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1 Introduction

This talk is based on a series of papers, [1, 2, 3], devoted to the investigation
of generalized supersymmetries in connection with division algebras, as well as the
application of these results in the broad context of the M–theory. In the last
work [3], in particular, the notion of hermitian and holomorphic division–algebra
constrained generalized supersymmetries for complex and quaternionic spinors was
thoroughly investigated. It is not a mere mathematical curiosity prompting us
in the search of a classification scheme for this type of construction, but concrete
physical motivations based on M–theory and related topics. It was indeed proven in
[2] that the notion of holomorphic complex generalized supersymmetry is required
in order to perform the analytic continuation of the Minkowskian M–algebra to
the Euclidean. Moreover, it is clear that the present results can be applied to the
classification of various classes of supersymmetric dynamical systems presenting
bosonic tensorial central charges (more on that later).

It is worth recalling that the problem of classifying supersymmetries has recently
regained interest and found a lot of attention in the literature. We can cite, e.g.,
a series of papers where the notion of “spin algebra” has been introduced and
investigated [4]. An even more updated reference concerns the classification of the
so-defined “polyvector super–Poincaré algebras” [5].

The reasons behind all this activity are clear. In the seventies the H LS scheme
[6] was a cornerstone providing the supersymmetric extension of the Coleman–
Mandula no–go theorem. However, in the nineties, the generalized space–time
supersymmetries going beyond the H LS scheme (and admitting, in particular, a
bosonic sector of the Poincaré or conformal superalgebra which could no longer
be expressed as a tensor product Bgeom ⊕ Bint, where Bgeom describes space–time
Poincaré or conformal algebras, while the remaining generators spanning Bint are
scalars) found widespread recognition [7, 8] in association with the dynamics of

∗) E-mail: toppan@cbpf.br

1



Francesco Toppan

extended objects like branes (see [9, 10]). The eleven–dimensional M–algebra un-
derlying the M–theory as a possible “Theory Of Everything” (TOE), admitting
32–real component spinors and maximal number (= 528) of saturated bosonic gen-
erators [7, 8] falls into this class of generalized supersymmetries. The physical
motivations for dealing with and classifying generalized supersymmetries are there-
fore quite obvious. The purely mathematical side as well presents very attracting
features. The ingredients that have to be used have been known by mathematicians
since at least the sixties ([11], see also [12] and, for quite a convenient presentation
for physicists, [13]). They include the division–algebra classification of Clifford al-
gebras and fundamental spinors. It is quite rewarding that, by using these available
tools, we can conveniently formulate and solve the problem of classifying generalized
supersymmetries.

It is well-known that the Clifford algebra irreps [13] are put in correspondence
with the R, C, H division algebras. An analogous scheme works for fundamental
spinors (here and in the following, fundamental spinors are defined to be the spinors
admitting, in a given space–time, the maximal division algebra structure compat-
ible with the minimal number of real components). Both the eleven-dimensional
M–algebra and the F–algebra in (10 + 2) dimensions are based on real spinors.
Their analytic continuation to the Euclidean, however, see [2] and [3], are based
on complex spinors. The presence of both complex and quaternionic spinors allows
introducing division–algebra compatible extra–constraint on the available general-
ized supersymmetries. The reason for that lies in the fact that in these two extra
cases one has at disposal the division–algebra principal conjugation (which simply
coincides, for real numbers, with the identity operator) to further play with. As a
consequence, the two big classes of (complex or quaternionic) constrained hermitian
versus holomorphic generalized supersymmetries can be consistently introduced.

It is of particular importance to determine the biggest (“saturated”) gener-
alized supersymmetry compatible with the given division–algebra structure and
constraint. The complete classification is here presented in a series of tables.

For the sake of simplicity, in this work we are only concerned with “generalized
supertranslations”. This means in particular that the bosonic generators are all
abelian. The construction of, e.g., Lorentz generators requires a bigger algebra
than the ones here examined. One viable scheme to produce them consists in intro-
ducing a generalized superconformal algebra (which, in its turn, allows recovering a
generalized super–Poincaré algebra through an Inonü–Wigner type of contraction).
Following [14], this can be easily achieved by taking two separate copies of “gen-
eralized supertranslations” and imposing the Jacobi identities on the whole set of
generators to fully determine the associated superconformal algebra.

2 Clifford algebras and spinors

We recall here the basic features of the classification of Clifford algebras and
spinors which will be useful later on.

This preliminary material about the classification of the Clifford algebras asso-
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ciated to the R, C, H associative division algebras is based on [13] and [1].
The most general irreducible real matrix representations of the Clifford algebra

ΓµΓν + ΓνΓµ = 2ηµν , (1)

with ηµν being a diagonal matrix of (p, q) signature (i.e. p positive, +1, and q
negative, −1, diagonal entries)1) can be classified according to the property of the
most general S matrix commuting with all the Γ’s ([S, Γµ] = 0 for all µ). If the
most general S is a multiple of the identity, we get the normal (R) case. Otherwise,
S can be the sum of two matrices, the second one multiple of the square root of −1
(this is the almost complex, C case) or the linear combination of 4 matrices closing
the quaternionic algebra (this is the H case). According to [13] the real irreducible
representations are of R, C, H type, according to the following table, whose entries
represent the values (p− q)mod 8

R C H
0, 2 4, 6
1 3, 7 5

(2)

The real irreducible representation is always unique unless (p− q)mod 8 = 1, 5.
In these signatures two inequivalent real representations are present, the second
one recovered by flipping the sign of all Γ’s (Γµ 7→ −Γµ).

Let us denote as C(p, q) the Clifford irreps corresponding to the (p, q) signa-
tures. The normal (R), almost complex (C) and quaternionic (H) type of the
corresponding Clifford irreps can also be understood as follows. While in the R–
case the matrices realizing the irrep have necessarily real entries, in the C–case
matrices with complex entries can be used, while in the H–case the matrices can
be realized with quaternionic entries.

It is worth noticing that in the given signatures (p−q)mod 8 = 0, 4, 6, 7, without
loss of generality, the Γµ matrices can be chosen block–antidiagonal (generalized
Weyl–type matrices), i.e. of the form

Γµ =
(

0 σµ

σ̃µ 0

)
. (3)

In these signatures it is therefore possible to introduce the Weyl–projected spinors,
whose number of components is half of the size of the corresponding Γ–matrices2).

A very convenient presentation of the irreducible representations of Clifford al-
gebras makes use of an algorithm allowing to single out, in each arbitrary signature
space–time, a representative (up to, at most, the sign flipping Γµ ↔ −Γµ) in each
irreducible class of representations of Clifford’s gamma matrices has been given
in [1].

1) Throughout this paper it will be understood that the positive eigenvalues are associated with
space-like directions, the negative ones with time–like directions.

2) This notion of Weyl spinors, which is convenient for our purposes, is different from the one
usually adopted in connection with complex–valued Clifford algebras and has been introduced in
[1].
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At first one proves that starting from a given D spacetime–dimensional represen-
tation of Clifford’s Gamma matrices, one can recursively construct D+2 spacetime
dimensional Clifford Gamma matrices with the help of two recursive algorithms. In-
deed, it is a simple exercise to verify that if γi’s denotes the d–dimensional Gamma
matrices of a D = p + q spacetime with (p, q) signature (namely, providing a rep-
resentation for the C(p, q) Clifford algebra) then 2d–dimensional D + 2 Gamma
matrices (denoted as Γj) of a D + 2 spacetime are produced according to either

Γj ≡
(

0 γi

γi 0

)
,

(
0 1d

−1d 0

)
,

(
1d 0
0 −1d

)
,

(p, q) 7→ (p + 1, q + 1)
(4)

or

Γj ≡
(

0 γi

−γi 0

)
,

(
0 1d

1d 0

)
,

(
1d 0
0 −1d

)
,

(p, q) 7→ (q + 2, p) .

(5)

As an example, one can realize that three 2 × 2 matrices τA, τ1, τ2 realizing the
Clifford algebra C(2, 1) are obtained by applying either (4) or (5) to the number 1,
i.e. the one–dimensional realization of C(1, 0).

The above construction can be applied to produce all irreps of Clifford algebras,
by knowing some fundamental representations associated with division algebras, for
details see [3]. For that reason it is convenient to review here the basic features of
division algebras which will be needed in the following.

The four division algebra of real (R) and complex (C) numbers, quaternions
(H) and octonions (O) possess respectively 0, 1, 3 and 7 imaginary elements ei

satisfying the relations
ei · ej = −δij + Cijkek , (6)

(i, j, k are restricted to take the value 1 in the complex case, 1, 2, 3 in the quater-
nionic case and 1, 2, . . . , 7 in the octonionic case; furthermore, the sum over
repeated indices is understood).

Cijk are the totally antisymmetric division–algebra structure constants. The
octonionic division algebra is the maximal, since quaternions, complex and real
numbers can be obtained as its restriction. The totally antisymmetric octonionic
structure constants can be expressed as

C123 = C147 = C165 = C246 = C257 = C354 = C367 = 1 (7)

(and vanishing otherwise).
The octonions are the only non-associative, however alternative (see [15]), divi-

sion algebra.
Due to the antisymmetry of Cijk, it is clear that we can realize (1) by associating

the (0, 3) and (0, 7) signatures to, respectively, the imaginary quaternions and the
imaginary octonions.
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For our later purposes it is of particular importance the notion of division–
algebra principal conjugation. Any element X in the given division algebra can be
expressed through the sum

X = x0 + xiei , (8)

where x0 and xi are real, the summation over repeated indices is understood and
the positive integral i are restricted up to 1, 3 and 7 in the C, H and O cases
respectively. The principal conjugate X∗ of X is defined to be

X∗ = x0 − xiei . (9)

It allows introducing the division–algebra norm through the product X∗X. The
normed–one restrictions X∗X = 1 select the three parallelizable spheres S1, S3 and
S7 in association with C, H and O respectively.

Further comments on the division algebras and their relations with Clifford
algebras can be found in [1] and [15].

The fundamental spinors carry a representation of the generalized Lorentz group
with a minimal number of real components in association with the maximal, com-
patible, allowed division–algebra structure.

The following table, taken from the results in [4] and [13], see also [1], presents
the comparison between division–algebra properties of Clifford irreps (Γ) and fun-
damental spinors (Ψ), in different space–times parametrized by ρ = (s − t)mod 8.
We have

ρ Γ Ψ
0 R R
1 R R
2 R C
3 C H
4 H H
5 H H
6 H C
7 C R

(10)

It is clear from the above table that, for ρ = 2, 3, the fundamental spinors can
accommodate a larger division–algebra structure than the corresponding Clifford
irreps. Conversely, for ρ = 6, 7, the Clifford irreps accommodate a larger division–
algebra structure than the corresponding spinors. In several cases this mismatch of
division–algebra structures plays an important role. For instance in [14] a method
was introduced to construct superconformal algebras based on the minimal division
algebra structure common to both Clifford irreps and fundamental spinors. This
method can be straightforwardly modified to produce extended superconformal
algebras based on the largest division–algebra structure. The price to be paid,
in this case, would imply the introduction, for ρ = 2, 3, of reducible Clifford
representations and, conversely, for ρ = 6, 7 of non-minimal spinors.
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The reason behind the mismatch can be easily understood on the basis of the fact
that fundamental spinors are Weyl projected if the matrices realizing the Clifford
algebra generators can be taken in a block antidiagonal form.

3 Generalized supersymmetries: the M and F algebra examples

Three matrices, denoted as A, B, C, have to be introduced in association with
the three conjugations (hermitian, complex and transposition) acting on Gamma
matrices [16]. Since only two of the above matrices are independent we choose
here, following [1], to work with A and C. A plays the role of the time–like Γ0

matrix in the Minkowskian space–time and is used to introduce barred spinors. C,
on the other hand, is the charge conjugation matrix. Up to an overall sign, in a
generic (s, t) space–time, A and C are given by the products of all the time–like
and, respectively, all the symmetric (or antisymmetric) Gamma–matrices3). The
properties of A and C immediately follow from their explicit construction, see [16]
and [1].

In a representation of the Clifford algebra realized by matrices with real entries,
the conjugation acts as the identity, see (9). In this case the space–like gamma
matrices are symmetric, while the time–like gamma matrices are antisymmmetric,
so that A can be identified with the charge conjugation matrix CA.

For our purposes the importance of A and the charge conjugation matrix C
lies on the fact that, in a D–dimensional space–time (D = s + t) spanned by
d × d Gamma matrices, they allow to construct a basis for d × d (anti)hermitian
and (anti)symmetric matrices, respectively. It is indeed easily proven that, in the

real and the complex cases (the quaternionic case is different), the
(

D
k

)
anti-

symmetrized products of k Gamma matrices AΓ[µ1...µk] are all hermitian or all
antihermitian, depending on the value of k ≤ D. Similarly, the antisymmetrized
products CΓ[µ1...µk] are all symmetric or all antisymmetric.

For what concerns the M–algebra, the 32–component real spinors of the (10, 1)–
spacetime admit anticommutators {Qa, Qb} which are 32× 32 symmetric real ma-
trices with, at most, 32 + 32×31

2 = 528 components. Expanding the r.h.s. in terms
of the antisymmetrized product of Gamma matrices, we get that it can be saturated
by the so-called M–algebra

{Qa, Qb} = (AΓµ)ab Pµ +
(
AΓ[µν]

)
ab

Z [µν] +
(
AΓ[µ1...µ5]

)
ab

Z [µ1...µ5]. (11)

Indeed, the k = 1, 2, 5 sectors of the r.h.s. furnish 11 + 55 + 462 = 528 overall
components. Besides the translations Pµ, in the r.h.s. the antisymmetric rank–
2 and rank–5 abelian tensorial central charges, Z [µν] and Z [µ1...µ5] respectively,
appear.

3) Depending on the given space–time (see [16] and [1]), there are at most two charge conju-
gations matrices, CS , CA, given by the product of all symmetric and all antisymmetric gamma
matrices, respectively. In special space–time signatures they collapse into a single matrix C.
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The (11) saturated M–algebra admits a finite number of subalgebras which
are consistent with the Lorentz properties of the Minkowskian eleven dimensions.
There are 6 such subalgebras which are recovered by setting either one or two
among the three sets of tensorial central charges Pµ, Z [µν], Z [µ1...µ5] identically
equal to zero (a completely degenerate subalgebra is further obtained by setting
the whole r.h.s. identically equal to zero).

The fact that the fundamental spinors in a (10, 2)–spacetime also admit 32
components is due to the existence of the Weyl projection. This implies that the
saturated M–algebra admits a (10, 2) space–time presentation, the so-called F–
algebra, in terms of (10, 2) Majorana–Weyl spinors Q̃ã, ã = 1, 2, . . . , 32.

In the case of Weyl projected spinors the r.h.s. has to be reconstructed with
the help of a projection operator which selects the upper left block in a 2 × 2
block decomposition. Specifically, if M is a matrix decomposed in 2× 2 blocks as

M =
(
M1 M2

M3 M4

)
, we can define

P (M) ≡M1 . (12)

The saturated M–algebra (11) can therefore be rewritten as{
Q̃ã, Q̃b̃

}
= P

(
ÃΓ̃µ̃ν̃

)
ãb̃

Z̃ [µ̃ν̃] + P
(
ÃΓ̃[µ̃1...µ̃6]

)
ãb̃

Z̃ [µ̃1...µ̃6], (13)

where all tilde’s are referred to the corresponding (10, 2) quantities. The matrices
in the r.h.s. are symmetric in the exchange ã ↔ b̃. This time the rank–2 and self-
dual rank–6 antisymmetric abelian tensorial central charges, Z̃ [µ̃ν̃] and respectively
Z̃ [µ̃1...µ̃6], appear. Their total number of components is 66 + 462 = 528, therefore
proving the saturation of the r.h.s. The saturated equation (13) is named the
F–algebra.

4 Real, complex and quaternionic generalized supersymmetries

For real n–component spinors Qa, the most general supersymmetry algebra is
represented by

{Qa, Qb} = Zab, (14)

where the matrix Z appearing in the r.h.s. is the most general n×n symmetric ma-

trix with total number of
n(n + 1)

2
components. For any given space–time we can

easily compute its associated decomposition of Z in terms of the antisymmetrized
products of k–Gamma matrices, namely

Zab =
∑

k

(AΓ[µ1...µk])abZ
[µ1...µk], (15)

where the values k entering the sum in the r.h.s. are restricted by the symmetry
requirement for the a ↔ b exchange and are specific for the given spacetime. The
coefficients Z [µ1...µk] are the rank–k abelian tensorial central charges.
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When the fundamental spinors are complex or quaternionic they can be or-
ganized in complex (for the C and H cases) and quaternionic (for the H case)
multiplets, whose entries are respectively complex numbers or quaternions.

The real generalized supersymmetry algebra (14) can now be replaced by the
most general complex or quaternionic supersymmetry algebras, given by the anti-
commutators among the fundamental spinors Qa and their conjugate Q∗

ȧ (where
the conjugation refers to the principal conjugation in the given division algebra,
see (9)). We have in this case

{Qa, Qb} = Zab ,
{
Q∗

ȧ, Q∗
ḃ

}
= Z∗ȧḃ , (16)

together with {
Qa, Q∗

ḃ

}
= Waḃ , (17)

where the matrix Zab (Z∗ȧḃ is its conjugate and does not contain new degrees of
freedom) is symmetric, while Waḃ is hermitian.

The maximal number of allowed components in the r.h.s. is given, for complex
fundamental spinors with n complex components, by
ia) n(n+1) (real) bosonic components entering the symmetric n×n complex matrix
Zab plus
iia) n2 (real) bosonic components entering the hermitian n × n complex matrix
Waḃ.

Similarly, the maximal number of allowed components in the r.h.s. for quater-
nionic fundamental spinors with n quaternionic components is given by
ib) 2n(n + 1) (real) bosonic components entering the symmetric n×n quaternionic
matrix Zab plus
iib) 2n2 − n (real) bosonic components entering the hermitian n × n quaternionic
matrix Waḃ.

The previous numbers do not necessarily mean that the corresponding general-
ized supersymmetry is indeed saturated. This is in particular true in the quater-
nionic case, see [3].

Any real generalized supersymmetry admitting a complex structure can be re-
expressed in a complex formalism with n–component complex spinors and total
number of n(2n + 1) (real) bosonic components split into n(n + 1) components
entering the symmetric matrix Z and n2 components entering the hermitian matrix
W. The situation is different in the quaternionic case. The quaternionic structure
requires a restriction on the total number of bosonic generators. n–component
quaternionic spinors can be described as 4n–component real spinors. However, the
r.h.s. of a quaternionic (16) and (17) superalgebra admits at most 4n2 + n bosonic
components, instead of 8n2 + 2n of the most general supersymmetric real algebra.
The Lorentz–covariance further restricts the number of bosonic generators in a
quaternionic supersymmetry algebra.

We conclude this section mentioning the two big classes of subalgebras, respect-
ing the Lorentz–covariance, that can be obtained from (16) and (17) in both the
complex and quaternionic cases. They are obtained by setting identically equal to
zero either Z or W, namely
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I) Zab ≡ Z∗ȧḃ ≡ 0, so that the only bosonic degrees of freedom enter the
hermitian matrix Waḃ or, conversely,

II) Waḃ ≡ 0, so that the only bosonic degrees of freedom enter Zab and its
conjugate matrix Z∗ȧḃ.

Accordingly, in the following we will refer to the (complex or quaternionic)
generalized supersymmetries satisfying the I) constraint as “hermitian” (or “type
I”) generalized supersymmetries, while the (complex or quaternionic) generalized
supersymmetries satisfying the II) constraint will be referred to as “holomorphic”
(or “type II”) generalized supersymmetries.

5 Some examples of consistently constrained complex generalized
supersymmetries

Generalized supersymmetries can be classified according to their division–algebra
character Y (with Y ≡ R, C, H). They can be conveniently labelled with a pair of
division algebras as “XY”, where X specifies whether spinors are realized as col-
umn vectors of real numbers (X = R), complex numbers (X = C) or quaternions
(X = H). Accordingly, generalized supersymmetries fall into different cases:

i) RR,
ii) RC and CC,
iii) RH, CH and HH.
In the CC, CH and HH cases a suffix can be added, specifying whether we are

dealing with a hermitian (type I, therefore CCI , CHI , HHI) or a holomorphic
(type II, CCII , CHII , HHII) generalized supersymmetry. A closer inspection
shows that the following identities hold for hermitian supersymmetries

RC ≡ CCI (18)

and
RH ≡ CHI ≡ HHI . (19)

The first identity means that representing complex spinors in real notations is
tantamount to realize a complex hermitian supersymmetry. The second set of
identities holds for supersymmetries realized with quaternionic spinors.

In the following, for simplicity, it will be symbolically denoted as “Mk” the space

of
(

D
k

)
–component, totally antisymmetric rank–k tensors of a D–dimensional

spacetime, associated to the basis provided by the hermitian AΓ[µ1...µk] matrices
(namely, entering “type I” supersymmetries). Similarly, the rank–k totally anti-
symmetric tensors associated to the symmetric matrices CΓ[µ1...µk] and entering
the type II, holomorphic, supersymmetries will be denoted as “Mk” (the symbol
“Mk” will be reserved to real, “RY”, supersymmetries).

It is quite convenient to illustrate how complex and quaternionic supersymme-
tries work by discussing specific examples. The extension of both reasonings and
results to general spacetimes is in fact guaranteed by the already mentioned algo-
rithmic construction. We illustrate here the example of the supersymmetries asso-
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ciated to the (4, 1) spacetime and its dimensional reduction to the usual Minkowski
(3, 1) case.

(4, 1)–dimensional real spinors possess eight components and can be regarded as
spinors of the extended (4, 3) spacetime, see [3]. It can be easily checked that in D =
7 (for the (4, 3) space–time) dimensions, the bosonic sector of the supersymmetry
algebra is given by the 1 + 35 = 36 rank–k tensors M0

(D=7) +M3
(D=7). Expanding

these tensors in the D = 5–dimensional ((4, 1) spacetime) basis we are led to the
following identifications

M0
(D=7) + M3

(D=7) ≡ M0
(D=5) + M3

(D=5) + 2×M2
(D=5) + M1

(D=5) , (20)

where the counting of the components reads as follows

1 + 35 = 1 + 10 + 2× 10 + 5 . (21)

The equation (20) above corresponds to the saturated bosonic sector of the RR
generalized supersymmetry in a (4, 1) spacetime.

Let us discuss now the two complex supersymmetries (CCI and CCII) associ-
ated with the (4, 1) spacetime.

It can be easily shown that
i) in the CCI case the bosonic sector is expressed as

M1 + M3 + M5 . (22)

The expected 16 bosonic components (real counting) of the saturated complex
hermitian algebra are indeed recovered through

16 = 5 + 10 + 1 ; (23)

it should be noticed that the rank k antisymmetric tensors are not related by the
Hodge duality; ii) in the CCII case the bosonic sector is expressed as

M2 +M3 , (24)

whose total number of bosonic components, 10 + 10 = 20, indeed saturates the
number of bosonic components for the complex holomorphic supersymmetry; in
this case as well the rank–2 and rank–3 bosonic tensors are not related by Hodge
duality (indeed one sector is real while the other one is completely imaginary since
the product of the five distinct gamma matrices is proportional to i). However, a
reality constraint can be further imposed on the bosonic sector of CCII . If this
Lorentz–consistent constraint is applied, the total number of bosonic components
corresponds to half the number of saturated bosonic components of the complex
holomorphic supersymmetry. This consistent reduction is a common feature of
all complex holomorphic supersymmetries and not a special case of just the (4, 1)
spacetime.

It should be noticed that the 36 bosonic components of the saturated (4, 1)
RR supersymmetry are recovered from the 16 + 20 bosonic components of the
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saturated hermitian and holomorphic supersymmetries. In a loose notation we can
symbolically write

RR ≈ CCI + CCII . (25)

By using complex spinors in the (4, 1) spacetime we end up with the following list
of consistent division algebra constraints that can be imposed on the generalized
complex supersymmetries. We have the following table of generalized supersymme-
tries, with their associated number of bosonic components (in the real counting),
in a (4, 1) spacetime

full supersymmetry ≡ 36 components ,

hermitian supersymmetry ≡ 16 components ,

holomorphic supersymmetry ≡ 20 components ,

(restricted) holomorphic supersymmetry ≡ 10 components ,

herm. + (restr.) holom. supersymmetry ≡ 26 components .

(26)

In the above table, and similarly in the one below, the “restricted holomorphic
supersymmetry” is realized by implementing a reality condition on the bosonic
r.h.s. of the holomorphic supersymmetry.

An analogous table can be produced in the (3, 1) spacetime, for 2–component
complex Weyl spinors. We can write down the following list of division–algebra
constrained supersymmetries

full supersymmetry ≡ 10 components ,

hermitian supersymmetry ≡ 4 components ,

holomorphic supersymmetry ≡ 6 components ,

(restricted) holomorphic supersymmetry ≡ 3 components ,

herm. + (restr.) holom. supersymmetry ≡ 7 components .

(27)

Similar decompositions work in any other space–times supporting complex spinors.
A classification of such supersymmetries can be performed also in the case of quater-
nionic spacetimes (supporting quaternionic spinors). The results are reported in
the next section.

6 Generalized supersymmetries of the quaternionic spacetimes

We present here the classification of quaternionic generalized supersymmetries
associated to quaternionic space–times carrying quaternionic fundamental spinors.

The following results do not depend on the signature of the space–time, but
only on its dimensionality D. Let us start with the hermitian quaternionic super-
symmetry HHI . In association with each one of the quaternionic spacetimes up
to D = 13 ([3]) the bosonic sector is decomposed in rank–k antisymmetric tensors,
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with total number of (real counting) bosonic components according to the table

spacetime bosonic sectors bosonic components
D = 3 M0 1
D = 4 M0 1
D = 5 M0 + M1 1 + 5 = 6
D = 6 M1 6
D = 7 M1 + M2 7 + 21 = 28
D = 8 M2 28
D = 9 M2 + M3 36 + 84 = 120
D = 10 M3 120
D = 11 M0 + M3 + M4 1 + 165 + 330 = 496
D = 12 M0 + M4 1 + 495 = 496
D = 13 M0 + M1 + M4 + M5 1 + 13 + 715 + 1287 = 2016

(28)

Please notice from the above table that the hermitian quaternionic supersymmetry
saturates the bosonic sector, as expected.

Let us now discuss the holomorphic supersymmetries associated with the quater-
nionic spacetimes. The complex holomorphic supersymmetry CHII is character-
ized by the table

spacetime bosonic sectors bosonic components
D = 3 M1 3
D = 4 M̃2 3
D = 5 M2 10
D = 6 M̃3 10
D = 7 M0 +M3 1 + 35 = 36
D = 8 M0 + M̃4 1 + 35 = 36
D = 9 M0 +M1 +M4 1 + 9 + 126 = 136
D = 10 M1 + M̃5 10 + 126 = 136
D = 11 M1 +M2 +M5 11 + 55 + 462 = 528
D = 12 M2 + M̃6 66 + 462 = 528
D = 13 M2 +M3 +M6 78 + 286 + 1716 = 2080

(29)

The tilde on the rank–k (for k = D/2) sectors M̃D/2 specifies that they are
self-dual (as such, their total number of bosonic components, in the real counting,

is given by
1
2

(
D

D/2

)
).

It should be noticed that the total counting of bosonic components in the third
column implies that the CHII superalgebras admit [3] half the number of bosonic
components expected for complex spinors of the corresponding size. The recognition
of this property becomes quite important when applied to the D = 11 and D = 12
rows of the table above. Their total number of bosonic components (528 = 1

2×1056)
coincides with the number of bosonic components entering the M–algebra (11) and
the F–algebra (13).
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The last table is devoted to the quaternionic holomorphic supersymmetries
HHII . According to [3], we can state as a theorem that quaternionic holomor-
phic supersymmetries do not involve bosonic tensorial central charges. The only
admissible sectors are given by

− D = 0, 6, 7 mod 8
M0 D = 1 mod 8
M1 D = 4, 5 mod 8

M0 +M1 D = 2, 3 mod 8

(30)

The above results can be interpreted as follows. Quaternionic holomorphic
HHII supersymmetries only arise in D-dimensional quaternionic space–times, where
D = 2, 3, 4, 5 mod 8. No HHII supersymmetry exists in D = 0, 6, 7 mod 8 D–
dimensional spacetimes.

In D = 1 mod 8 dimensions, HHII supersymmetries only involve a single bosonic
charge. In this respect they fall into the class of quaternionic supersymmetric quan-
tum mechanics, rather than supersymmetric relativistic theories.

Finally, the HHII supersymmetry algebra only admits a bosonic central charge
in D–dimensional quaternionic spacetimes for D = 2, 3 mod 8.

7 Conclusions

This paper was devoted to perform a classification of (real, complex and quater-
nionic) generalized supersymmetries. The notion of hermitian (complex and quater-
nionic) and holomorphic (complex and quaternionic) supersymmetries, as con-
sistently division–algebra constrained generalized supersymmetries, has been pre-
sented. These supersymmetries have been classified and their main properties have
been reported in a series of tables.

Physical implications of these mathematical structures are quite obvious. The
classification of generalized supersymmetries allow to understand the web of in-
terrelated dualities of different classes of theories which can be either analytically
continued (let’s say, to the Euclidean) or recovered through dimensional reduction.

As an example, we can cite that the analytic continuation of the M algebra
was proven in [2] to correspond to an eleven–dimensional complex holomorphic
supersymmetry. It was further shown in [3] that the same algebra also admits a
12–dimensional Euclidean presentation in terms of Weyl–projected spinors. These
two examples of Euclidean supersymmetries can find application in the functional
integral formulation of higher–dimensional supersymmetric models.

There is an interesting class of models which nicely fits in the framework here
described and is currently under intense investigation. It is the class of superpar-
ticle models, introduced at first in [17] and later studied in [18], whose bosonic
coordinates correspond to tensorial central charges. It was shown in [19] that a
4–dimensional theory of this kind leads to a tower of massless higher spin states,
concretely implementing a Fronsdal’s proposal [20] of introducing bosonic tenso-
rial coordinates to describe massless higher spin theories (admitting helicity states

13
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greater than two). This is an active area of investigation, the main motivation
beingthe investigation the tensionless limit of superstring theory, corresponding to
a tower of higher helicity massless particles (see e.g. [21]).

In a somehow “orthogonal” direction, a class of theories which can be investi-
gated in the present framework is the class of supersymmetric extensions of Chern–
Simon supergravities in higher dimensions, requiring as a basic ingredient a Lie
superalgebra admitting a Casimir of appropriate order, see e.g. [22].

Acknowledgement. I have profited of precious discussions with H.L. Carrion, J. Lukier-

ski, M. Rojas and of helpful remarks by Z. Kuznetsova.
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