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We describe, how to construct and compute unambiguously path integrals for particles
moving in a curved space, and how these path integrals can be used to calculate Feynman
graphs and effective actions for various quantum field theories with external gravity in
the framework of the worldline formalism. In particular, we review a recent application
of this worldline approach and discuss vector and antisymmetric tensor fields coupled to
gravity. This requires the construction of a path integral for the N = 2 spinning particle,
which is used to compute the first three Seeley–DeWitt coefficients for all p-form gauge
fields in all dimensions and to derive exact duality relations.

PACS : 03.65.-w, 04.62.+v

Key words: path integrals, worldline formalism

1 Introduction

The worldline formalism is an approach based on first quantization which al-
lows to obtain certain QFT results (amplitudes, effective actions, etc.) in a rather
simple way. It had been introduced by Feynman in [1] as “an alternative to the
formulation of second quantization”, and by Schwinger in his famous paper on vac-
uum polarization [2]. Feynman directly used a path integral approach to describe
scalar QED using worldlines of scalar particles, while Schwinger used operatorial
quantum mechanical methods to study vacuum effects in QED. Also, the worldline
formalism has served as a guide for developing the first quantization of strings,
from which it can be recovered as point particle limit, hence the occasional name
of “string inspired Feynman rules”. Many applications of this formalism and refer-
ences can be found in the review article [3]. More recent applications include the
coupling to external gravitational fields [4–7], studies of string dualities [8], as well
as numerical simulations to address nonperturbative issues [9].

In this talk we review the use of the worldline approach to quantum field theories
coupled to external gravity, and discuss the main technical tool that is used in such
an approach: the path integral for a particle moving in a curved space. This is
a subject which has had a longwinded history, with some old controversies fully
resolved by now. We end with a brief description of the worldline approach to
vector and antisymmetric tensor fields coupled to gravity, which exemplifies the
effectiveness of such an approach.

2 The case of a scalar field coupled to gravity

The simplest way to introduce the worldline formalism with background gravity
is to consider the example of a scalar field φ coupled to the metric gµν . The
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Fig. 1. Loop of a scalar field with external gravitons.

euclidean QFT action reads

S[φ, g] =

∫

dDx
√
g

1

2

(

gµν∂µφ∂νφ+m2φ2 + ξRφ2
)

, (1)

where m is the mass of the scalar particle, gµν is the background metric, and ξ is
a nonminimal coupling to the scalar curvature R. The euclidean one-loop effective
action Γ[g] describes all possible one-loop graphs with the scalar field in the loop
and any number of gravitons on the external legs, see Fig. 1.

It can be obtained by path integrating the QFT action S[φ, g] over φ, and is
formally given by

e−Γ[g] ≡
∫

Dφ e−S[φ,g] = Det−1/2
(

−∇2 +m2 + ξR
)

,

so that

Γ[g] = − logDet−1/2(−∇2 +m2 + ξR) =

=
1

2
Tr log(−∇2 +m2 + ξR) =

= −1

2

∫ ∞

0

dT

T
Tr e−T (−∇2+m2+ξR) =

= −1

2

∫ ∞

0

dT

T

∫

T 1

Dx e−S[x;g] , (2)

where

S[x; g] =

∫ T

0

dτ
(

1
4 gµν(x)ẋµẋν +m2 + ξR(x)

)

.

In the above equalities ∇2 = gµν∇µ∂ν is the covariant laplacian acting on scalars.
In the third line of (2) we have used the proper time representation of the logarithm,

log
a

b
= −

∫ ∞

0

dT

T

(

e−aT − e−bT
)

,

and dropped an additive constant. This provides the starting point of the heat
kernel method, originally due to Schwinger and which is by now a well-appreciated
tool for studying QFT in curved backgrounds [10,11]. In this method the operator
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Ĥ = −∇2 +m2 + ξR is reinterpreted as the quantum hamiltonian of a “fictitious”
mechanical model: that of a nonrelativistic particle in curved space with a specific
coupling to the scalar curvature. The corresponding Schrödinger equation is then
used in trying to solve the problem. However, it proves quite useful to reformulate
this quantum mechanics using a path integral: this is shown by the last equality in
(2). The exponent of the path integral contains the classical action of the mechan-
ical model whose quantization is expected to produce the quantum hamiltonian
Ĥ . The operatorial trace is obtained by using periodic boundary conditions on
the worldline time τ ∈ [0, T ], which therefore describes a one-dimensional torus, or
circle, T 1.

It is clear that to use this final path integral formulation one has to be able to
define and compute path integrals for particles moving in curved spaces quite pre-
cisely. This has been a notoriously complicated and controversial subject. However,
this topic is now mature and solid, and will be reviewed in the next section.

For studying other QFT models it is useful to note that the previous effective
action for the scalar field can be obtained by first quantizing a scalar point particle
with coordinates xµ and auxiliary einbein e, which is described by the action [12]

S[xµ, e] =

∫ 1

0

dτ
1

2

[

e−1gµν(x)ẋµẋν + e
(

m2 + ξR(x)
)

]

.

This worldline action is reparametrization invariant. One can eliminate almost
completely the einbein by the gauge condition e(τ) = 2T , and integrate over the
remaining modular parameter T after taking into account the correct measure. This
reproduces the previous answer in (2). Thus the “fictitious” quantum mechanics
mentioned above is not at all that fictitious: it corresponds to the first quantization
of the scalar particle which makes the loop in the Feynman graph of Fig. 1. This
picture can be enlarged to include particles with spin. Extending the worldline
symmetry to N = 1 supergravity gives a description of a spin 1

2 particle, while
N = 2 supergravity describes particles associated to vector and antisymmetric
tensor fields [12–16]. A slightly different approach was discussed in [17]. Gauge
fixed versions of these particle models were in fact used to compute gravitational
and chiral anomalies in one of the most beautiful applications of the worldline
approach [18–20].

Other applications of this worldline approach with external gravity include the
computation of trace anomalies [21–24], which in fact was one of the main moti-
vations to study anew path integrals in curved spaces, as well as the calculation
of some amplitudes, like the one-loop correction to the graviton propagator due to
loops of spin 0, 1

2 , 1 and antisymmetric tensor fields [4, 5, 7] (see Fig. 2).

In [6] the one-loop corrections to the graviton-photon mixing in constant elec-
tromagnetic fields due to virtual charged particles has been computed (see Fig. 3).
This calculation would have been very difficult to perform using standard methods.
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hµν hαβ

hµν hαβ

Fig. 2. One-loop matter contributions to the graviton 2-point function.

hµν Aα

Fig. 3. One-loop correction to graviton-photon mixing in a constant electromagnetic field.

3 Path integrals in curved space: regularizations and counterterms

In this section we wish to discuss, how to construct and compute path integrals
for a nonrelativistic particle moving in a curved space. With a slight change in
notations (we consider a particle of unit mass which propagates for a total time
β, so to have a standard normalization of the action) we consider the following
euclidean action

S[x] =

∫ β

0

dt
(

1
2 gµν(x)ẋµẋν + V (x)

)

, (3)

where V is an arbitrary scalar potential, from which one wants to construct the
path integral

Z =

∫

Dx e−S[x] . (4)

Construction and computations of path integrals for these nonlinear sigma models
can be quite subtle. For example one may find the following description in a
well-known textbook on path integrals [25]: “If you like excitement, conflict and
controversy . . . then you will love the history of quantization on curved spaces.
. . . people continue to get signs and factors of 2 wrong in their results.” That was
surely a fair description of the situation at the time that book was written, but now
all major difficulties are understood and taken care of, as we are going to describe
next.

One dimensional nonlinear sigma models suffer from ordering ambiguities when
one applies canonical quantization. The classical hamiltonian reads

H = 1
2 g

µν(x)pµpν + V (x)

and one has to specify an ordering between the p’s and the x’s. One can impose
covariance under change of coordinates at the quantum level, but this selects a
subclass of possible orderings and leave unfixed an arbitrary coupling to the scalar
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curvature R (the only scalar object that one can construct with two derivative on
the metric is the scalar curvature). Thus in the coordinate representation (pµ →
−i∂µ) one has a family of covariant quantum hamiltonians

Ĥ = − 1
2 ∇

2 + αR + V (x) ,

which depend on the parameter α. In the absence of other symmetries that can be
used to identify a unique quantum theory, one has to extract the value of α from
“experiments”, i.e. from the particular physical problem one wishes to describe
with the sigma model. For example, in the case discussed in section 2, the scalar
relativistic particle, one may demand that conformal invariance holds for vanishing
mass, thus fixing α = ξ/2 = (D − 2)/8(D − 1) in D dimensions. Given this
situation, one can always decide to set α = 0, and describe additional couplings
to R as extra terms contained in the potential V . This is what we will do in the
following. The requirement that Ĥ be covariant and without any coupling to R will
be the “renormalization conditions” which will be imposed on the path integral.
Equivalently, these conditions can be imposed at the level of the effective action

Γ = − logZ = · · · − β

12
R+ · · ·

where Z is the path integral given in (4).
This path integral can be dealt with just as higher dimensional path integrals,

i.e. QFT path integrals, where renormalization is needed. Indeed one can al-
ways imagine quantum mechanics as a 0 + 1 dimensional QFT. Then to compute
these path integrals one must use a regularization scheme which consist of: i) a
regularization, ii) suitable renormalization conditions, and iii) local counterterms
needed to satisfy the renormalization conditions and to eliminate any source of
ambiguity. This way any regularization scheme will produce the same correct final
answer.

To recognize why a renormalization scheme is necessary, it is enough to notice
that the nonlinear sigma model in (3) has derivative interactions which seem to
give rise to linear divergences. These divergences can be renormalized away, but
that is not necessary. In fact, the covariant path integral measure produces local
interactions with additional linear divergences that cancel the previous ones [26].
Thus, one-dimensional nonlinear sigma models are finite. Nevertheless one needs a
regularization scheme to handle intermediate divergences and ambiguities. Coun-
terterms are then used to satisfy the renormalization conditions. Since after all the
theory is finite, these counterterms are also finite. (One may consider the measure
as giving for free the infinite part of the counterterms). Power counting shows
that one-dimensional nonlinear sigma models are super-renormalizable, and thus
counterterms can only appear up to two-loops.

The previous discussion can be readily exemplified. Let us Taylor expand the
metric around the origin gµν(x) = gµν(0)+xα∂αgµν(0)+ . . . and insert this expan-
sion into the action (3). From the leading constant term gµν(0) one obtains the
propagator, which in momentum space and for large momentum k goes like

〈x(k)x(−k)〉 ∼ k−2 .
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Then the next term in the expansion of the metric gives a trilinear vertex with
two derivatives of the type xẋ2 (we will indicate each derivative by a dot also
in Feynman diagrams), so that one can construct the following linearly divergent
graph (graphs on the worldline, i.e. in the 0 + 1 dimensional QFT)

∼
∫

dk
k4

k4
→ linear divergence.

The propagators are in fact compensated by the derivatives that act on each vertex,
and this gives rise to a linear divergence.

However, one should consider that the covariant path integral measure carries
extra terms. The covariant measure in (4) is formally given by

Dx ∼
∏

t

√

g(x(t)) dDx(t) ,

but one can exponentiate the nontrivial
√
g dependence using commuting aµ and

anticommuting bµ, cµ ghost fields with action

Smeasure[x, a, b, c] =

∫ β

0

dt 1
2 gµν(x)(aµaν + bµcν) ,

so that path integrating over these ghosts reproduces the correct measure. The
advantage of this exponentiation is that one can consider perturbatively the effect
of the measure, and recognize to which type of diagram they contribute to. One
can use the leading term of the Taylor expansion of the metric in the ghost action
to identify the ghost propagators, which for large momenta go like

〈a(k)a(−k)〉 ∼ 〈b(k)c(−k)〉 ∼ 1 .

The next term produces a vertex where x couples to the ghosts, and one obtains
again a linearly divergent diagram of the type

∼
∫

dk → linear divergence,

where dashed lines denote ghost propagators. One may check that the previous
two diagrams combine to produce a finite result

+ = finite.

The cancellation must of course be achieved carefully: one must regulate each
diverging graph and then combine them. Only at this stage one is allowed to

6



Path integrals in curved space and the worldline formalism

remove the regulator. Different regulators may lead to different left over finite
parts. Then different counterterms associated to different regularization schemes
make sure that this difference is accounted for to obtain the same correct final
answer.

Three different regularization schemes have been developed and checked thor-
oughly: mode regularization (MR) [21,27], time slicing (TS) [28], and dimensional
regularization (DR) [29]. The precise details of each regularization scheme can be
found in the literature, and we will give here only a brief description for each of
them.

Mode regularization starts by expanding all fields in Fourier sums. The regular-
ization is achieved by truncating these sums at a fixed mode M , so that all distri-
butions that appear in Feynman graphs become well-behaved functions. Then one
performs all computations at finite M , as they are now completely unambiguous
(one may check for example that after including the ghosts all possible divergences
cancel). Eventually one takes the limit M → ∞, thus obtaining a unique finite
result. In practice one can proceed faster: one may perform all manipulations that
are valid at the regulated level (for example partial integration) to cast the inte-
grands in alternative forms that can be computed directly in the M → ∞ limit.
This scheme requires the addition of a local counterterm VMR to the action (3) to
satisfy the renormalization conditions mentioned earlier. This local counterterm is
given by

VMR = −1

8
R− 1

24
gµνgαβgγδ Γγ

µαΓδ
νβ .

The noncovariant piece is necessary to restore covariance (which is broken at the
regulated level), so that the complete final result is covariant. This regularization
is analogous to the standard momentum cut-off used in quantum field theories.

Time slicing is a regularization that is derived from the exact operatorial ex-
pression of the transition amplitude. Inserting completeness relations and using
the “mid-point prescription” (related to the Weyl ordering of the operators), one
derives a discretized path integral in momentum space. By integrating out the
momenta and taking the continuum limit, one carefully derives the prescriptions
needed for evaluating consistently the products of distributions contained in Feyn-
man diagrams [28]. In particular, the Heaviside step function acquires the value
θ(0) = 1

2 , while Dirac deltas must be used as Kronecker deltas. This regularization
requires the counterterm

VTS = −1

8
R+

1

8
gµν Γβ

µαΓα
νβ ,

which is seen to arise from Weyl ordering the quantum hamiltonian [30, 31]. Time
slicing is a regularization that can be considered analogous to lattice regularization
of usual quantum field theories. In [32] it was checked that MR and TS give
the same result for the transition amplitude to order β2, where β is the total
propagation time. That calculation produced as byproduct the first three Seeley–
DeWitt coefficients for a scalar particle including the corrections for noncoinciding
points.
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Dimensional regularization is a perturbative regularization which uses an adap-
tation of standard dimensional regularization to regulate the distributions de-
fined on the compact space I = [0, β]. One adds d extra infinite dimensions
I → I × Rd ≡ Ω and perform all computations of ambiguous Feynman graphs
in d + 1 dimensions. Extra dimensions act as a regulator when d is extended an-
alytically in the complex plane, as usual. After evaluation of the integrals one
should take the d→ 0 limit. In fact, this is quite difficult since the compact space
I produces sums over discrete momenta, and the standard formulas of dimensional
regularization do not include such a situation. However there is no need to com-
pute at arbitrary complex d. One may use manipulations valid at the regulated
level, like differential equations satisfied by the Green functions and partial inte-
gration, to cast the integrand in equivalent forms that, on the other hand, can
be unambiguously computed in the d → 0 limit. This method carries a covariant
counterterm

VDR = −1

8
R . (5)

For sigma models with infinite propagation time one can use the standard formulas
of dimensional regularization, and in [33] it was originally understood that nonco-
variant counterterms did not arise. In [34] it was checked that this counterterm is
covariant and given by (5).

The previous discussions can be further clarified by going through a specific
example. Consider the following superficially logarithmic divergent graph G

G = =

∫ 1

0

dτ

∫ 1

0

dσ •∆ •∆• ∆• .

In this example we use Dirichlet boundary conditions x(0) = x(1) = 0 for the field
x(τ), where τ = t/β ∈ [0, 1], so that the propagator reads

〈x(τ)x(σ)〉 = −β∆(τ, σ)

with

∆(τ, σ) =

∞
∑

m=1

[

− 2

π2m2
sin(πmτ) sin(πmσ)

]

=

= (τ − 1)σ θ(τ − σ) + (σ − 1)τ θ(σ − τ) ,

•∆(τ, σ) =
∞
∑

m=1

[

− 2

πm
cos(πmτ) sin(πmσ)

]

= σ − θ(σ − τ) ,

•∆•(τ, σ) =

∞
∑

m=1

[

−2 cos(πmτ) cos(πmσ)
]

= 1 − δ(τ − σ) ,

where dots on the left/right indicate derivatives with respect to the first/second
variable.
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• In mode regularization one cuts off the mode expansion at a big mode number
M , and proceeds as follows

G(MR) =

∫ 1

0

dτ

∫ 1

0

dσ •∆ •∆• ∆• =
1

2

∫ 1

0

dτ

∫ 1

0

dσ ∂σ(•∆2) ∆• =

= −1

2

∫ 1

0

dτ

∫ 1

0

dσ •∆2 (∆••) = −1

2

∫ 1

0

dτ

∫ 1

0

dσ •∆2 (••∆) =

= −1

2

∫ 1

0

dτ

∫ 1

0

dσ
1

3
∂τ (•∆3) = −1

6

∫ 1

0

dσ [•∆3(1, σ) − •∆3(0, σ)] →

→ −1

6

∫ 1

0

dσ [(σ − 1)3 − σ3] = − 1

12
.

• In time slicing one can use θ(0) = 1
2 , and thus

G(TS) =

∫ 1

0

dτ

∫ 1

0

dσ
(

σ − θ(σ − τ)
)(

1 − δ(τ − σ)
)(

τ − θ(τ − σ)
)

= −1

6
.

• In dimensional regularization one extends the action to higher dimensions as

S =

∫ 1

0

dτ 1
2 gµν(x)ẋµẋν + . . .⇒

∫

Ω

dd+1t 1
2 gµν(x)∂ax

µ∂ax
ν + . . . ,

where the repeated index a is summed from 1 to d+ 1. From this extended action
one obtains vertices and propagators, and thus

G(DR) =

∫

dD+1t

∫

dD+1s (a∆) (a∆b) (∆b) =

=

∫

dD+1t

∫

dD+1s (a∆) ∂a

(

1
2 (∆b)

2
)

=

= −1

2

∫

dD+1t

∫

dd+1s (aa∆) (∆b)
2 =

= −1

2

∫

dD+1t

∫

dD+1s δD+1(t, s) (∆b)
2 =

= −1

2

∫

dD+1t (∆b)
2|t → −1

2

∫ 1

0

dτ (∆•)2
∣

∣

∣

τ
= − 1

24
,

where the vertical bar indicates evaluation at coinciding points, and a∆ ≡ ∂a∆. In
this computation we used the Green equation aa∆(t, s) = δd+1(t, s) satisfied by the
propagator in d+ 1 dimensions.

We have seen concretely, how different regularizations produce different answers.
However the different counterterms make sure that the final complete result is
independent of the regularization chosen. The conclusion is that path integrals in
curved spaces can be defined and computed without any ambiguity.

Let us conclude with another quote, now from a recent book of DeWitt [35],
which comments on the extra R terms that appear in the action (the terms that
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we now call counterterms): “Many years ago the author was guilty of suggesting
that this term is 1

6 R, a suggestion that remained in the literature for a long time.
That the term must be 1

8 R is conclusively demonstrated in reference [36] where
the path integral derivation of the Chern–Gauss–Bonnet formula for the Euler–
Poincarè characteristic demands for its consistency.” This statement witnesses
the long lasting confusion on how to calculate in a correct way path integrals in
curved spaces. At the same time this statement is rather misleading, as it does
not specify how the path integral is computed, i.e. which regularization scheme is
used. Most likely DeWitt had in mind a kind of covariant regularization similar to
DR (the difference in sign is due to different conventions adopted in the definition
of the curvature scalar).

Extensive descriptions, tests and applications of the previous regularization
schemes can be found in a forthcoming book [37].

4 N = 2 spinning particles and antisymmetric tensor fields

We now describe a recent application of path integrals in curved spaces: the
worldline approach to vector and antisymmetric tensor fields coupled to gravity [7].
The worldline action that describes these models is given by the N = 2 spinning
particle with quantized Chern–Simons coupling [13–16]. This particle is described
by phase space coordinates X = (xµ, pµ, ψ

µ, ψ̄µ) and gauge fields G = (e, χ, χ̄, a).
The variables ψµ, ψ̄µ, χ, χ̄ are Grassmann variables. The worldline action in flat
D dimensional target space is given by

S[X,G] =

∫

dt
(

pµẋ
µ + iψ̄µψ̇

µ − eH − iχ̄Q− iχQ̄− a(J − q)
)

,

where the N = 2 supersymmetry generators

H = 1
2 pµp

µ , Q = pµψ
µ , Q̄ = pµψ̄

µ , J = ψ̄µψµ

satisfy a first class Poisson-bracket algebra

{Q, Q̄}PB = −2iH , {J,Q}PB = iQ , {J, Q̄}PB = −iQ̄

and are gauged by the Lagrange multipliers G. The Chern–Simons coupling q is
quantized as q = 1

2D − p − 1, with p an integer. This model describes a p-form
gauge field Ap with field strength Fp+1 = dAp and standard Maxwell action

SQFT
p =

∫

dDx
1

2(p+ 1)!
Fµ1···µp+1

F µ1···µp+1 . (6)

This is immediately seen in canonical quantization, which is introduced by inter-
preting the phase space coordinates as operators with (anti)commutation relations

[x̂µ, p̂ν ] = iδµ
ν , {ψ̂µ, ψ̂†

ν} = δµ
ν .
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These operators act on wave functions φ which depend on the classical configuration
space coordinates xµ and ψµ, and thus have an expansion of the form

φ(x, ψ) = F (x) + Fµ(x)ψµ +
1

2
Fµ1µ2

(x)ψµ1ψµ2 + . . .+
1

D!
Fµ1...µD

(x)ψµ1 · · ·ψµD .

The first class constraints now become differential operators

Ĥ = −1

2
∂µ∂

µ , Q̂ = −iψµ∂µ ,

Q̂† = −i∂µ
∂

∂ψµ
, Ĵ = −1

2

[

ψµ,
∂

∂ψµ

]

,

which select the physical sector of the Hilbert space

(Ĵ − q)φphys = 0 ⇒ φphys ∼ Fµ1...µp+1
(x)ψµ1 . . . ψµp+1 ,

Q̂φphys = 0 ⇒ dFp+1 = 0 ,

ˆ̄Qφphys = 0 ⇒ d†Fp+1 = 0 .

Thus ones sees that only the tensor Fµ1...µp+1
with p + 1 indices is physical, and

must satisfy the Bianchi identities and Maxwell equations. Thus one concludes
that the physical sector of the N = 2 spinning particle describes the field strength
of a p-form gauge field with the standard Maxwell action (6).

To introduce the coupling to gravity, we couple the spinning particle to a tar-
get space metric gµν (and corresponding vielbein ea

µ) preserving the N = 2 local
supersymmetry, then go to configuration space by eliminating pµ, Wick rotate to
euclidean time (t → −iτ , and also a→ ia), and obtain the euclidean action

S[X,G; gµν ] =

∫ 1

0

dτ

[

1

2
e−1gµν

(

ẋµ − χ̄ψµ − χψ̄µ
) (

ẋν − χ̄ψν − χψ̄ν
)

+

+ψ̄a

(

ψ̇a + ẋµωµ
a

bψ
b + iaψa

)

− e

2
Rabcdψ̄

aψbbarψcψd − iqa

]

.

The gauge symmetries on the gauge multiplet G are given by

δe = ξ̇ + 2χ̄ε+ 2χε̄ ,

δχ = ε̇+ iaε− iαχ ,

δχ̄ = ˙̄ε− iaε̄+ iαχ̄ ,

δa = α̇

(7)

and do not couple to the target space geometry.
The one-loop effective action for a p-form gauge potential has then the following

worldline representation

ΓQFT
p [gµν ] ∼

∫

T 1

DGDX
Vol(Gauge)

e−S[X,G;gµν ],
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but first one should fix the gauge symmetries (7). On the one-dimensional torus
T 1 we adopt antiperiodic boundary conditions for all fermionic fields. We choose
the gauge Ĝ = (β, 0, 0, φ), insert the Faddeev–Popov determinants, and integrate
over the remaining moduli β and φ. Fixing appropriately the overall normalization
gives

ΓQFT
p [gµν ] = −1

2

∫ ∞

0

dβ

β

∫ 2π

0

dφ

2π

(

2 cos
φ

2

)−2 ∫

T 1

DX e−S[X,Ĝ;gµν ], (8)

which contains a path integral of the N = 2 nonlinear sigma model

Z(β, φ) =

∫

T 1

DX e−S[X,Ĝ;gµν ]. (9)

As explained in the previous section, these path integrals are completely under
control, and thus one can proceed with concrete applications. An interesting feature
of this worldline approach to vector (p = 1) and general antisymmetric tensor fields
is that on top of the proper time β there is a new modular parameter φ. It is related
to the Wilson loop variable by

w = exp

(

i

∫ 1

0

adτ

)

= eiφ .

The integration φ ∈ [0, 2π] has the effect of projecting onto the correct physical
sector described by the (p + 1)-form Fp+1. It is interesting to note that the pa-
rameter φ can be eliminated from the action by a field redefinition of the fermions,
which then acquire different boundary conditions: ψa(1) = −eiφψa(0). Averaging
over φ can then be interpreted as averaging over all possible boundary conditions
of the fermions. Note that at φ = π a zero mode of the free fermionic kinetic term
appears: at this point the fermions have periodic boundary conditions and constant
fields ψa

0 are zero modes.
The worldline representation of the effective action in (8) is quite explicit, and

can be used to compute ΓQFT
p in some approximation (the exact evaluation with an

arbitrary background metric is impossible to achieve with current techniques). For
example, the perturbative evaluation of the path integral for the N = 2 nonlinear
sigma model in (9) at order β2 can be carried out without any ambiguity, as already
explained in section 2. It allows to identify the first three Seeley–DeWitt coefficients
a0, a1, a2 for an arbitrary p-form in arbitrary dimensions. They appear as follows

ΓQFT
p [gµν ] = −1

2

∫ ∞

0

dβ

β

∫

dDx
√

g(x)

(2πβ)D/

(

a0(x) + a1(x)β + a2(x)β
2 + . . .

)

and their values have been reported in [7]. The cases for p = 0, 1, 2 were already
known in the literature [10,11], but the cases for p ≥ 3 are new. These coefficients
can in principle be obtained by specializing the known Seeley–DeWitt coefficients
for a scalar field coupled to an arbitrary connection to the case under study, and
performing the necessary index contractions. However, the latter task is quite
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1−1
ε

γ

Re w

Im w

Fig. 4. Regulated contour on the U(1) moduli space.

laborious. The worldline representation maps this problem into the problem of
computing some worldline fermion correlators, and makes the computation quite
easy and efficient.

A technical point worth of commenting upon is related to the appearance of
a singularity on the U(1) moduli space. This singularity appears precisely at the
point φ = π, where perturbative zero modes arise for the fermions. It is convenient
for the present discussion to use the Wilson loop variable w in place of φ, and
switch to an operatorial picture. Then the effective action in (8) can be rewritten
as follows

ΓQFT
p [gµν ] = −1

2

∫ ∞

0

dβ

β

∮

γ

dw

2πiw

w

(1 + w)2
Tr

[

wN̂−(p+1)e−βhatH
]

, (10)

where N̂ is the (anti)fermion number operator ψ̂aψ̂†
a, and the integration region of

the Wilson loop variable w is the unit circle γ in the complex w-plane. The singular
point φ = π is now mapped to w = −1. In particular, the presence of the susy ghost

determinant
w

(1 + w)2
makes this pole rather dangerous. The prescription devised

in [7] is to deform the contour to exclude the point w = −1, and use contour
integration to evaluate the integrals, see Fig. 4.

This prescription permits the calculation of the Seeley–DeWitt coefficients a0,
a1 and a2 for all p-forms in arbitrary dimensions, reproducing in particular the
known results for the cases of p = 0, 1, 2. Moreover, it sheds an interesting light
on the issue of quantum equivalence of dual p-forms [38, 39]. A massless p-form
is expected to be equivalent to a massless (D − p − 2)-form. Replacing p with
(D − p − 2) in (10) gives directly the effective action for a massless (D − p − 2)-
form. This replacement only produces a change q → −q. This change that can
be undone by a subsequent change of integration variables w → w′ = 1/w. This
would seem to prove the exact equivalence. However, the new integration variable
has a modified contour of integration which includes the pole, see Fig. 5, so that
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Fig. 5. Contour for the dual differential form.

the total mismatch between the effective actions of dual differential forms is related
to the residue at the pole w = −1.

In even dimension the mismatch is a local term, proportional to the Euler topo-
logical density, which affects that particular Seeley–DeWitt coefficient with the
same dimensions of the Euler term. This mismatch was first noticed in four dimen-
sions in [38]. It contributes to the local terms that are usually subtracted when
one renormalizes the effective action, and thus, according to [39], it does not really
destroy duality. In odd dimension the mismatch is also topological and corresponds
to the so-called Ray–Singer torsion, as discovered in [40]. This mismatch can be
interpreted as the additional contribution of a (D− 1)-form gauge potential, which
however carries no degrees of freedom. Exact formulas can be found in [7].

In this section we have described an application of the worldline approach to
arbitrary antisymmetric tensor fields coupled to gravity. This approach can of
course be used to compute some one-loop amplitudes with a certain efficiency as
well, see [7]. The particular case p = 1 describes a photon coupled to gravity.
Previous worldline descriptions of spin 1 particles in D = 4 dimensions have been
considered in [41] and [42]. In those references only a rigidN = 2 linear sigma model
was used, together with a limiting procedure necessary to achieve the propagation of
the correct degrees of freedom. This limiting procedure is not particularly elegant,
but it allows the inclusion of Yang–Mills backgrounds. It is not clear how to include
the latter using the N = 2 spinning particle with local supersymmetry described
above.

I would like to thank all the collaborators that at various stages joined me in the study

and in the applications of the path integral in curved space: Paolo Benincasa, Olindo

Corradini, Hari Dass, Simone Giombi, Koenraad Schalm, Christian Schubert, Peter van

Nieuwenhuizen, Andrea Zirotti.
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