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In this talk we presented a general procedure for determining quasi–exact solv-
ability of the Dirac and the Pauli equation with an underlying sl(2) symmetry. This
procedure makes full use of the close connection between quasi–exactly solvable sys-
tems and supersymmetry (SUSY). Based on this procedure, we demonstrate that
the Pauli equation, the Dirac equation coupled minimally with a vector potential,
and neutral Dirac particles in external electric fields, which are equivalent to gen-
eralized Dirac oscillators, are physical examples of quasi–exactly solvable systems.

Here we only give the main ideas of the procedures, and refer the readers to
[1, 2] for details.

For all the cases cited above, one can reduce the corresponding multi–component
equations to a set of one–variable equations possessing one-dimensional SUSY af-
ter separating the variables in a suitable coordinate system. Typically the set of
equations takes the form (

d
dr

+ W (r)
)

f− = E+f+ , (1)(
− d

dr
+ W (r)

)
f+ = E−f− , (2)

where r is the basic variable, e.g. the radial coordinate, and f± are, say, the two
components of the radial part of the Dirac wave function. The superpotential W
is related to the external field configuration, and E± involve the energy and mass
of the particle. We can rewrite this set of equations as

A−A+f− = εf− , (3)
A+A−f+ = εf+ , (4)

with
A± ≡ ± d

dr
+ W , ε ≡ E+E− . (5)

Explicitly, the above equations read(
− d2

dr2
+ W 2 ∓W ′

)
f∓ = εf∓ . (6)
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Here and below the prime means differentiation with respect to the basic variable.
Eq.(6) clearly exhibits the SUSY structure of the system. The operators acting on
f± in eq.(6) are said to be factorizable, i.e. as products of A− and A+. The ground
state, with ε = 0, is given by one of the following two sets of equations:

A+f
(0)
− (r) = 0 , f

(0)
+ (r) = 0 ; (7)

A−f
(0)
+ (r) = 0 , f

(0)
− (r) = 0 , (8)

depending on which solution is normalizable.
One can determine the forms of the external field that admit exact solutions of

the problem by comparing the forms of the superpotential W with those listed in
Table (4.1) of [3].

Similarly, from Turbiner’s classification of the sl(2) QES systems [4], one can
determine the forms of W , and hence the forms of external fields admitting QES
solutions based on sl(2) algebra. The main ideas of the procedures are outlined
below. We shall concentrate only on solution of the upper component f−, which is
assumed to have a normalizable zero energy state.

Eq.(6) shows that f− satisfies the Schrödinger equation H−f− = εf−, with

H− = A−A+ = − d2

dr2
+ V (r) , (9)

with
V (r) = W (r)2 −W ′(r) . (10)

We shall look for V (r) such that the system is QES. According to the theory of QES
models, one first makes an “imaginary gauge transformation” on the function f−

f−(r) = φ(r)e−g(r) , (11)

where g(r) is called the gauge function. The function φ(r) satisfies

−d2φ(r)
dr2

+ 2g′
dφ(r)

dr
+

[
V (r) + g′′ − g′2

]
φ(r) = εφ(r) . (12)

For physical systems which we are interested in, the phase factor exp
(
−g(r)

)
is

responsible for the asymptotic behaviors of the wave function so as to ensure nor-
malizability. The function φ(r) satisfies a Schrödinger equation with a gauge trans-
formed Hamiltonian

HG = − d2

dr2
+ 2W0(r)

d
dr

+
[
V (r) + W ′

0 −W 2
0

]
, (13)

where W0(r) = g′(r). Now if V (r) is such that the quantal system is QES, that
means the gauge transformed Hamiltonian HG can be written as a quadratic com-
bination of the generators Ja of some Lie algebra with a finite dimensional repre-
sentation. Within this finite dimensional Hilbert space the Hamiltonian HG can
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be diagonalized, and therefore a finite number of eigenstates are solvable. For one–
dimensional QES systems the most general Lie algebra is sl(2). Hence if eq.(13) is
QES then it can be expressed as

HG =
∑

CabJ
aJb +

∑
CaJa + constant , (14)

where Cab, Ca are constant coefficients, and the Ja are the generators of the Lie
algebra sl(2) given by

J+ = z2 d
dz

−Nz ,

J0 = z
d
dz

− N

2
, N = 0, 1, 2, . . . , (15)

J− =
d
dz

.

Here the variables r and z are related by z = h(r), where h(·) is some (explicit
or implicit) function. The value j = N/2 is called the weight of the differential
representation of sl(2) algebra, and N is the degree of the eigenfunctions φ, which
are polynomials in a (N + 1)–dimensional Hilbert space

φ = (z − z1)(z − z2) · · · (z − zN ) . (16)

The requirement in eq.(14) fixes V (r) and W0(r), and HG will have an algebraic
sector with N + 1 eigenvalues and eigenfunctions. For definiteness, we shall denote
the potential V admitting N + 1 QES states by VN . From eqs.(11) and (16), the
function f− in this sector has the general form

f− = (z − z1)(z − z2) · · · (z − zN ) exp
(
−

∫ z

W0(r) dr

)
, (17)

where zi (i = 1, 2, . . . , N) are N parameters that can be determined by plugging
eq.(17) into eq.(12). The algebraic equations so obtained are called the Bethe
ansatz equations corresponding to the QES problem [5, 1, 2]. Now one can rewrite
eq.(17) as

f− = exp
(
−

∫ z

WN (r, {zi}) dr

)
, (18)

with

WN (r, {zi}) = W0(r)−
N∑

i=1

h′(r)
h(r)− zi

. (19)

There are N+1 possible functions WN (r, {zi}) for the N+1 sets of eigenfunctions φ.
Inserting eq.(18) into H−f− = εf−, one sees that WN satisfies the Ricatti equation

W 2
N −W ′

N = VN − εN , (20)

where εN is the energy parameter corresponding to the eigenfunction f− given in
eq.(17) for a particular set of N parameters {zi}.
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From eqs.(9), (10) and (20) it is clear how one should proceed to determine
the external fields so that the Dirac equation becomes QES based on sl(2): one
needs only to determine the superpotentials W (r) according to eq.(20) from the
QES potentials V (r) classified in [4]. This is easily done by observing that the
superpotential W0 corresponding to N = 0 is related to the gauge function g(r)
associated with a particular class of QES potential V (r) by g′(r) = W0(r). This
superpotential gives the field configuration that allows the weight zero (j = N = 0)
state, i.e. the ground state, to be known in that class. The more interesting task
is to obtain higher weight states (i.e. j > 0), which will include excited states. For
weight j (N = 2j) states, this is achieved by forming the superpotential WN (r, {zi})
according to eq.(19). Of the N + 1 possible sets of solutions of the Bethe ansatz
equations, the set of roots {z1, z2, . . . , zN} to be used in eq.(19) is chosen to be the
set for which the energy parameter of the corresponding state is the lowest (usually
it is the ground state).
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