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1 Introduction

It was stressed by by Schrödinger that entanglement is “the characteristic trait

of quantum mechanics” [1]. For decades, this phenomenon was considered as a
purely academic problem related to the foundation of quantum physics and touching
upon the conceptual problems of reality, locality, and casuality [2, 3, 4, 5]. Recent
discovery of quantum cryptography [6] and quantum teleportation [7] has led to
realization that quantum entanglement is an unexpectedly efficient alternative to
classical information. As a result, the quantum information science has been created
as an emerging field with the potential to cause revolutionary advances in science
and technology. The notion of entanglement lies at the very heart of this new
science.

In spite of a great progress in investigation and implementation of entangled
states, currently there is no agreement among experts on the very definition and
physically motivated quantitative measure of entanglement.

The point is that the present-day conception of entanglement was formed under
strong influence of information science. Consider for example the following defini-
tion, elaborated by an NSF Workshop on Quantum Information Science [8]:
“Quantum entanglement is a subtle nonlocal correlation among the parts of a quan-

tum system that has no classical analog. Thus, entanglement is best characterized

and quantified as a feature of the system that cannot be created through local oper-

ations that act on the different parts separately, or by means of classical communi-

cation among the parts”.

The first key notion in this definition is the “nonlocality” of the systems, which
indisputably is indispensable for communication and information processing. At
the same time, the use of this notion leads to a loss of generality from the physical
point of view. First of all, it leaves aside the single-particle entanglement that
can exist at least for a single photon [9, 10, 11, 12, 13, 14, 15, 16]. Then, the
requirement of nonlocality is meaningless in the case of entanglement in Bose–
Einstein condensate and in ensemble of interacting fermions because of the strong
overlap of wave functions of individual particles [17, 18].

Another key requirement ion the above definition is the absence of “classical

analog” for entanglement. The fundamentally quantum nature of entanglement is
usually described in terms of violation of the so-called Bell–type “classical realism”

1



A.A. Klyachko and A.S. Shumovsky

[4, 19, 20, 21, 22, 23, 24]. Let us briefly discuss the essence of Bell’s theorem.
Consider a quantum mechanical measurement of an observable Xi (i ∈ I) in a

state ψ ∈ HS of a system S. Here I is a certain set of indexes and HS denotes the
Hilbert space of S. According to the principles of quantum theory of measurements
[25], such a measurements results in a random quantity mi, whose probability dis-
tribution is determined by expectations of all moments 〈ψ|(Xi)

n|ψ〉 (n = 1, 2, · · ·).
The subset of commuting observables Xj ∈ {X} (j ∈ J ⊂ I) is specified by the
joint probability distribution.

Bell’s interpretation of “classical realism” consists in the assumption that all
measurements, independent of whether or not they corresponds to commuting ob-
servables, have the same hidden joint distribution. This assumption reflects Ein-
stein’s idea of existence of hidden variables in quantum mechanics. Thus, violation
of Bell’s “classical realism” means the absence of hidden variables. In fact, such a
violation signifies entanglement in the case of bipartite systems. This is caused by
the simple mathematical structure of the bipartite entanglement provided by the
Schmidt decomposition [26] (for modern review, see [27]). In the case of multipartite
systems, Bell’s conditions can be violated without manifestation of entanglement.
An example of interest is provided by the so-called W state of three qubits (three
spin – 1/2 systems) [28]

|W 〉 =
1√
3

(

|011〉+ |101〉 + |110〉
)

, (1)

where |``′`”〉 = |`〉 ⊗ |`′〉 ⊗ |`”〉 (` = 0, 1). Such a state violates Bell’s inequalities
[29]. At the same time, it does not manifest entanglement [30].

The point is that any proper measure of entanglement should be represented by
an entanglement monotone [31, 32]. In the case of three qubits, there is only one
entanglement monotone provided by Cayley’s hyperdeterminant (the tritangle that
has been introduced in [33], is expressed in terms of Cayley’s hyperdeterminant).
It can be seen by direct calculation that Cayley’s hyperdeterminant has zero value
in the case of W–state (1). Hence this state is unentangled.

In fact, from the mathematical point of view, Bell’s notion of classical realism
lies within the framework of marginal problem, which examines conditions to have a
probability density in a coordinate space with given projections onto the coordinate
subspaces [34]. For more detailed discussion of connection between the marginal
problem and Bell’s conditions, see Ref. [35].

Thus, the above cited statement [8] cannot be considered as an adequate physical
definition of entanglement.

Quite often entanglement is defined in terms of non separability of states in the
Hilbert space of composite systems (e.g., see Ref. [36]). A counterexample of such
is again provided by the unentangledW state (1), which definitely is a nonseparable
one.

Probably, the most exact reflection of situation with the definition of entangle-
ment is provided by the poetic definition by Asher Peres (for references, see [36]):
“Entanglement is a trick that quantum magicians use to produce phenomena that

cannot be imitated by classical magicians”.
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To find the physically correct definition of entanglement, it is necessary first to
separate essential from accidental. The above discussed requirements of nonlocality,
violation of Bell’s conditions, and nonseparability are accidental. At the same time,
the requirement of “absence of classical analog” seems to be important.

By construction, the main difference between the quantum and classical levels
of description of Nature consists in the choice of observables. In the former case,
the observables are represented by Hermitian operators, acting in a certain Hilbert
space H. In the latter case, they are specified by c-numbers. As a result, an
observable X in a state ψ ∈ H manifests quantum fluctuations described by the
variance

VX(ψ) = 〈ψ|X2|ψ〉 − 〈ψ|X |ψ〉2. (2)

The quantum fluctuations are known to be responsible for a number of physical
phenomena such as spontaneous emission, Lamb shift, and quantum jumps (see
[37]).

Since existence of quantum fluctuations is the characteristic feature of quan-
tum mechanics, it seems to be reasonable to examine the entanglement from this
point of view [16, 35, 38, 39, 40, 41, 42, 43, 44, 45]. In this way, the correspon-
dence between the level of quantum fluctuations and maximum entanglement has
been found [16, 44]. This correspondence leads to a physically correct definition of
maximum entanglement and to a number of important corollaries.

Let us stress that it is enough to define the maximum entanglement because all
other entangled states can be obtained from the maximum entangled states through
the use of certain local operations such as SLOCC (stochastic local operations
assisted by classical communication) [28, 46, 47] and Lorentz transformations [48,
49, 50]. In other words, all entangled states of a given system belong to the same
complex orbit [30, 35].

The investigation of maximum entanglement versus quantum fluctuations is
based on an approach has been developed in Refs. [16, 35, 39, 42, 45] that can
be specified as the dynamical symmetry approach to quantum entanglement. This
approach traces back to the idea by Wigner that the general properties of a quantum
mechanical system are specified by the dynamical symmetry of the corresponding
Hilbert space [51, 52]. For decades, this idea has been used in quantum field theory
and has demonstrated “unexpected efficiency” [52].

The aim of the present lecture is to review the main ideas of the dynamic
symmetry approach to quantum entanglement and principle physical results that
can be obtained within this approach. It builds upon our previous works [16, 35,
38, 39, 42, 44, 45, 53, 54, 55].

2 Essential observables

The amount of quantum fluctuations corresponding to a given state of a quan-
tum system depends on measurements we are able to perform over the system.
Among the multitude of possible observables, the set of essential or fundamental
observables can be chosen in the following way.
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Let S be a quantum system with the states defined in the Hilbert space HS with
the dynamic symmetry G. Then, the set of essential observables can be associated
with the basis of the Lie algebra L such that G = exp(L).

As an example of some considerable interest, consider a system of N qubits (N
”spin – 1/2 particles”). Then, the 2N dimensional Hilbert space of the system

H2,N =

N
⊗

j=1

H2 , dimH2 = 2 , (3)

is specified by the dynamical symmetry group

G =

N
∏

j=1

SU(2) . (4)

Since observables are represented by the Hermitian operators, the local observables

in each H2 should be chosen as the Pauli operators σ
(j)
x , σ

(j)
y , and σ

(j)
z , forming

an infinitesimal representation of the SL(2, C) algebra, which is known to be the
complexification of the SU(2) algebra [56]. If |`〉 (` = 0, 1) is the basis in H2, then
the Pauli operators can be represented as follows

σ(j)
x = |0〉〈1| + H.c. ,

σ(j)
y = −i|0〉〈1|+ H.c. , (5)

σ(j)
z = |0〉〈0| − |1〉〈1| .

In general case of qudits (spin – (d−1)/2 particles with d ≥ 2), the essential observ-
ables are provided by the d–dimensional representation of the SL(2, C) algebra.

It is necessary to distinguish between the qudits and d–level systems. In the
latter case, the dynamical symmetry is specified by the group SU(d), which leads
to a higher number of essential observables. For example, a state qutrit (d = 3,
spin (d − 1)/2 = 1) is specified by the three observables represented by the three
components of the spin vector, while a state of a three-level system is specified
by the eight independent observables out of the nine Hermitian operators, forming
representation of the SU(3) algebra. In the case of Bose systems, the observables
can be chosen as the generators of the Weyl–Heisenberg algebra, corresponding to
the so-called quadrature operators [37]. Another possibility is connected with the
representations of the simplectic subalgebras in the Weyl–Heisenberg algebra that
arise, for example, in the problem of quantum description of polarization [57, 58, 59].

From the physical point of view, the selection of essential observables corre-
sponds to the measurements we are going to perform over the system to specify
its state, or, what is the same, to the Hamiltonians which are accessible for the
manipulation with quantum states.

Thus, the dynamical symmetry properties of the Hilbert space of the system
under consideration defines a set of corresponding essential observables.
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3 Quantum fluctuations and maximum entanglement

Let {X} be the set of essential observables of the system S defined in the Hilbert
space HS . Then, according to Eq. (2), for eachXi ∈ {X} and an arbitrary ψ ∈ HS ,
one can calculate the quantum fluctuation Vi(ψ) = VXi

(ψ). The total amount of
quantum fluctuations, corresponding to the essential observables can now be chosen
to specify the remoteness of quantum state ψ form the “classical realism”, which
is now understood as the measurements with classical observables (c–numbers).
Thus, the remoteness of ψ ∈ HS is

V(ψ) =
∑

i

Vi(ψ) . (6)

In a sense, this is the measure of our ignorance related to the measurement of
essential quantum observables in a given state.

To illustrate the meaning of this new physical quantity, consider a coherent
state of a single qubit, which can be defined as follows [60]

|α〉 = exp(ασ+ − α∗σ−)|1〉 , (7)

where σ+ ≡ |0〉〈1| and σ− ≡ |1〉〈0| are the generators of the SU(2) algebra in two
dimensions. It can be easily seen that

|α〉 = ei argα sin |α||0〉 + cos |α||1〉 . (8)

Then, the coherence in a bipartite system can be specified by the state

|α1α2〉 = D(1)(α1)D
(2)(α2)|11〉 =

= ei(argα1+arg α2) sin |α1| sin |α2||00〉+ ei arg α1 sin |α1| cos |α2||01〉 + (9)

+ei arg α2 sin |α2 cos |α1||10〉 + cos |α1| cos |α2||11〉 ,

where D(j)(αj) ≡ exp
(

αjσ
(j)
+ − α∗

jσ
(j)
−

)

is the displacement operator in the two–

dimensional Hilbert space of a qubit. It is now a straightforward matter to show
that for all complex α1 and α2 the total fluctuation (remoteness) (6) in the coherent
state (9) has the form

V(α1, α2) = 4 .

As all one can expect, this is the minimal value of remoteness for quantum states
of two qubits. As a matter of fact, a general coherent state always has minimal
amount of quantum fluctuations and therefore is considered as next to the classical
state [61, 62].

In turn, in the case of maximum entangled Bell state of two qubits

|ψBell〉 =
1√
2

(

|00〉 ± |11〉
)

(10)

the remoteness achieves the maximum value V(Bell) = 6. This fact agrees with the
statement that entanglement is a fundamental quantum property without classical
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analog. It is possible to check that many other maximum entangled states obey
the same condition of maximum remoteness [39].

Therefore, we choose to define the maximum entangled state ψME ∈ HS of an
arbitrary quantum system S by the condition [16, 44, 45]

V (ψME) = max
ψ∈HS

V(ψ) . (11)

It is seen that in fact Eq. (11) represents a novel variational principle in quantum

mechanics. In a sense, (11) is similar to the principle of maximum entropy in quan-
tum statistical mechanics, specifying the equilibrium states of quantum systems
[63]. It is appropriate mention here that the notion of skew information has been
introduced by Wigner and Yanase [64] is also based on the amount of quantum
fluctuations peculiar to a quantum state. Similar quantity is also used in the es-
timation of mean error in the standard process of quantum state reconstruction
[65].

Let us stress that the amount of quantum fluctuations (remoteness) cannot be
used as the measure of entanglement as well as the entropy cannot be used as
a measure of deviation from the equilibrium state in statistical mechanics. For
example, the unentangled W state (1) has quite high remoteness V(W ) = 8 + 2/3
(Vmax = 9 for a tree–qubit system), while certain entangled states of three qubits
have less amount of remoteness [44].

Usually, expression of physical properties in the succinct and elegant form of
variational principles has many advantages. Below we consider some corollaries of
the variational principle (11).

4 Corollaries of the variational principle (11)

4.1 Corollary 1: Physical meaning of Maximum Entanglement

From the physical point of view, the maximum entangled state defined by Eq. (11)
represents the manifestation of quantum fluctuations at their extreme. This defi-
nition aligns the maximum entanglement with the known physical phenomena like
coherence and squeezing, whose behavior is also specified by the amount of quan-
tum fluctuations [37]. In particular, the maximum entanglement is, by definition,
an exact antithesis with respect to the notion of coherence.

Let us stress that the single–mode squeezed state

|ξ〉 = e(ξ∗a2
−ξa+2)/2|vac〉 (12)

can be considered as a kind of parametric maximum entangled state. In this case,
the observables are provided by the quadrature operators

q =
1

2

(

a+ a+
)

, p =
−i

2

(

a− a+
)

,
[

a, a+
]

= 1 ,

and the remoteness has the form

V(ξ) =
1

2
(2 cosh r − 1) , (13)
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where ξ = r exp(iθ). At the same time,

n̄ = 〈ξ|a+a|ξ〉 = sinh2 r ,

so that

V(ξ) = n̄+ 1/2 . (14)

At the same time, in the case of coherent state V(coherent) = 1/2, which corre-
sponds to the minimal remoteness.

4.2 Corollary 2: Expectation values of observables

Assume now that the essential observables {X} form a representation of a compact
Lie algebra. In this case, there is the uniquely defined Casimir operator of the form

Ĉ =
∑

i

X2
i = C ⊗ 1 , (15)

where 1 denotes the unit operator. Then it follows from the definition of quantum
fluctuation (2) and remoteness (6) that the variational principle (11) leads to the
equivalent condition

∀Xi ∈ {X} 〈ψME|Xi|ψME〉 = 0 . (16)

Under this condition

V(ψME) = C .

This condition has been proposed in [39] as an operational definition of maximum
entanglement (definition in terms of what can be measured) valid for the systems
with observables represented by generators of the compact Lie algebras.

It can be easily seen that condition (16) shows the existence of infinitely many
maximum entangled states in the system of qudits at d ≥ 2. In fact, in the case
of N qudits, the number of equations (16) is 3N . One more equation comes from
the normalization condition 〈ψME|ψME〉 = 1, so that we have (3N + 1) equations
altogether to determine the parameters of the wave function ψME. The latter is
specified by the 2× dN real coefficients. It is seen that for all d ≥ 2, the number of
coefficients exceeds the number of equations, so that we get infinitely many solutions
corresponding to the maximum entangled state. An exception is provided by the
case of d = 2 and N = 1, when the number of equations 3N + 1 = 4 coincides
with the number of real coefficients, specifying the wave function. It can be easily
checked that Eqs. (16) have only trivial solutions in this case, so that the maximum
entangled state of a single qubit does not exist.

It should be emphasized that among the possible maximum entangled states of
a given system only states, forming a basis of HS are important. Just these states
are used in the teleportation, for example. The procedure, how to construct the
basis of maximum entangled states for an arbitrary qudit system has been described
in [44].
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4.3 Corollary 3: Single−particle entanglement

It is clear that the variational principle (11) defines maximum entanglement irre-
spective of physical realization of the system S. In other words, this variational
principle strongly extends the range of application of entanglement has been re-
stricted so far by the framework of quantum information science.

As an illustrative example of some considerable interest, let us examine the
maximum entangled states of a single qutrit. If |`〉 (` = 0, 1, 2) denotes the base
vectors of the three–dimensional Hilbert space H3, then an arbitrary pure state of
qutrit can be written as follows

|ψ〉 =
2

∑

`=0

ψ`|`〉 ,
2

∑

`=0

|ψ`|2 = 1 . (17)

Taking into account that observables in this case have the form

Sx =
1√
2

(

|0〉〈1| + |1〉〈2| + H.c.
)

,

Sy =
−i√

2

(

|0〉〈1| + |1〉〈2| − H.c.
)

,

Sz = |0〉〈0| − |2〉〈2| ,

The condition (16) then gives the following equations

Re
(

ψ0ψ
∗
1

)

+ Re
(

ψ1ψ
∗
2

)

= 0 ,

Im
(

ψ0ψ
∗
1

)

+ Re
(

ψ1ψ
∗
2

)

= 0 , (18)

|ψ0|2 − |ψ2|2 = 0 .

It is now straightforward to see that Eqs. (18) together with the normalization
condition in (17) have infinitely many nontrivial solutions, specifying maximum
entangled states of a single qutrit. In particular, the states

|ψ1〉 = |1〉 , |ψ±〉 =
1√
2

(

|0〉 ± |2〉
)

(19)

form the basis in the Hilbert space of qutrit. If qutrit is associated with either spin
or angular momentum j = 1, then the states (19) can be interpreted in terms of a
given projection m as follows:

|ψ1〉 = |j = 1,m = 0〉 , |ψ±〉 =
1√
2

(

|j = 1,m = 1〉 ± |j = 1,m = −1〉
)

. (20)

Thus, the state |j = 1,m = 0〉 is the maximum entangled state.
A simple example of a qutrit particle is provided by a dipole photon, having

angular momentum j = 1. In this case, the observables should be rewritten in
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terms of the spin subalgebra in the Weyl-Heisenberg algebra of dipole photons am
as follows [57, 66]

Jx =
[

a+
0 (a+ + a−) + H.c.

]

/
√

2 ,

Jy =
[

ia+(a+ − a−) + H.c.
]

/
√

2 ,

Jz = a+
+a+ − a+

−a− .

It can be easily seen now that the remoteness of the single–photon state |1(j=1,m=0)〉,
corresponding to the maximum entangled state |ψ1〉 in (19), has the maximum
value: V

(

|1(j=1,m=0)〉
)

= 2. The two other states with given projection of the total

angular momentum have lesser amount of quantum fluctuations: V
(

|1(j=1,m=±)〉
)

=
1. Since the angular momentum of photons can be measured [67], the different
amount of quantum fluctuations of different states can be observed experimentally.

The fact that the angular momentum of a photon consists of the spin (polariza-
tion) and orbital (azimuthal phase) parts, makes it possible to consider it as a local
system of two qubits. One qubit is provided by the two helicities, while another
qubit corresponds to the orbital angular momentum that can be measured as well.
It should be stressed that the electric dipole photon always has only two differ-
ent values of the orbital angular momentum and that its vector potential (wave
function) corresponds to an entangled state [68].

Similar two–qubit structure takes place in the case of particles of quite different
physical nature, namely in the case of π–mesons. According the the modern theory
[69], these particles consist of the “up” and “down” quarks. Since each quark can be
observed in two states, it can be considered as a qubit. The π±–mesons represent
the coherent states of quarks

π+ = ud̄ , π− = ūd .

In contrast, π0–meson is prepared in the maximum entangled state of two qubits

π0 =
uū− dd̄√

2
.

Since the maximum entangled state corresponds to the maximal level of quantum
fluctuations, π0–meson should be less stable that π±–mesons. This conclusion
agrees with the fact that the ratio of lifetimes τ0/τ± ∼ 10−9.

There is also a strong similarity between the triplet of π–mesons and superfluid
3He. In particular, the so-called A–phase with projection of angular momentum
m = 0 [70] is similar to the state of π0–meson and hence is the maximum entangled
state as well.

4.4 Corollary 4: Stabilization of entanglement

Different applications in quantum information processing and quantum computing
require not an arbitrary entanglement but a robust one. This assumes quite high
amount of entanglement and long enough life time. The variational principle (11)
clarifies how to prepare robust entanglement. Namely, as the first step, the state of

9



A.A. Klyachko and A.S. Shumovsky

the system S with maximum amount of quantum fluctuations should be prepared.
Then, the energy of the system should be decreased up to a (local) minimum
under the condition of conservation of the level of quantum fluctuations. Thus, the
stabilization of entanglement requires a certain minimax procedure.

Physically, this procedure can be realized through the use of interaction between
the system and specially selected dissipative environment. Some examples were
considered in Refs. [53, 54, 55].

5 Conclusion

Thus, we have shown that the maximum entanglement can be defined in terms of
the variational principle (11) as the manifestation of quantum fluctuations at their
extreme. All other entangled states are equivalent to the maximum entangled state
to within a certain local transformations. The new definition of entanglement, based
on the variational principle (11) is free of accidental assumptions like nonlocality,
nonseparability, and violation of Bell’s conditions.

This variational principle (11) treats entanglement as a physical phenomenon
and hence strongly extends the range of application of the notion of entanglement.
In particular, it makes it possible to consider the single–particle entanglement with
respect to intrinsic degrees of freedom. This, in turn, can shed a light on the
problem of stability of elementary particles.

The variational principle (11) opens the physical way of stabilization of entan-
glement for further applications.

Our consideration so far has been connected with the pure quantum states. It
can be easily generalized on the case of mixed states because the latter can be
treated as pure states of a certain “doublet”, consisting of the system S and its
“mirror image” [71].

One of the authors (A.S.Sh.) would like to thank Prof. C. Burdik for kind invitation to

deliver this talk in Prague and to Prof. Z. Hradil, Prof. J. Peřina, and Prof. V. Peřinova
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