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Some symmetries can be broken in the quantization process (anomalies) and this
breaking is signalled by a non-invariance of the quantum path integral measure. In this
talk we show that it is possible to formulate also classical field theories via path integral
techniques. The associated classical functional measure is larger than the quantum one,
because it includes some auxiliary fields. For a fermion coupled with a gauge field we
prove that the way these auxiliary fields transform compensates exactly the Jacobian
which arises from the transformation of the fields appearing in the quantum measure.
This cancels the quantum anomaly and restores the symmetry at the classical level.
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1 Introduction

It is well-known that in field theory some symmetries could be broken in the
quantization process. This is the phenomenon of anomalies and it is signalled
by the non-invariance of the quantum functional measure under the symmetry
transformations. In Ref. [1] it is shown that it is possible to formulate also classical
mechanics via path integrals. We will indicate this formalism with CPI, for Classical
Path Integral. This formulation has been extended to bosonic field theories in [2].
In this talk we will review Ref. [3] where this approach has been extended also to a
theory of fermions coupled with a gauge field which, at the quantum level, present
a chiral anomaly. As anomalies are not present at the classical level there must be
a mechanism that cancels the anomaly in the CPI. In Ref. [3] this mechanism has
been linked with the presence of several auxiliary fields in the CPI. These fields
generate a Jacobian which compensates the one arising from the basic fields of the
theory. This paper is organized as follows: in Sec. 2 we will give a brief review
of the CPI which was presented at this conference by Ennio Gozzi. In Sec. 3 we
will extend the formalism of the CPI from the point particle to a field theory of
fermions. In Sec. 4 we will briefly review the analysis of the chiral anomaly in
the quantum path integral approach à la Fujikawa [4]: the breaking of the chiral
symmetry arises because the functional measure is not invariant under the chiral
transformations. In Sec. 5 we will implement the chiral symmetry for Fujikawa’s
models at the CPI level. The associated functional measure turns out to have a
part identical to the quantum one and another part which involves a functional
integral over the auxiliary fields which appear in the CPI. These auxiliary fields
play a crucial role in compensating the anomaly coming from the quantum part of
the functional measure and in restoring the chiral symmetry at the classical level.
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2 Brief review of the classical path integral

In this section we will limit ourselves to review those features of the formalism
which are crucial in order to understand the extension to the field theories. For
further details we refer the interested reader to the original papers [1].

It is well-known from Koopman and von Neumann’s work [5] that it is possible
to formulate classical mechanics using states and operators defined in a suitable
Hilbert space on phase space whose coordinates will be indicated with ϕ ≡ (q, p).
The main idea of this approach is to replace the probability densities ρ(ϕ) with
the states of a Hilbert space ψ(ϕ), whose modulus square reproduces just the
probability density of finding the system in a certain point of the phase space, i.e.
|ψ(ϕ)|2 = ρ(ϕ). The evolution of these “Koopman–von Neumann waves” is given
by the so called Liouville equation:

i
∂ψ

∂t
= L̂ψ , (1)

where the Liouvillian L̂ can be written in terms of the Hamiltonian H(ϕ) and of the

antisymmetric matrix ωab =

(
0 1

−1 0

)
as follows: L̂ = i ∂aHω

ab∂b. Because of

the particular form of the operator of evolution, which is first order in the derivatives
with respect to q and p, it is easy to prove that also the probability densities ρ(ϕ)
evolve with the Liouville equation (1). Now, since every theory formulated with
operatorial techniques can be rewritten in the path integral language, it must be
possible to reformulate also classical mechanics via path integrals. This has been
done in Ref. [1] by starting from the following question: which is the probability
density of going from the point ϕi of the phase space at time ti to the point ϕf at
time tf? In classical mechanics we have only two possibilities: this probability is
one if the point ϕf lies at time tf on the classical path φacl(t;ϕi) and zero otherwise.
By classical path φacl(t;ϕi) we mean the path which solves the classical Hamilton’s
equations of motion ϕ̇a = ωab∂bH(ϕ) with the initial condition ϕ(ti) = ϕi. This
result can be written as a path integral over ϕ of a functional Dirac delta which
gives weight one only to the classical path associated with the initial conditions ϕi.

Z = 〈ϕf ; tf |ϕi; ti〉 =

∫
D′′ϕ δ [ϕa − φacl(t;ϕi)] . (2)

The double prime on D means that the initial and the final point in the phase
space are fixed. If we now use the properties of the Dirac deltas we can replace the
Dirac delta on the solutions of the equations of motion with a Dirac delta on the
equations of motion plus a functional determinant:

δ [ϕa − φacl(t;ϕi)] = δ(ϕ̇a − ωab∂bH) det(∂tδ
a
c − ωab∂b∂cH) . (3)

We can use the Fourier representation of the Dirac delta to exponentiate the Dirac
delta on the equations of motion via a functional integral over an auxiliary variable
λa. Furthermore we can use the Faddeev–Popov trick to exponentiate the determi-
nant in the RHS of (3) via a couple of Grassmannian odd variables ca and c̄a. The
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final result is that the probability amplitude (2) can be rewritten as the following
path integral:

Z =

∫
D′′ϕDλDcDc̄ exp

[
i

∫ tf

ti

dt L̃

]
, (4)

where the functional integral is extended not only over the phase space variables ϕ
but also over all the auxiliary variables λ, c and c̄. The Lagrangian L̃ is given by

L̃ = λaϕ̇
a + ic̄aċ

a −H , H = λaω
ab∂bH + ic̄aω

ab∂b∂dHc
d .

Let us now define the commutators as Feynman did for quantum mechanics, i.e.
using the following rule

〈[O1(t), O2(t)]〉 ≡ lim
ε→0

〈O1(t+ ε)O2(t) ±O2(t+ ε)O1(t)〉 .

We get that [ϕ̂a, ϕ̂b] = 0, i.e. the position q̂ and the momentum p̂ commute, which
confirms that we are doing classical and not quantum mechanics. The only non-zero
graded commutators are given by:

[ϕ̂a, λ̂b]− = iδab , [ĉa, ˆ̄cb]+ = δab .

The previous commutators can be realized by taking ϕ̂a and ĉa as multiplicative
operators and λ̂a and ˆ̄ca as the following derivative operators:

λ̂a = −i
∂

∂ϕa
, ˆ̄ca =

∂

∂ca
.

Via this choice of operators the Hamiltonian which appears in the weight of the
classical path integral (4) becomes the following operator:

Ĥ = −iωab∂bH∂a − iωab∂b∂dHc
d ∂

∂ca
.

The first operator is just the Liouvillian which enters the equation of evolution (1)
of the “Koopman–von Neumann waves”. In this sense we can say that the path
integral (4) can be considered as the functional counterpart of the Koopman–von
Neumann formalism. This path integral formulation of classical mechanics is very
rich from the geometrical point of view and part of this richness has been explored
in Ref. [6]. As now classical mechanics has been formulated using the same tools
of quantum mechanics, it is easy to make a comparison between the two theories
[7] and to study the relative interplay. A typical example of the interplay between
classical and quantum mechanics in field theories is given by the issue of anomalies,
i.e. symmetries which are present at the classical level but that are broken by the
quantization procedure. For example [3] a field theory of fermions coupled with
a gauge field is invariant under chiral transformations in classical mechanics but
leads to a chiral anomaly at the quantum level. This talk is based just on Ref. [3]
to which we refer the interested reader for further technical details.
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3 Classical path integral for fermions

Since the main goal of this paper is to study the chiral symmetry in the frame-
work of the CPI, the first thing that we have to do is to extend the formalism of
the CPI from the point particle case, that we have briefly reviewed in Sec. 2, to the
case of a field theory of fermions endowed with chiral symmetry. Let us start from
the simple case of a free massless fermion theory. The Lagrangian of the system is
given by:

L = i

∫
dx ψ̄(x)γµ∂µψ(x) , (5)

where ψ(x) is a Grassmannian odd field and ψ̄(x) is defined as ψ̄ = ψ†γ0. The
Hamiltonian associated with the Lagrangian (5) is:

H = −i

∫
dxψ†(x)γ0γl∂lψ(x) .

The Euler–Lagrange equations which can be derived from (5) are:

ψ̇ + γ0γl∂lψ = 0 , ψ̇† + ∂lψ
†γ0γl = 0 . (6)

From (5) we have that ψ† can be considered as the momentum canonically conju-
gated to ψ. So if we want to keep the notation as similar as possible to the one
used in Sec. 2 we can collect together ψ and ψ† in a unique field Ψa = (ψ, ψ†).

Furthermore we can introduce the following symplectic matrix ωab =

(
0 1
1 0

)
. Let

us notice that, differently than in the case of the point particle, the symplectic
matrix is symmetric because the fields ψ and ψ† are Grassmannian odd. Using Ψa

and ωab the equations of motion (6) can be written in a compact way as

Ψ̇a(x) = −iωab
∂H

∂Ψb(x)
,

where ∂ must be intended as a functional derivative.
We have now all the ingredients to implement the CPI for a free theory of

massless fermions. As have seen in Sec. 2, the starting point is the definition of
the following generating function for classical mechanics:

ZCM[0] =

∫
DΨa δ[Ψa − Ψa

cl] ,

where Ψa
cl is, as usual, the solution of the classical equations of motion (6). We can

then pass from the delta function of the solutions of the equations of motion to the
delta of the equations of motion themselves. In this step the inverse of a functional
determinant makes its appearance because of the Grassmannian nature of ψ:

ZCM =

∫
DΨa δ

(
Ψ̇a + iωab

∂H

∂Ψb

)
−1

det

[
δad∂tδ(x − y) + iωab

∂2H

∂Ψd(y)∂Ψb(x)

]
. (7)
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For a formal point of view the steps are very similar to the ones that we have seen
in the case of a point particle. Nevertheless we want to stress again the two main
novelties:
1) the presence on the RHS of (7) of an inverse functional determinant instead of
a functional determinant due to the fact that Ψa is a Grassmannian odd field;
2) the presence of functional derivatives due to the fact that Ψa is a field and not
an ordinary variable.

The Grassmannian odd parity of the fields ψ and ψ† implies some differences
also in the other steps of the CPI procedure. In fact, when we exponentiate the
Dirac delta on the equations of motion and the inverse of the functional determi-
nant we have to introduce, as usual, auxiliary fields. In this case the fields used
to exponentiate the Dirac delta of the equations of motion are Grasmannian odd,
let us indicate them as λa = (λψ , λψ†). Furthermore the fields used to exponen-
tiate the inverse of the functional determinant of Eq. (7) are Grassmannian even

ca = (cψ , cψ
†

) and c̄a = (c̄ψ , c̄ψ†). The final result of these manipulations is that
the classical generating functional can be written as:

ZCM[0] =

∫
DΨaDλaDc

aDc̄a exp

[
i

∫
dx L̃

]
, (8)

where L̃ is the following Lagrangian density:

L̃ = λψ(ψ̇ + γ0γl∂lψ) − (ψ̇† + ∂lψ
†γ0γl)λψ† +

+ic̄ψ(ċψ + γ0γl∂lc
ψ) + i(ċψ

†

+ ∂lc
ψ†

γ0γl)c̄ψ† .

The path integral (8) is not the only path integral for a classical field theory of
massless fermions that we can implement. In fact we could have started considering
ψ and ψ̄, instead of ψ and ψ†, as independent fields. Using the equations of motion:

ψ̇ + γ0γl∂lψ = 0 , ˙̄ψ + ∂lψ̄γ
lγ0 = 0 (9)

and the standard CPI procedure we would have got the following generating func-
tional:

Z̄CM[0] =

∫
Dψ̄DψDλψ̄Dλψ . . . exp

[
i

∫
dx L̄

]
, (10)

where . . . indicates the functional integration over the auxiliary fields (cψ , cψ̄) and
(c̄ψ, c̄ψ̄), which we must introduce to exponentiate the inverse of the functional
determinant. Before going on, let us notice that in Eq. (10) the first part of
the functional measure, i.e. Dψ̄Dψ, is identical to the functional measure of the
quantum path integral. In addition, we have also the functional integration over
all the auxiliary fields. The Lagrangian L̄ which appears in the weight of the path
integral (10) is given by

L̄ = λψγ
0γµ∂µψ − (∂µψ̄)γµγ0λψ̄ + ic̄ψγ

0γµ∂µc
ψ + i(∂µc

ψ̄)γµγ0c̄ψ̄ . (11)
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The fields ψ̄ and ψ† are related by the usual equation ψ̄ = ψ†γ0. Similar relation-
ships hold also for the auxiliary fields entering the definitions of the two CPIs of
Eqs. (8) and (10):

λψ̄ = γ0λψ† , cψ̄ = cψ
†

γ0 , c̄ψ̄ = γ0c̄ψ† .

If we rewrite the Lagrangian (11) as

L̄ = λψψ̇ − ˙̄ψλψ̄ + ic̄ψ ċ
ψ + iċψ̄ c̄ψ̄ − H̄ ,

we can then read off the following Hamiltonian:

H̄ = −λψγ
0γl∂lψ + (∂lψ̄)γlγ0λψ̄ − ic̄ψγ

0γl∂lc
ψ − i(∂lc

ψ̄)γlγ0c̄ψ̄ (12)

and the following non-zero anticommutators:

[
ψα(x, t), λψ,β(y, t)

]
= iδαβδ(x−y) ,

[
ψ̄α(x, t), λψ̄,β(y, t)

]
= iδαβδ(x−y) . (13)

Using Eqs. (12) and (13) we can rewrite the equations of motion (9) for the spinors
Ψa as

Ψ̇a = i

[
Ψa,

∫
dx H̄

]
.

Before going on, we want to mention a technical point that we will use later on.
The space underlying the CPI is an enlarged Hilbert space. Since we are dealing
with Grassmannian odd fields, we have to clarify which is the scalar product that
we use. There are different possible choices but the only positive definite scalar
product is the one in which the Hermitian conjugate of a Grassmannian odd field
is proportional to the momentum canonically conjugated to that field [8], i.e.

−iλψ,β = (ψβ)
† , −iψ̄α = (λψ̄,α)† . (14)

4 Review of the chiral anomaly in quantum field theory

Before studying how the chiral symmetry can be implemented at the CPI level,
we want to briefly review how a chiral anomaly arises when we use the path integral
technique to quantize the field theory [4]. If we couple the massless fermion with a
U(1) gauge field then the Lagrangian which describes the system is:

L = iψ̄γµDµψ − 1
4
FµνF

µν , (15)

where Dµ = ∂µ + ieAµ is the usual covariant derivative. The Lagrangian density
(15) is symmetric under the following infinitesimal chiral transformations:

ψ(x) −→ exp [iαγ5]ψ(x) ' [1 + iαγ5]ψ(x) ,

ψ̄(x) −→ ψ̄(x) exp [iαγ5] ' ψ̄(x)[1 + iαγ5] .
(16)
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The Noether current associated with this symmetry is Jµ5 = ψ̄γµγ5ψ. When we
quantize the theory the Lagrangian density (15) appears in the weight of the fol-
lowing path integral:

ZQM[0] =

∫
[DAµ(x)]Dψ̄(x)Dψ(x) exp

[
i

h̄

∫
dxL

]
,

where [DAµ(x)] is the part of the functional measure necessary to describe the
gauge field. Under local chiral transformations the Lagrangian density changes as
follows

L −→ L− ∂µα(x)Jµ5 (x) .

If the functional measure were invariant under the chiral transformations (16) then
the requirement that the generating functional does not depend on the parameter

α, i.e.
∂ZQM

∂α(x)

∣∣∣∣
α=0

= 0, would imply that 〈∂µJ
µ
5 〉 = 0, i.e. the chiral symmetry would

be present also at the quantum level. Unfortunately, as Fujikawa pointed out at
the end of the 1970s [4], the functional measure of the quantum path integral is not
invariant under the chiral transformations. In other words, if we perform the chiral
transformations (16), then the functional measure Dψ̄Dψ generates a Jacobian J

different from zero:

Dψ̄′Dψ′ = J Dψ̄Dψ ≡ exp

[
i

∫
dxα(x)A[Aµ ](x)

]
Dψ̄Dψ .

This non-invariance of the functional measure implies a breaking of the chiral sym-
metry. In fact the requirement that the generating functional ZQM[0] does not
depend on α implies that the mean value of ∂µJ

µ
5 becomes:

〈∂µJ
µ
5 〉 = h̄〈A〉 .

To evaluate explicitly A or, equivalently, the Jacobian J associated with the chiral
transformation of the functional measure, Fujikawa [4] considered a complete set
of eigenstates {φn(x)} of a Hermitian operator and expanded the fields ψ and ψ̄ as
follows:

ψ(x) =
∑

n

bnφn(x) , ψ̄(x) =
∑

n

φ†n(x)b̄n .

As a consequence, the functional measure of the quantum path integral can be
rewritten as a product of standard integrals over the coefficients of the expansion

Dψ̄Dψ =
∏

n

db̄ndbn and the Jacobian J can be rewritten as J = [detC]−2 where

the matrix C is given by

Cmn ≡ δmn + i

∫
dxα(x)φ†m(x)γ5φn(x) . (17)

The determinant of C is an ill-defined quantity which has to be regularized. Using
a gauge invariant regularization one gets that the determinant of C is different from
zero and so a chiral anomaly appears in the quantum theory.
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5 Chiral symmetry and the classical path integral

In Sec. 3 we have implemented the CPI for a classical field theory of massless
fermions. If we include also the interaction with an external gauge field then the
CPI Lagrangian which describes the fermions can be obtained from the one of Eq.
(11) replacing the standard derivatives ∂µ with the covariant ones Dµ:

L̄ = λψγ
0γµDµψ − (Dµψ̄)γµγ0λψ̄ + ic̄ψγ

0γµDµc
ψ + i(Dµc

ψ̄)γµγ0c̄ψ̄ .

This Lagrangian is invariant under the following infinitesimal transformations:

δψ = iαγ5ψ , δψ̄ = iαψ̄γ5 ,

δλψ = −iαλψγ
5 , δλψ̄ = −iαγ5λψ̄ ,

δcψ = iαγ5cψ , δcψ̄ = iαcψ̄γ5 ,

δc̄ψ = −iαc̄ψγ
5 , δc̄ψ̄ = −iαγ5c̄ψ̄ .

(18)

The transformations in the first line of (18) are just the standard chiral transfor-
mations of spinors, see Eq. (16). The other transformations implement the chiral
symmetry at the level of the auxiliary fields of the CPI. The associated Noether
current is given by

J̃
µ
5 = −i

[
λψγ

0γµγ5ψ − ψ̄γ5γµγ0λψ̄ + ic̄ψγ
0γµγ5cψ + icψ̄γ5γµγ0c̄ψ̄

]

and leads to the following conservation law: ∂µJ̃
µ
5 = 0. The Lagrangian L̄, which

appears in the weight of the CPI, is invariant under the chiral transformations, but
in the CPI there is also the functional measure and in Fujikawa’s approach it is just
the non-invariance of the functional measure which produces the chiral anomaly at
the quantum level. So let us consider again the generating functional for classical
mechanics:

Z̄CM[0] =

∫
Dψ̄DψDλψ̄Dλψ · · · exp

[
i

∫
dx L̄

]
. (19)

Since we are dealing with classical mechanics we expect no anomaly which means
that the functional measure of the CPI (19) should be invariant under the chi-
ral transformations (18). Nevertheless we know that Dψ̄Dψ is just the functional
measure of the quantum path integral and such a measure is not invariant un-
der the chiral transformations. The measure Dψ̄Dψ appears also in the classical
path integral (19). As a consequence, to have a symmetry at the classical level we
must compensate this non-invariance and this can only happen if also the func-
tional measure over the auxiliary fields of the CPI is not invariant under chiral
transformations. In particular, it should transform under chiral transformations in
such a way to produce a Jacobian which cancels the contribution coming from the
quantum part of the measure, i.e. from DψDψ†.

Let us use Fujikawa’s techniques, that we have reviewed in the previous section,
to prove that the whole functional measure of the CPI is invariant under chiral
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transformations. To do this, let us remember the definition (14) of the scalar
product in the enlarged space of the CPI. According to this scalar product, if we
expand ψ over an orthonormal set of eigenstates φn(x) then we can expand the
canonically conjugated momentum λψ(x) over the basis given by φ†

n(x):

ψ(x) =
∑

n

bnφn(x) , λψ(x) =
∑

n

φ†n(x)βn . (20)

From Eq. (18) we have that ψ and λψ transform under chiral transformations
with a different sign. This immediately implies that also the coefficients of their
expansion (20) transform in a different way:

ψ′(x) =
[
1 + iα(x)γ5

]
ψ(x) =⇒ b′m = Cmnbn ,

λ′ψ(x) = λψ(x)
[
1 − iα(x)γ5

]
=⇒ β′

m = βmDmn ,

where C and D are the following functional matrices:

Cmn ≡ δmn + i

∫
dxα(x)φ†m(x)γ5φn(x) ,

Dmn ≡ δmn − i

∫
dxα(x)φ†m(x)γ5φn(x) .

(21)

Analogously we can consider the expansions of ψ̄(x) and λψ̄(x)

ψ̄(x) =
∑

m

φ†m(x)b̄m , λψ̄(x) =
∑

m

β̄mφm(x) .

Also in this case the chiral transformations of ψ̄ and λψ̄ differ by a sign. The chiral

transformations of the coefficients b̄ and β̄ can be easily derived and they involve
the usual matrices C and D of Eq. (21):

b̄′n =
∑

m

b̄mCmn , β̄′
m =

∑

n

Dmnβ̄n .

If we collect together all the results above we have that the functional measure of
the CPI can be rewritten as a product of ordinary integrals over the coefficients b,
b̄, β, β̄:

DψDψ̄DλψDλψ̄ =
∏

m

dbmdb̄mdβmdβ̄m .

Under a chiral transformation it transforms as follows:

Dψ′Dψ̄′Dλ′ψDλ
′
ψ̄

= J̃ · DψDψ̄DλψDλψ̄ , (22)

i.e. via a Jacobian J̃ which is given by: J̃ = [detC]−2 · [detD]−2. As we have seen
in the previous section the term [detC]−2 is just the Jacobian coming from the
chiral transformations of the quantum part of the functional measure. In addition
there appears also the term [detD]−2 which comes from the transformations of the
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auxiliary fields λ. The two matrices C and D are one the inverse of the other, in
fact:

(CD)nl =
∑

m

(
δnm + i

∫
dxα(x)φ†n(x)γ5φm(x)

)
·

·
(
δml − i

∫
dxα(x)φ†m(x)γ5φl(x)

)
= δnl +O(α2) .

This immediately means that J̃ = 1, which implies from (22) that the functional
measure DψDψ̄DλψDλψ̄ is invariant under chiral transformations. So we can say

that the contribution to the Jacobian J̃ coming from the functional measure over
the auxiliary fields DλψDλψ̄ compensates exactly the contribution to the Jacobian

coming from DψDψ̄ and it produces a cancellation of the quantum anomaly. Since a
similar argument holds for the functional measure DcψDcψ̄Dc̄ψDc̄ψ̄ we can conclude
that the entire CPI functional measure is invariant under chiral transformations and
no chiral anomaly arises.

What we would like to do next is to extend this analysis to the case of scale
anomaly both in quantum mechanical models and in field theories. In particular
we would like to understand whether the auxiliary fields of the CPI play also in
this case a role in cancelling the quantum scale anomaly and in restoring the scale
symmetry at the classical level.
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