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We study mathematical models of quasicrystalline materials — non-crystallographic
solids with long range aperiodic order. A natural generalization of crystallographic lattices
are the so-called Meyer sets. They are uniformly discrete, relatively dense point sets
Σ ⊂ R

n with the property of almost lattices: Σ − Σ ⊂ Σ + F for F finite. This property
ensures that there is only a finite number of local configurations of atoms in the model
of the material. The most commonly studied class of Meyer sets arises in the well known
cut-and-project scheme. For cut-and-project sets Σ(Ω) with compact acceptance window
Ω ⊂ R

d we study a finite set F of the Meyer property. This task can be transformed into
the problem of covering of the difference set Ω − Ω by open copies Ω◦. The cardinality
f(Ω) of the minimal covering is called the Meyer number of Ω. We show that f is bounded
on the space of convex compact sets Ω ⊂ R

d. We give estimates on the universal upper
bound of the Meyer number of Ω ⊂ R

2 and Ω ⊂ R
3. We determine the values f(Ω) for

some special types of Ω ⊂ R
2. We further show that f is not bounded if we relax the

condition of convexity.
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1 Introduction

The fundamental ‘law’ of crystallography says that a crystal cannot have icosa-
hedral symmetry. However, in 1984 Schechtman announced existence of materials,
whose diffraction diagrams showed bright points organized into 10–, 6– and 2–fold
symmetry. This corresponds exactly to icosahedron which has 5–, 3–, and 2–fold
axes. In present days, crystallographers know materials whose diffraction images
have also other crystallographically forbidden symmetries, namely 8– and 12–fold
symmetry. Since the accuracy of experimental instruments is finite, the diffrac-
tion images reveal a discrete diagram, although they are in fact densely covered by
diffraction marks. Such materials are said to have ‘essentially discrete diffraction
diagram’. In order to obtain such a diffraction image, the material must have a cer-
tain long–range order, although the microscopic structure is not a lattice. A big
progress in mathematical modelling of these materials, called ‘quasicrystals’, in re-
cent years is due to J. Lagarias, M. Baake, R.V. Moody, and many others. For
a general overview on the mathematical theory see [1].

In a mathematical model of a solid state material we represent position of atoms
as points in the space. The model is ideal, i.e. infinite. The requirement that the
points should ‘uniformly’ fill the entire space is characterized by the so-called Delone
property:

Definition 1.1. A set Λ ⊂ R
d is Delone, if there exist r1, r2 > 0 such that

(i) Λ is uniformly discrete: ‖x − y‖ ≥ r1 for any x, y ∈ Λ, x 6= y.
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(ii) Λ is relatively dense: B(x, r2) ∩ Λ 6= ∅ for any x ∈ R
d, where B(x, r2) is the

d–dimensional ball of radius r2 centered at x.

A suitable model satisfying the above property are the point sets arising in the
so-called cut-and-project scheme. Roughly speaking, the set arises as a projection
of chosen points of a higher–dimensional lattice on a lower–dimensional ‘physical
space’. The choice of lattice points is controlled by an ‘acceptance window’ in
the non-physical ‘inner space’. The definition of cut-and-project sets which is pro-
vided below is not the most general one (for that see [4, 5]). In our considerations
both physical and inner spaces are Euclidean. Patera in [6] shows how to choose
the lattice and the projection, in order to obtain quasicrystal models with 5–fold
symmetries, which have been observed in nature [7].

Definition 1.2. Let V1 and V2 be non-trivial subspaces of R
n such that V1 ⊕V2 =

R
n, the restriction of π1 on the lattice Z

n is one-to-one, and π2(Z
n) is dense in V2,

where π1, π2 are the projections on V1 along V2, and V2 along V1, respectively. Let
Ω be a compact set with non-empty interior Ω◦. The set

Σ(Ω) := {π1(x) | x ∈ Z
n , π2(x) ∈ Ω}

is called a cut-and-project set with acceptance window Ω.

2 Cut-and-project sets and the Meyer number

It has been shown [4] that every cut-and-project set satisfies the Meyer property,
i.e. is Delone and

Σ(Ω) − Σ(Ω) ⊂ Σ(Ω) + F (1)

for some finite set F . Obviously, F ⊂ π1(Z
n) and for the finite set G := π2π

−1

1
(F )

we have
Ω − Ω ⊂ Ω + G . (2)

The converse is however not that simple. Having G ⊂ V2 which satisfies (2), it is
not always possible to find F of the same cardinality, so that (1) holds, which comes
from the fact that G may not be a subset of π2(Z

n). However, this inconvenience
can be avoided if we study covering of the difference set Ω − Ω by copies of the
interior Ω◦, namely

Ω − Ω ⊂ Ω◦ + G . (3)

Having such G and due to the fact that π2(Z
n) is dense in V2, we can clearly find

a set G̃ ⊂ π2(Z
n) of the same cardinality as G and satisfying (2). Therefore we

may set F = π1π
−1

2
(G̃) to obtain (1) with |F | = |G|.

The main point of interest of this paper can thus be formulated as follows: For
compact sets Ω ⊂ R

d with non-empty interior we are interested in the cardinality
of the minimal finite set G satisfying (3). This cardinality is denoted by f(Ω) and
called the Meyer number of Ω. Formally,

f(Ω) := min{k ∈ N | ∃G ⊂ R
d , satisfying Ω − Ω ⊂ Ω◦ + G and |G| = k} .
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Thus the study of the Meyer property of cut-and-project sets is transformed
into a covering problem of convex sets. We want to determine or estimate the
Meyer number for compact convex sets Ω ⊂ R

d with non-empty interior. In what
follows we state the results about the Meyer number obtained in [2], in particular
the fact that on the space of all convex acceptance windows Ω the Meyer number
is bounded and if we relax the condition of convexity, such statement is no longer
true. We further provide estimates on the universal upper bound on the Meyer
number in dimension two and in dimension three.

3 Boundedness of the Meyer number

The most important result about the Meyer number is formulated as follows.

Theorem 3.1. For every dimension d ∈ N, there exists a constant Kd ∈ N, such

that for all convex compact sets Ω ⊂ R
d with non-empty interior we have f(Ω) ≤

Kd. Moreover, Kd is smaller or equal to the number of d-dimensional unit balls

needed for covering B(0, 2d) ⊂ R
d.

The proof of Theorem 3.1 can be found in a detailed form in [2]. Here we
provide a sketch which allows us to determine also the estimates on the Meyer
number. Crucial for the proof of Theorem 3.1 is the following assertion taken
from [3].

Theorem 3.2 (John). For every convex compact set Ω with non-empty interior

in R
d there exists a closed ellipsoid E such that E +z ⊂ Ω ⊂ dE +z, where z ∈ R

d.

Proof of Theorem 3.1. Using Theorem 3.2 there exists a closed ellipsoid E ⊂ R
d

such that E + z ⊂ Ω ⊂ dE + z. We find a non-singular affine map A such that
A(E + z) = B(0, 1) and A(dE + z) = B(0, d). Then B(0, 1) ⊂ (AΩ)◦ ⊂ B(0, d).
Since B(0, 2d) is compact, the number of copies of B(0, 1) needed to cover it is
finite, say n. We have thus

B(0, 2d) ⊂
(

x1 + B(0, 1)
)

∪ · · · ∪
(

xn + B(0, 1)
)

,

for some x1, . . . , xn ∈ R
d, then

AΩ − AΩ ⊂ B(0, d) − B(0, d) = B(0, 2d) ⊂
(

x1 + B(0, 1)
)

∪ · · · ∪
(

xn + B(0, 1)
)

⊂

⊂
(

x1 + (AΩ)◦
)

∪ · · · ∪
(

xn + (AΩ)◦
)

.

It is not difficult to show that the function f is invariant under affine transfor-
mations of Ω. More precisely, if A : R

d → R
d is a bijective affine map, then

f(AΩ) = f(Ω) for every convex compact set Ω ⊂ R
d with non-empty interior.

Therefore the above inclusion implies f(Ω) = f(AΩ) ≤ n, what was to show.

4 Unboundedness of f on the space of general compact sets

Sofar we have treated only convex compact sets in R
d. We stand in front of

a natural question. Is the function f bounded even if we relax the condition of
convexity? The answer is negative.
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Proposition 4.1. There exists a sequence (Ωn)n∈N of compact sets in Rd with

non-empty interior, such that limn→∞ f(Ωn) = +∞.

Proof. We construct the counterexample of boundedness of the function f in dimen-
sion 2. Generalization to higher dimensions is straightforward. Let Ωn be compact
sets with non-empty interior containing the line segments {(t, 0) | t ∈ [−1, 1]},
{(0, t) | t ∈ [−1, 1]} for all n ∈ N, and such that limn→∞ vol(Ωn) = 0.

Then obviously Ωn − Ωn contains the square of side length 1 centered at the
origin, {(t1, t2) | t1, t2 ∈ [−1, 1]}. For the volume of Ωn−Ωn we thus have vol(Ωn−
Ωn) ≥ 4. Therefore

f(Ωn) ≥
vol(Ωn − Ωn)

vol(Ωn)
≥

4

vol(Ωn)
,

which implies limn→∞ f(Ωn) = +∞, what we wanted to show.

Let us mention that we can construct the counterexample even on the sets which
are the nearest generalization of convex sets, namely star–shaped sets. (We say that
Ω ⊂ R

d is star–shaped, if there exists an x ∈ R
d such that λx + (1 − λ)y ∈ Ω for

every y ∈ Ω and all λ ∈ (0, 1).) An example of a sequence of star–shaped sets Ωn

satisfying limn→∞ f(Ωn) = +∞ and the corresponding difference sets Ωn −Ωn can
be found in Figure 1.

Fig. 1. Illustration of a sequence of star–shaped sets Ωn, n ∈ N, satisfying lim
n→∞

f(Ωn) =

+∞. The left hand part of the figure shows Ωn, on the right hand side there is Ωn − Ωn.

Note also that we have omitted the proof of unboundedness of f in dimension
one. There every star–shaped set is convex, the counterexample in R must therefore
be built on non-connected sets. The construction of such a sequence of sets is simple
but rather technical.
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5 Universal bound on the Meyer number for convex sets in R
2

In this section we provide an estimate on the value of the function f for two–
dimensional convex compact sets Ω, i.e. on the constant Kd of Theorem 3.1 for
d = 2. According to the theorem, the universal bound K2 on the Meyer number
of convex sets in R

2 is smaller or equal to the number of copies of the open 2-
dimensional unit ball B(0, 1) needed to cover the closed ball B(0, 4). The result is
stated in the following proposition.

Proposition 5.1. Let Ω be a convex compact set in R
2. Then f(Ω) ≤ K2 ≤ 26.

Proof. Figure 2 shows that it is possible to cover B(0, 4) by 26 translated copies of
the ball B(0, 1). Hence, f(Ω) ≤ 26 for every convex compact set Ω with non-empty
interior in R

2.

Fig. 2. Illustration of proof of Proposition 5.1. Six copies of the unit ball are used to
cover the central part of B(0, 4). Four more copies are needed to cover the section of

angle 2π/5.

Essential for the estimate of the universal upper bound K2 was John’s Theo-
rem 3.2. Another result of John, cited in [2], is used with similar reasoning to derive
that the Meyer number of centrally symmetric convex sets Ω ⊂ R

2 is bounded by
16. It is conceivable that both of these estimates on the Meyer number of two-
dimensional convex compact sets are too rough. We conjecture that the maximal
Meyer number is reached on a triangle.

Remark 5.2. Any triangle Ω can be transformed to an equilateral one by an affine
map. Therefore it suffices to determine the Meyer number of an equilateral triangle.
If Ω is such a triangle with side-length 1, then Ω−Ω is a regular hexagon of radius
1. Figure 3 shows that thirteen open copies of the triangle Ω are sufficient to cover
the closed hexagon Ω − Ω, i.e. f(Ω) ≤ 13.
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Fig. 3. Let Ω be a triangle. Then f(Ω) ≤ 13.

According to our knowledge, among all two–dimensional convex sets, the tri-
angle has the largest Meyer number. On the other hand it is likely that f(Ω) is
smallest for Ω being an ellipse.

Remark 5.3. For every closed ellipse E in R
2 there exists an affine mapping such

that A(E) = B(0, 1). Using invariance of f under affine transformations of Ω we
have f(E) = f(A(E)) = f(B(0, 1)). Figure 4 illustrates determining of the value
of f(B(0, 1)) = f(E) = 8.

Fig. 4. The left hand part of Figure 4 shows that eight copies of a unit ball are sufficient
to cover B(0, 2). The right hand part of the figure illustrates that seven are not sufficient,
since for covering the boundary of B(0, 2) one needs six closed and not only open unit

balls. This means that the Meyer number of an ellipse is equal to f(Ω) = 8.

All together, we conjecture that 8 ≤ f(Ω) ≤ 13 for every convex compact set
Ω ⊂ R

2.
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6 Meyer number for regular polygons

It is interesting to determine the value of the function f on the simplest two–
dimensional shapes, namely regular polygons. It turns out that for determining the
Meyer number of regular n–gons for n ≥ 7, one can use the following proposition
taken from [2], which says that the Meyer number for every set Ω which is not ‘far’
from a ball is bounded by 8.

Proposition 6.1. Let Ω be a convex compact set in R
2 such that there exist x, y ∈

R
2 and r > 0 satisfying B(x, cr) ⊂ Ω◦ ⊂ B(y, r), where c := 2

(

1 + 2 cos( 2π

7
)
)−1

.

Then f(Ω) ≤ 8.

It remains to determine the Meyer number for the regular hexagon, pentagon
and the square. We do it in a constructive way, as shown in the following remark.

Remark 6.2. Let Ω be a regular hexagon, pentagon or square. Then f(Ω) = 9,
as illustrated on Figure 5.

Fig. 5. Covering of the difference set Ω − Ω by nine open copies of Ω in cases that Ω is
a regular hexagon, pentagon or square.

– If Ω is a regular hexagon with the radius of escribed circle being 1, then
Ω−Ω is a regular hexagon of double size. For covering of the boundary of a closed
hexagon of radius 2 one needs 8 open hexagons of radius 1. One more hexagon is
used for covering the centre.

– If Ω is a regular pentagon with the radius of escribed circle being 1, then

Ω−Ω is a regular decagon of radius 1 +
√

3

2
. The explanation is analogous to that

for hexagon.
– If Ω is a square of side–length 1, then Ω−Ω is a square of double side-length.

For covering the upper edge of the large square one needs 3 open copies of the unit
square, the same number is needed for the lower edge and for the remaining part
in the middle of the square.

We summarize the results about the Meyer number of regular n–gons in the
following proposition.
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Proposition 6.3. Let Ω be a regular n–gon. Then f(Ω) ≤ 8 for n ≥ 7, f(Ω) = 9
for n = 4, 5, 6 and f(Ω) ≤ 13 for n = 3.

7 Universal bound on the Meyer number for convex sets in R
3

We use the same tool to find an upper bound on the Meyer number for convex
Ω ⊂ R

3 as we did in the case of Ω ⊂ R
2. Theorem 3.1 claims that the universal

upper bound K3 on the Meyer number f(Ω) of convex compact sets Ω ⊂ R
3 is less

or equal to the number of translated copies of the open unit ball B(0, 1) needed
to cover the closed ball B(0, 6). We estimate this number by arrangement of the
centers of unit balls in a lattice so that they cover the closed ball B(0, 6). We
consider first the orthogonal lattice and then the orange pile arrangement. It is
however conceivable that in the minimal covering the centers of unit balls do not
have lattice arrangement.

Remark 7.1. For covering of B(0, 6) by open translated copies of B(0, 1) we use

first the orthogonal lattice
(

2√
3
− ε

)

Z
3 for ε > 0, which will be specified later.

If to every lattice point
(

2√
3
− ε

)

(k, l, m) of norm ≤ 7 we put an open cube of

side–length 2√
3
, we cover the ball B(0, 6), as illustrated on Figure 6.

Fig. 6. Illustration of the arrangement of cubes which cover the closed ball B(0, 6).

Replacing the cubes by escribed balls we obtain a covering of B(0, 6) by open
copies of B(0, 1). The number of such cubes/balls is equal to the number of all
integer solutions (k, l, m) of the inequality

(

2√
3
− ε

)2

k2 +
(

2√
3
− ε

)2

l2 +
(

2√
3
− ε

)2

m2 ≤ 49 ,
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which has the same number of integer solutions as

k2 + l2 + m2 ≤

[

(

2√
3
− ε

)−2

49

]

= 36

for sufficiently small ε. The number of such solutions is 925. Thus f(Ω) ≤ 925 for
convex Ω.

Remark 7.2. In analogy with the well known packing problem in combinatorics,
where one looks for the densest packing of 3–dimensional space by non-overlapping
balls, it is likely that the role of the most efficient lattice for covering will also be
played by the orange pile arrangement, see Figure 7, i.e. the lattice Zx1+Zx2+Zx3,
where x1, x2, x3 are vectors of equal length, pairwise of angle 60◦.

Fig. 7. Illustration of the orange pile arrangement.

For our purpose let x1, x2, x3 be vectors of length 2
√

2√
3
− ε, where ε > 0 will

be specified later. Now, we situate unit balls to all the points kx1 + lx2 + mx3,

k, l, m ∈ Z, having the norm ≤ 7. As the regular tetrahedra with side–length 2
√

2√
3

has the mass center in distance 1 of the vertices, such unit balls cover the entire
closed ball B(0, 6). The number of unit balls is equal to the number of integer
solutions of the inequality

‖kx1 + lx2 + mx3‖ ≤ 7 .

Taking the second power of both sides of the inequality one obtains
(

2
√

2√
3
− ε

)2
(

k2 + l2 + m2 + kl + lm + km
)

≤ 49 ,

which has the same number of integer solutions as

k2 + l2 + m2 + kl + lm + km ≤

[

(

2
√

2√
3
− ε

)−2

49

]

= 18

for sufficiently small ε. Surprisingly, the number of such solutions is again 925, thus
the orange pile arrangement is in this case not more efficient than the orthogonal
lattice.

Proposition 7.3. Let Ω be a convex compact set in R
3 with non-empty interior.

Then f(Ω) ≤ 925.
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8 Conclusion

In this paper we study the Meyer property of cut-and-project sets. Their
structural complexity is dependent on the cardinality of the finite set F satisfy-
ing Σ(Ω) − Σ(Ω) ⊂ Σ(Ω) + F . We have transformed this problem to the covering
problem, i.e. to investigation of the Meyer number f(Ω) of convex compact sets
Ω ⊂ R

d defined as the minimal number of open copies Ω◦ needed to cover the dif-
ference set Ω−Ω. The main result is that for every dimension d there is an upper
bound Kd such that f(Ω) ≤ Kd for any convex compact set Ω ⊂ R

d. For estimates
of Kd one needs to find the minimal covering of the closed ball B(0, 2d) ⊂ R

d by
open unit balls. This may be a difficult problem in general.

We have focused on dimension d = 2 and shown that f(Ω) ≤ K2 ≤ 26 for
any convex compact set Ω ⊂ R

2. It is however apparent that this bound is not
reached. In order to find better estimates, we have determined the Meyer number
for some special types of convex sets in R

2. These results lead us to conjecture that
8 ≤ f(Ω) ≤ 13 for any convex compact Ω ⊂ R

2.
It is difficult to find the Meyer number even for special types of convex compact

Ω ⊂ R
3. We have shown that f(Ω) ≤ K3 ≤ 925 for any convex compact set Ω ⊂ R

3.
To obtain this estimate on the universal upper bound we used again Theorem 3.1.
Situating the centers of open unit balls for covering the closed ball B(0, 6) in the
vertices of the orthogonal lattice, and of the orange pile lattice provides the same
values. It remains an open problem whether the estimate of the universal upper
bound on the Meyer number of three-dimensional convex compact sets can be
refined by arrangement of ball–centers to points of another lattice.
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