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In this paper we sketch the foundations of recoupling theory. Introduction of an
indistinguishability principle leads to Pauli Exclusion and confinement. We discuss its
application to SU(3) colour.
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1 Introduction

This paper is intended to established the recoupling theory required for the
paper [1] given at the sister conference on quantum groups where an extension of
graded Lie algebra was presented. Recoupling is an important ingriedent of any
many–body quantum theory that deserves to be studied in its own right. Through
the indistinguishability principle it gives rise to Pauli’s exclusion principle and a
mechanism for confinement. For SU(3) this gives a statistical account of quark
confinement as first announced in Joyce [2]. This paper is based on the more
extensive account given in Joyce [3].

2 Monoidal recouling theory

A many–body quantum theory has the following elements:

1. The symmetry of the physical system is represented by a group G.

2. The fundamental constituent physical systems are represented by finite di-
mensional irreducible representations.

3. Composition of physical systems is given by tensor product.

4. Recoupling (or statistic) is given by a symmetric monoidal structure.

Items (i) and (ii) assert that the collection of all physical systems exists in the
category of representations for the group G which we denote RepG. Item (iii)
provides a joining operation ⊗ : RepG × RepG → RepG. The last item, (iv), is
cyptic so we spend some time developing its meaning.

The recoupling is a collection of natural isomorphisms that reorganize the cou-
pling of any braketed expression of fundamental physical systems into another
expression. The elementary recoupling operations (or simply recouplings) are:

– Associativity: α̂ : ⊗(⊗×1) → ⊗(1×⊗) taking (a, b, c) 7→ α̂a,b,c : (a⊗b)⊗c→
a⊗ (b⊗ c).
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– Commutativity: γ̂ : ⊗ → ⊗τ where τ is the switch map given by τ(a, b) =
(b, a), taking (a, b) 7→ γ̂a,b : a⊗ b→ b⊗ a.

– Left unitarity: λ̂ : e ⊗ → id where e is the trivial representation, taking
a 7→ λ̂a : e⊗ a→ a.

– Right unitarity: ρ̂ : ⊗ e → id where e is the trivial representation, taking
a 7→ ρ̂a : a⊗ e→ a.

The trivial representation takes on the meaning of a physical system containing no
particles. In other words the vacuous physical system.

Composite physical systems are graded as follows. Two physical systems a and
b are equivalent (a ∼ b) if there exists a composite system w such that a, b ⊂ w. Let
[a] = {b : b is a composite system and a ∼ b}. The collection of these equivalence
classes A is an Abelian group with [a] + [b] = [a ⊗ b], 0 = [e] and −[a] = [a∗]. For
example, if G = SU(n) then A = Zn, the cyclic group on n letters. For spin this is
precisely the Bose/Fermi spin grade.

The outcomes of observations (represented by intertwing operators) must be
preserved. Thus the recouplings must be natural transformations in the category
theoretic sense. In Joyce [3] it is shown that the most general form is given by

α̂a,b,c(a⊗ b)⊗ c = αm,n,pa⊗ (b⊗ c) , (1)
γ̂a,ba⊗ b = γm,nb⊗ a , (2)

λ̂ae⊗ a = λma , (3)
ρ̂aa⊗ e = ρma , (4)

where a, b, c are physical systems of grade m, n, p. Thus a recopupling is repre-
sented by four maps α : A3 → S1, γ : A2 → S1 and λ, ρ : A → S1.

In the recoupling process there are often many paths which recouple two physical
expressions. For example, figure 1 gives two alternative paths from ((a⊗ b)⊗ c)⊗d

Fig. 1. The pentagon condition
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to a⊗ (b⊗ (c⊗ d)). On says the recoupling is coherence if any two such paths give
the same recoupling. The Mac Lane coherence theorem asserts that this holds if
and only if the following symmetric monoidal constraint conditions hold.

αm+n,p,qαm,n,p+q = αm,n,pαm,n+p,qαn,p,q (5)
αm,n,pγm,n+pαn,p,m = γm,nαn,m,pγm,p , (6)

γm,nγn,m = 1 , (7)
ρm = αm,0,nλn , (8)

for all m,n, p, q ∈ A. When α, λ and ρ are trivial then the gamma’s are the
commutation factors found in graded Lie algebra [4, 5, 6]. An immediate consequent
of this is γ0,0 = 1. Some important examples: If A = Z1 then all recoupling
phases are unit with the possible exception λ0 = ρ0. For SU(2) spin A = Z2 and
one requires γ1,1 = −1. In this case one can take all other recoupling phases to
be unit. For SU(3) colour, the gauge symmetry underlying QCD, the composite
states are graded using triality as given by A = Z3. In particular, the quarks are
of grade one with γ1,1 = −1, and the anti–quarks are of grade two with γ2,2 = −1.
No such solution to the symmetric monoidal constraints exist satisfying these two
requirements. Thus the recoupling path determines different phases factors for
colour as we shall see in the next chapter

3 Indistinguishability and statistics

The coupling process provides an order in which to couple particles together
to form composite systems. In the monoidal situation it is not clear, for example,
in the expression (a ⊗ b) ⊗ (c ⊗ d) whether a ⊗ b is formed before or after c ⊗ d.
To resolve this ambiguity one needs to break the pentagon condition of figure 1.
Thus the recoupling is weakened to a symmetric premonodal structure as in Joyce
[7]. The order of coupling is best visualized with coupling trees. These are planar
rooted binary trees with a linear ordering of the internal nodes such that each loop
free path from the root to any leaf is increasing. The pentagon diagram of figure 1
becomes the hexagon given in figure 2.

A measure of the failure of the pentagon is given by the deformativity recoupling
ξ : A4 → S1 defined by

ξm,n,p,q =
αm,n,pαm,n+p,qαn,p,q

αm+n,p,qαm,n,p+q
. (9)

Thus the pentagon condition is replaced by the weaker conditions:

ξm,n,p,qξp,q,m,n = 1 (10)
λm = α0,m,nλm+n (11)

ρm+n = αm,n,0ρn . (12)

Again one can keep track of the different paths by using the preorder category of
coupling trees as described in Joyce [7].
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Fig. 2. The deformed pentagon condition represented by coupling trees.

For a symmetric premonoidal recoupling ξm,n,m,n = γm+n,m+nγm,mγn,n show-
ing that the pentagon must fail for SU(3) colour Bose–Fermi recouplings. Since
the pentagon is no longer required to hold we can give a Bose–Fermi recoupling
for SU(3) colour. In fact a Bose–Fermi recoupling satisfying γm,m = −1 whenever
m 6= 0 is given by the following choice.

αm,n,p =
{

1 : m = 0, n = 0, p = 0 or m+ n = 0 ,
−1 : otherwise . (13)

γm,n =
{

1 : m = 0 or n = 0 ,
−1 : otherwise . (14)

and λm = ρm = 1 for all m,n, p, q ∈ A. A simple calculation shows that deforma-
tivity is given by

ξm,n,p,q =
{

1 : m = 0, n = 0, p = 0, q = 0,m+ n = 0 or p+ q = 0 ,
−1 : otherwise . (15)

A fundamental principle in many–body quantum theory is that of indistin-
guishability. In our context the principle states that given a recoupling r between
two identical composite systems w then any state ψ ∈ w of the system must sat-
isfy rψ = ψ. For example, for w = a ⊗ a where a is of grade m we have that
τψ = γm,mψ. Hence if γm,m = 1 then ψ is symmetric, otherwise γm,m = −1
and ψ is anti–symmetric. For a Bose–Fermi recoupling this gives Pauli’s exclusion
principle.

For a SU(3) Bose–Fermi recoupling as required for colour dynamics with w =
(a⊗ b)⊗ (c⊗d) where a is of grade m, etc, we obtain (1− ξm,n,p,q)ψ = 0. Thus the
composite can never exist whenever ξm,n,p,q 6= 1. For four free quarks (ξ1,1,1,1 = −1)
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this is precisely the case. Thus we have an alternative statistical explanation of
quark confinement. This is a weaker version of a proposal by Günaydin and Gürsey
[8] where the associativity was required to vanish.

Finally one should note that this mechanism can be avoid by weakening the
notion of composition of physical systems. Usually it is assumed to be tensor
product which forces confinement mechanisms upon us. The paper [1] presented at
the sister conference on quantum groups discuss the notion of ω–monoidalness [9]
as an alternative to the premonoidal structure.
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