greater extent in
the behavior of moments of inertia (Fig. 8). This indicates the absence
of signs of band crossing and gives grounds for understanding that all
observed states up to the spin Iπ = 20+ can also be reproduced within the
usual phenomenology of the IBM with the Hamiltonian (6). Therefore, this
possibility was considered. Table 2 shows for this case the parameters of the
Hamiltonian (6), designated as IBM-ph, which are close to those obtained
within the theoretical consideration. The corresponding calculated energies,
together with the experimental ones, are given in Table 4. Thus, the question
arises about the role of possible high-spin excitation modes. The role of these
modes can be partially reduced due to the value of E(b)

0 , which was taken
equal to 0.6 MeV, but this turned out to be insufficient to adequately describe
the energy values at high spins. The description was obtained by taking into
account the possible difference in D-phonon amplitudes in purely collective
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components of the wave function and the components in which non-collective
excitation modes are present.

T a b l e 4. Comparison of experimental [31] and theoretical energy values in keV
for 226,228Th nuclei

Iπ
226Th 228Th

Exp. IBM-ph. Th. Exp. IBM-ph. Th.

2+ 72.2 72.6 72.1 57.8 58.1 55.2
4+ 226.4 225.7 227 186.8 187 193
6+ 447.3 445.1 445 378.2 378 383
8+ 721.9 719.6 717 622.5 623 629
10+ 1040.3 1040 1035 911.8 912 916
12+ 1395.2 1399 1391 1239.3 1239 1242
14+ 1781.5 1791 1781 1599.4 1599 1601
16+ 2195.8 2210 2196 1987.9 1986 1989
18+ 2635.1 2651 2632 2400.5 2395 2402
20+ 3097.1 3109 3090 2834.4 2823 2834
22+ 3283 3264 3283.5

Attenuation that reduces the interaction of states differing in the presence
of a B phonon and determined by the parameter ς in the relation

〈Dn′
B|H |D+n〉 → ς〈Dn′

B|H |D+n〉 (59)

was taken into account in all works of this series related to the microscopic
calculation of the parameters of the IBM1 Hamiltonian. When analyzing the
mechanism of band crossing in even Ce isotopes [21], it was noted that this
weakening can play an increasingly important role as the spin in the band
increases.

To determine the dependence of ς on the characteristics of the collective
state, ς(I), in [45] it was assumed that this weakening is associated with
a difference in the structure of D-phonon amplitudes depending on whether
there is a B phonon in the component of the wave function, i.e., that in
the presence of a B phonon, the D phonon changes somewhat, becoming
a D′ phonon. The difference is associated with both phonon amplitudes and
superfluidity parameters. Let

ξ = 〈D′ |D+〉, (60)

then we can assume that ς ∼ ξnd(I). In this work, we used the
parameterization

ς = ς0ξ
〈nd−nd(I=0)〉. (61)

For 226Th it was assumed that ς20 = 0.7, ξ2 = 0.78. Taking into account the
boson averages 〈nd〉, which for spins of states from I = 0+ to I = 20+ in
accordance with microscopic calculations turned out to be respectively equal
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to 14.95, 15.06, 15.29, 15.61, 15.99, 16.42, 16.88, 17.37, 17.88, 18.4, 18.94.
This led to the values of the parameter ς2 for spins from I = 0+ to I = 20+

respectively equal to 0.7, 0.681, 0.643, 0.594, 0.541, 0.486, 0.433, 0.384,
0.338, 0.297, 0.260.

In this case, the parameter E(b)
0 was taken equal to 0.6 MeV. Figure 7

shows experimental, theoretical values and those obtained within the
phenomenology of energy magnetic resonance. Table 4 gives their numerical
values. Figure 8 compares the corresponding values of the moments of
inertia. It should be noted that the moments of inertia obtained from
experimental energies give a line that slightly deviates from a straight
line. Both calculated curves in this figure are close to the one obtained
from experimental energies, but still do not exhibit such smoothness. This
reveals the non-random nature of highly collectivized states, which is violated
when non-collective components are introduced into the wave functions of
the analyzed states. When using the IBM as a phenomenological model,
this regularity is preserved except for states with a small number of
configurations, namely, for spins with I = 2Ω− 2 and I = 2Ω, where Ω is the
maximum number of bosons. For the latter spin, the wave function consists
of a single configuration, which leads to irregularity in the energy. In the
presented calculation, it was possible to avoid noticeable deviations from the
experimental data.

The boson composition of the wave functions is shown in Fig. 9, which
implies a weak drop in the collective component, such that for the limiting
spin it remains at the level of 80%. This indicates the absence of the effect
of band crossing in this nucleus up to the maximum observed spin I = 20+.
Qualitatively, this was clear from the possibility of reproducing experimental
energies in the IBM phenomenology.

The values of B(E2) along the yrast band for 226Th are shown in Fig. 11.
To significantly increase the calculated value of B(E2) compared to previous
nuclei, it was necessary to slightly change the spin-orbit splitting parameter.
When calculating the mean-field levels, the Saxon–Woods potential was
used and its parameters were taken in accordance with [49]. For 226Th, an
exception was made for the spin-orbit splitting parameter. The value used
differs by a factor of 1.0364. This turned out to be sufficient to reproduce the
experimentally known value of BW (E2; 2+ → 0+) = 164(10).

4.5. Nucleus 228Th. Figure 7 and Table 4 show the energy values for
the 228Th nucleus. The quality of the description is better demonstrated by the
behavior of J(ω2), shown in Fig. 8. Some discrepancy between the calculated
and experimental points in this figure for the first two transitions is due to the
low energies of the corresponding states. This is caused by the discrepancy
between theory and experiment for the 2+1 and 4+1 states at 2.6 and 7 keV, as
can be seen from Table 4. It is interesting that at high spins the theoretical
values of the moment of inertia provide a significantly better description of the
experimental points than those obtained from the phenomenology of the IBM.
In this case, a certain rise or lifting of J(ω2) (upbending) [52] is realized.
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From Fig. 9, where the boson composition of the wave functions is shown, it
is clear that there is a smooth decrease in the collective component to 65%
and an increase in the component with the boson multipole J = 8+ up to
20% at the observed spin I = 22+. This does not lead to the effect of bands
crossing, but only to a slight increase in the moment of inertia.

In the theoretical calculation, the value of E
(b)
0 was taken equal to

0.3 MeV, ς20 = 0.7, ξ2 = 0.817. Taking into account the boson averages 〈nd〉,
which correspond to the microscopic parameters given in Table 2, the values
of the parameter ς2 for spins from I = 0+ to I = 22+ are respectively equal to
0.7, 0.6878, 0.6617, 0.6266, 0.5859, 0.5426, 0.4988, 0.4557, 0.4143, 0.3752,
0.3385, 0.3046.

The values of B(E2) along the yrast band for 228Th are shown in Fig. 11.
For 228Th, as well as for 226Th, the spin-orbit splitting parameter was
increased compared to the value proposed in [49]. For 228Th, it differs by
a factor of 1.0738. The experimental value BW (E2; 2+ → 0+) = 167(6) is
reproduced.

4.6. Nucleus 230Th. Figures 7 and 8 show the values of energies and
moments of inertia for 230Th. The maximum number of quadrupole bosons is
Ω = 30. Phenomenological calculations within the IBM lead to underestimated
energy values for states with spins I = 22+, 24+, as can be seen from Table 5.
As can be seen from Fig. 8, taking into account high-spin excitation modes
does not completely correct the situation.

In the theoretical calculation, the value of E
(b)
0 was taken equal to

0.4 MeV, ς20 = 0.68, ξ2 = 0.7935. Taking into account the boson averages

T a b l e 5. Comparison of experimental [31] and theoretical energy values in keV
for 230,232Th nuclei

Iπ
230Th 232Th

Exp. IBM-ph. Th. Exp. IBM-ph. Th.

2+ 53.2 52.4 50.5 49.4 49.15 49.4
4+ 174.1 172.4 169.5 162 161.5 163.8
6+ 356.5 355.1 350 333.3 332.5 334.7
8+ 593.8 594.4 587 556.9 556.6 553.9
10+ 879.3 883.5 874 826.8 827.9 822.0
12+ 1206.6 1216 1204 1137.1 1141 1132.2
14+ 1571.8 1585 1572 1482.2 1490 1477.0
16+ 1969.5 1984 1974 1858.2 1871 1858.7
18+ 2396.3 2408 2399 2262.4 2280 2267.2
20+ 2848.6 2851 2851 2691 2710 2694
22+ 3324 3309 3321 3144 3160 3151.3
24+ 3819 3775 3800 3620 3624 3621.1
26+ 4117 4103 4108
28+ 4633 4582 4604
30+ 5164 5081 5123
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〈nd〉, the values of the parameter ς2 for spins from I = 0+ to I = 24+ are
respectively equal to 0.68, 0.6702, 0.6488, 0.6180, 0.5808, 0.540, 0.4972,
0.4545, 0.4129, 0.3730, 0.3556, 0.3008, 0.2687.

The cases when, within the phenomenology, the energies of calculated
states at high spins give underestimated values are quite rare; even Te isotopes
can probably be attributed to them. One of the explanations may be related to
the fact that if the maximum number of bosons Ω turned out to be equal to
12 or 13, then already within the IBM phenomenology the states I = 22+ and
I = 24+ would have a larger energy due to the extremely low number of boson
configurations. The weakness of this explanation is due to the unfoundedness
of using a small part of the maximum number of bosons. Another reason
that can lead to an increase in high-spin states can be the increase in the
number of quadrupole bosons in states as the spin increases. In consistent
calculations (consistency of boson averages and microscopically calculated
boson parameters), which were successfully carried out for Te to Dy isotopes,
this increase is realized automatically due to a smooth change in the structure
of collective D phonons.

Figure 9 shows the boson composition of the wave functions. As for the
previous nuclei, there is a smooth decrease in the collective component. In
230Th, the collective component decreases to 50%, but remains predominant.

The values of B(E2) along the yrast band for 230Th are shown in Fig. 11.
The spin-orbit splitting parameter was increased 1.18 times compared to the
value proposed in [49]. The experimental values BW (E2; 2+ → 0+) = 196(6)
and BW (E2; 4+ → 2+) = 265(9) are reproduced.

4.7. Nucleus 232Th. Figures 7 and 8 show the values of energies
and moments of inertia for 232Th. Phenomenological calculations within the
IBM lead to an accuracy of energy reproduction up to 7 keV for spins up
to I+ = 24+; for spins I+ = 26+, 28+, 30+ the calculated energy values
within the final calculation taking into account high-spin excitation modes
are underestimated by 9, 29 and 42 keV, respectively, as can be seen from
Table 5. A similar situation occurred for the previous nucleus, 230Th. The
quality of the description could be improved if a self-consistent calculation
were carried out for each band state separately. Such a calculation invariably
leads to an increase in the energies of collective states. The fact that the
calculated energies of states are significantly lower than the experimental ones
at limiting values of spins may indicate an interruption of the band at these
spins.

In the theoretical calculation, the value of E
(b)
0 was taken equal to

1.35 MeV, ς20 = 0.67, ξ2 = 0.7866. Taking into account the boson averages
〈nd〉 corresponding to the microscopic parameters given in Table 2, the values
of the parameter ς2 for spins from I = 0+ to I = 30+ are respectively equal
to 0.67, 0.659, 0.634, 0.600, 0.561, 0.518, 0.474, 0.431, 0.388, 0.349, 0.312,
0.278, 0.247, 0.219, 0.193, 0.1706.
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Figure 9 shows the boson composition of the wave functions. As for the
previous nuclei, there is a smooth decrease in the collective component. In
232Th, the collective component decreases to 56% with a spin of 30+.

The values of B(E2) along the yrast band for 232Th are shown in Fig. 11.
The spin-orbit splitting parameter was increased 1.09882 times compared
to the value proposed in [49]. The experimental values BW (E2; 2+ →
→ 0+) = 198(11), BW (E2; 4+ → 2+) = 286(24) and subsequent ones up to
BW (E2; 26+ → 24+) = 350(120) are reproduced. This is the only nucleus of
thorium isotopes for which B(E2) values have been measured for almost the
entire band.

4.8. Nucleus 234Th. Figures 7 and 8 show the values of energies and
moments of inertia for 234Th. Theoretical calculation reproduces experimental
energies with an accuracy of 1 keV up to the spin I+ = 18+; for the
spins I+ = 20+, 22+, 24+ the calculated energy values are less than the
experimental ones, respectively, by 3, 6 and 7 keV, as can be seen from
Table 6. This quality of reproducing the energies of states is unique not
only for thorium isotopes, but also for all nuclei in general. Similarly, a
unique reproduction of the energies of the yrast band was obtained within
the phenomenology of the IBM, which is also evident from Table 6. The
appropriate quality of energy description leads to a precise reproduction of the
moment of inertia in Fig. 8.

T a b l e 6. Comparison of experimental [31] and theoretical energy values in keV
for 234,236Th nuclei

Iπ
234Th 236Th

Exp. IBM-ph. Th. Exp. IBM-ph. Th.

2+ 49.6 49.3 49.6 48.4 48.5 48.1
4+ 163.1 162.6 164.2 160.0 159.7 159.6
6+ 336.5 336.1 338.0 329.4 329.6 329.5
8+ 564.7 564.8 564.8 553.4 553.3 553.8
10+ 842.5 843.6 842.7 826.1 825.3 826.4
12+ 1164.9 1167 1165.5 1140 1143.5
14+ 1526.6 1529 1525.6
16+ 1923.4 1926 1924.2
18+ 2351 2353 2350.2
20+ 2805.1 2804 2801.9
22+ 3281.4 3277 3275.9
24+ 3775.1 3766 3767.9

In the theoretical calculation, the value of E
(b)
0 was taken equal to

1.6 MeV, ς20 = 0.67, ξ2 = 0.7788. Taking into account the boson averages
〈nd〉, corresponding to the microscopic parameters given in Table 2, the
values of the parameter ς2 for spins from I = 0+ to I = 24+ are respectively
equal to 0.67, 0.658, 0.634, 0.600, 0.561, 0.517, 0.472, 0.427, 0.385, 0.344,
0.306, 0.272, 0.240. The fact of a decrease in the values of ς2, which are not
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independent parameters, but are determined using the relation (61), where the
most important quantity is ξ2, allows relative compensation of the processes
of interaction of collective states with high-spin excitation modes.

Figure 9 shows the boson composition of the wave functions. As for the
previous nuclei, there is a smooth decrease in the collective component. In
234Th, the collective component decreases to 71% with a spin of 24+.

The values of B(E2) along the yrast band for 234Th are shown in Fig. 11.
The spin-orbit splitting parameter is accepted as 1.09882 times larger than the
value proposed in [49]. The only known experimental value BW (E2; 2+ →
→ 0+) = 183(16) is reproduced.

4.9. Nucleus 236Th. For the 236Th nucleus, in comparison with the
previous thorium isotopes, the experimental information is already relatively
modest, the energies of the main band are known only up to the state with
I+ = 10+, and there are no experimental values of B(E2). Nevertheless, this
nucleus was also included among those considered in this study. Figures 7
and 8 show the energy values and moments of inertia for 236Th. The final
theoretical calculation leads to the reproduction of energies with an accuracy
of 0.4 keV, as can be seen from Table 2. According to this accuracy, the
moments of inertia are also reproduced.

In the theoretical calculation, the value of E
(b)
0 was taken equal to

1.6 MeV, ς20 = 0.67, ξ2 = 0.82225. Taking into account the boson averages
〈nd〉, the values of the parameter ς2 for spins from I = 0+ to I = 12+ are
respectively equal to 0.67, 0.6568, 0.627, 0.588, 0.545, 0.499, 0.454.

Figure 9 shows the boson composition of the wave functions. The collective
component for the state with the spin I+ = 10+ is over 96%, and this is
greater than for the previous thorium isotopes.

The theoretical values of B(E2) along the yrast band for 236Th are shown
in Fig. 11. The spin-orbit splitting parameter is accepted as 1.09882 times
larger than the value proposed in [49]. For this nucleus, it is possible to
change the number of bosons in a small interval, and its values in this case
turned out to change the value of BW (E2; 2+ → 0+) (this does not happen
automatically, since in each case different values of the parameters of the
E2-transition operator are obtained). The maximum number of bosons was
chosen to be 26, and the calculated value BW (E2; 2+ → 0+) = 179.5.

CONCLUSIONS

The paper presents the microscopic theory of an extended version of IBM1,
which makes it possible to calculate its parameters using a spherical single-
particle basis and residual internucleon interactions, as well as numerous
parameters for the connection of collective states with high-spin modes. For
demonstration, calculations of even xenon isotopes were presented, for which
the effect of band crossing is clearly visible. The properties of yrast bands
in even thorium isotopes have been considered in more detail. For 220,222Th
nuclei, the result obtained is that there is a soft intersection of bands in them,
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which in the first of them leads to the observed backbending and a theoretical
anomaly in the behavior of the B(E2) values. For the second nucleus, the
intersection of the bands occurs so smoothly that backbending, as well as
anomalies in the values of B(E2), is not observed. For the remaining nuclei,
as the mass number increases, the excitation energies decrease and B(E2)
increases. The collective component of the wave function remains dominant
up to the maximum observable spins.
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