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1 Introduction

X-ray, neutron, electron and γ-ray are useful direct probes for the structural
analyses in condensed systems. At finite temperature, the thermal factors are im-
portant parameters to improve the accuracy in the structure determination and to
reveal the structural dynamics of the system. Thermal factors in core spectroscopies
such as Extended X-ray absorption fine structure (EXAFS), Electron energy loss
spectra (EELS), and X-ray photoelectron diffraction (XPD) are important to study
local atomic structures around an excited atom where interference effects of excited
photoelectrons are used to obtain the structural information. They also provide
useful information about atomic vibrations.

Theoretical aspects of temperature dependence of EXAFS were first studied [1]
within the framework of harmonic vibration for nuclei motion and plane wave ap-
proximation for photoelectron waves. Since that time some improvements have
been found beyond the harmonic approximation [2–5] and the plane wave approx-
imation [6, 7]. When they include the anharmonic effects in EXAFS analyses,
perturbation theory has been applied by use of temperature Green’s function [3] or
thermal perturbation theory [8]. These perturbation approaches are useful to de-
scribe weak anharmonicity in the analyses of temperature effects in EXAFS, EELS,
XPD spectra, and they have provided interesting information based on cumulant
expansion.

On the other hand real space approach [9] has been used to relate the EXAFS
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thermal factors to interatomic potential, where the classical approximation is used.
This approach can be safely used in high temperature region even though the
anharmonicity is strong.

We have discussed a real space approach to study EXAFS thermal factor based
on the finite temperature path-integral method originally developed by Feynman
[10], later improved by Cuccoli et al. [11] and Feynman and Kleinert [12]. This
self-consistent approach can be applied to strongly anharmonic systems and can be
closely related to the classical formulas. We have studied the range of the applica-
bility of widely used cumulant analysis and of the classical approximation for the
EXAFS thermal factors [13–15]. These effective potential method by Yokoyama [16]
and Path-Integral Monte Carlo (PIMC) method by Fornasini and coworkers [17]
have been applied to EXAFS thermal analysis.

In this paper we apply the path integral effective potential method to one-
dimentional symmetric and asymmetric double-well potential systems in a reservoir
at temperature T . In PbTiO3, atomic pair distribution function is well approxi-
mated by double-well potential and it shows ”soft mode” behavior. Doll et al.
studied some thermodynamical properties of small clusters by use of Fourier Path
Integral analyses [18], in which atomic distribution function is also considered as
asymmetric double-well potential. In the filled skutterudites, PrOs4Sb12 is known
as 4f heavy fermion superconductor and shows an interesting rattling behavior
suggested by ultrasonic measurement [19] in which Pr ion is considered to be mov-
ing in the double-well potential in the cage of Sb12. We evaluate the cumulants,
Debye–Waller factor and thermal dumping function in EXAFS for the model sys-
tems. This approach can be easily applicable to study the thermal factors in other
spectroscopic methods as XRD, neutron diffraction, XPD, EELS and Mössbauer
spectroscopy.

Such an asymmetric double-well potential can be considered as a chemical reac-
tion models [20]. By use of the present path integral effective potential method [21,
22], we can calculate quantum tunneling correction to the simple unimolecule chem-
ical reaction path.

2 Theory

Here we show the outline of the theory for later discussion. Details are shown
in ref. [13]. Let consider diatomic systems in a reservoir whose relative vibrational
motion is described by the Hamiltonian,

H =
p2

2µ
+ V (q) , (1)

where µ is the reduced mass and q is the instantaneous interatomic distance. When
we deal with statistical average of an operator A, we should calculate the trace as
in eq. (2),

〈A〉 =
1

Z
Tr(Aρ) , (2)
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where ρ is the density operator defined by ρ = exp(−βH), β = 1/kBT and Z =
exp(−βF ) = Tr(ρ) is the partition function for the systems. The trace can be
calculated by applying Feynman’s path-integral techniques, however, instead of
summing over all paths in just one step, one can classify the paths into two groups
as proposed by Feynman [10]. One group consists of average (quasi classical) path
q̄ given by

q̄ =
1

β

∫ β

0

q(u)du , ~ = 1 (3)

and the other group consists of quantum fluctuation around q̄. The average path
is the same as the classical path in the high temperature limit (β → 0). To use the
non-perturbation method based on the path-integral techniques, we approximate
the instantaneous potential V (q(u)) by a trial potential quadratic in the fluctuation
path q − q̄, [10, 11],

V ∼= V0(q, q̄) = w(q̄) +
µω(q̄)2

2
(q − q̄)2 . (4)

Now the parameter w(q̄) and ω(q̄) are to be optimized so that the trial reduced
density P (q) well approximate the true reduced density. A variational approach
which gives the same result as the self-consistent approximation is also possible [10,
11]. Final expression for the average of a local operaor A can be represented in
terms of the probability density P (q) just like a classical statistical mecanichs (from
now on q is used instead of q̄ for brevity),

〈A〉 =

∫

A(q)P (q)dq . (5)

This expression, however, includes important quantum effects, and the probability
is represented by

P (q) =
1

Z

√

µ

2πβ
exp
[

−βVL(q)
]

, (6)

where local effective potential VL(q) is defined by

exp [−VL(q)] =

∫

dξ exp
[

−Ve(q + ξ)
] 1
√

2πα(q + ξ)
exp

[

−
ξ2

2α(q + ξ)

]

. (7)

Now we have used the relations

Ve(q)

ε
= w(q) +

1

β
ln

(

sinh f(q)

f(q)

)

, (8)

f(q) =
βω(q)

2
,

α(q) =
1

2µω(q)

(

coth f(q) −
1

f(q)

)

,

where ε is the energy scale. The local effective potential VL(q) is reduced to the
bare potential V (q) in the high temperature limit.
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In the EXAFS analyses the operator A should be exp(2ik∆α) where k is the
wave vector of ejected photoelectrons (k = |k|), and ∆α is the projected relative
displacement, which is simply given by ∆α = ∆q = q−q0 in one-dimentional cases;
q0 is the equilibrium interatomic distance. So that what we should calculate to
study EXAFS thermal factor is the thermal average including quantum fluctuation
given by

〈

exp(2ik∆q)
〉

=
1

Z

√

µ

2πβ

∫

exp(2ik∆q) exp[−βVL]dq . (9)

Any order of moments 〈qn〉 is also calculated by use of the local effective potential
VL(q)

〈qn〉 =
1

Z

√

µ

2πβ

∫

qn exp[−βVL(q)]dq . (10)

We now shifted the origin for the potential V (q) to be q0 = 0. This expression
shows that the widely used real space representation is obtained with some mod-
ification from the quantum fluctuation effects: the original interatomic potential
V (q) should be replaced by the local effective potential VL(q) which is temperature
dependent and tends to be V (q) at high temperature from physical consideration.
Though the discussion is only shown for the EXAFS thermal factors here, extension
to EELS and XPD thermal factors is straightforward [13].

3 Results and discussion

In this section the method described in the previous section is applied to an-
harmonic diatomic systems in double-well potentials given by

V (q)

ε
= (q2 − σ2)2 + cσ

(

q3

3
− σ2q

)

, (11)

where σ is the minima of the potential well and c is the measure of asymmetry of
the double-well potential: The strongly asymmetric potential is obtained for the
large c. This potential has the absolute minimum at q = ±σ irrespective of c. We
introduce a parameter g defined by

g =

√

~2v′′ (qmin)

µεσ2
. (12)

Small (large) g value gives rise to a weak (strong) quantum effect. By use of this
parameter g, we define a reduced temperature t by

t =

(

~
2v′′(qmin)

µgσ2kB

)

−1

T . (13)

In the present paper we use energy scale ε and length scale σ for Cu-O in high-
temperature superconductor YBa2Cu3O7−δ, [23, 24], which is a model for double-
well potential. Figure 1 shows the double-well potential for various c values for
σ = 0.1 Å. By use of the self-consistent method described in section 2, we obtain
f(q) as a function of q from which we calculate Ve(q) and P (q).
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Fig. 1. The double-well potential V (q)/ε = (q2 − σ2)2 + 1

3
cσq3 − σ2q, c = 0, 1, 2, 4.

σ = 0.1 Å and g = 5.0.

3.1 Temperature dependence of cumulants in EXAFS thermal factor

From eq. (7) and (10) we can evaluate the second, third, and forth order cumulants
〈. . . 〉c by use of the same and lower order moments,

〈q〉c = 〈q〉 ,

〈q2〉c = 〈q2〉 − 〈q〉2 ,

〈q3〉c = 〈q3〉 − 3〈q〉〈q2〉 + 2〈q〉3 ,

〈q4〉c = 〈q4〉 − 4〈q3〉〈q〉 − 3〈q2〉2 + 12〈q2〉〈q〉2 − 6〈q〉4 .

Figure 2 shows the second order cumulant 〈q2〉c as a function of temperature
for various double-well potentials, c = 0 (a), c = 1 (b), c = 2 (c), c = 4 (d).
The classical approximation gives good result at high temperature (T > 600K for
c = 0 (a), T > 200K for c = 1 (b), T > 300K for c = 2 (c), T > 500K for
c = 4 (d)). At low temperature, the classical probability density has a sharp peak
and the classical approximation gets poor. In particular, for a symmetric potential
(c = 0) the classical approximation gives two sharp peak at ±0.1 Å in the probability
density at T ∼ 0 K. Thus the classical second order cumulant 〈q2〉c approaches to
0.01 Å2 and gives the largest difference from the quantum result. The zero point
vibration energy depends on the ω (as E = 1

2
~ω) and the relation between ω and

the second order curvature at the bottom of deeper potential well is ω ∝ 1/v′′(qmin).
The quantum second order cumulant 〈q2〉c means zero point vibration at 0K. It
is expected that the larger the curvature v′′(qmin), the smaller the second order
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Fig. 2. The temperature dependence of the quantum and classical second order cumulant
〈q2〉c for four different double-well potentials; (a) c = 0, (b) c = 1, (c) c = 2, (d) c = 4.

cumulant 〈q2〉c. The value of 〈q2〉c at T = 1.52K (this is an example for low
temperature) is the smallest in the case that c = 4(〈q2〉c ≈ 0.00134 Å2), which
increases as the c value decreases, because higher potential well at q = −0.1 Å
becomes flat due to tunneling probability.

Figure 3 shows the third order cumulants 〈q3〉c as functions of temperature for
three different double-well potentials c = 1 (a), c = 2 (b), c = 4 (c). In the case
of the symmetric double-well potential (c = 0), both quantum and classical third
order cumulants vanish, 〈q3〉c = 0 irrespective of temperature, because both the
classical potential and quantum local effective potential VL(q) is symmetric: The
third order cumulant 〈q3〉c reflects asymmetry of the potential. In the case of c = 1
and c = 2, 〈q3〉c shows minimum (|〈q3〉c| is the largest) indicated by arrows at
∼ 100K (c = 1) and ∼ 550K (c = 2) in the quantum calculations. In higher
temperature region, the quantum local effective potential is reduced to the bare
potential V (q), so 〈q3〉c shows the same behavior at high temperature. We should
note that quantum and classical third order cumulants 〈q3〉c are nearly the same
for c = 4, because the quantum tunneling probability is expected to be quite small.
This characteristic temperature at minimum of the third order cumulant shifts to
higher when c increases. If we observe the minimum in temperature dependence
of the third-order cumulant for certain atomic pair, it shows that the double-well
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Fig. 3. The temperature dependence of the quantum (solid line) and classical (dashed
line) third order cumulant 〈q3〉c for three different double-well potential; (a) c = 1, (b)

c = 2, (c) c = 4. The arrows indicate the minimum points, Tm.

potential is asymmetrical and we can estimate the potential shape (or c-value) of
the potential from that minimum temperature. Similar phenomenon is observed in
the fourth order cumulant 〈q4〉c (in this case, maximmum point) discussed later.

3.2 EXAFS thermal damping function

In this section, we discuss EXAFS thermal damping function G(k) defined by [13]

G(k) =
〈

exp(2ikq)
〉

=

∫

∞

−∞

exp(2ikq)P (q)dq . (14)

This function can be written in the cumulant expansion as far as that expansion
converges. Actually it rapidly converges in weak anharmonic systems;

G(k) = exp
{

−2k2〈q2〉c + 2

3
k4〈q4〉c − . . .

}

× exp
{

i
(

k〈q〉c −
4

3
k3〈q3〉c + . . .

)}

. (15)

Equation (14) can be applied to any strongly anharmonic systems, whereas eq.
(15) can be only applied to weak anharmonic systems. Now we separately calculate
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Fig. 4. The amplitude |G(k)| (a), the phase φ(k) (b), and complex plane expression
(Gx, Gy) (c) in the thermal damping function G(k) of EXAFS at temperature 15.2 K for

three different potentials. The black and white dots is plotted at 2 Å−1 intervals.

|G(k)| and phase φ(k)

|G(k)| =

√

(
∫

∞

−∞

cos(2kq)P (q)dq

)2

+

(
∫

∞

−∞

sin(2kq)P (q)dq

)2

≈ exp
{

−2k2〈q2〉c + 2

3
k4〈q4〉c − . . .

}

, (16)

φ(k) = tan−1

(
∫

∞

−∞
sin(2kq)P (q)dq

∫

∞

−∞
cos(2kq)P (q)dq

)

≈ k〈q〉c −
4

3
k3〈q3〉c . . . . (17)

We also use another form to study specific features in |G(k)| and φ(k) from different
point of view,

(Gx, Gy) = (Re G, Im G) . (18)

The strength |G(k)| dominates the envelop of EXAFS oscillation function χ(k), and
the phase φ(k) appears in sinusoidal function of χ(k). The trajectories of (Gx, Gy)
on the complex plane contains useful information on the thermal factor G(k).

Figures 4 and 5 show the amplitude (a) |G(k)|, (b) the phase φ(k), and (c)
(Gx, Gy) on the complex plane for three potentials T = 15.2K (Fig. 4), 1520K
(Fig. 5). For symmetric potential c = 0, G(k) has to be real and the point (Gx, Gy)
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Fig. 5. The amplitude |G(k)| (a), the phase φ(k) (b), and complex plane expression
(Gx, Gy) (c) in thermal damping function G(k) of EXAFS at temperature 1520 K for
three different potentials. The arrows A and B are the position where the ”beat” is

observed. The black and white dots is plotted at 2 Å−1 intervals.

in the complex plane oscillates just on real axes which is not plotted here. At low
temperature T = 15.2K (Fig. 4), as c increases, |G(k)| weakly dumps because
of the small tunneling probability. The phase φ(k) for both c = 1 and 4 show
monotonically increasing function of k. In the complex plane, the trajectry for
c = 4 is far from real axis in comparison with that for c = 1 for asymmetric
potential. If potential is symmetric, the trajectory is close to real axis. This means
that the trajectory on complex plane can be an indicator of the asymmetricity of
the atomic pair potential.

At high temperature T = 1520K (Fig. 5), the amplitude |G(k)| shows ”beat”
for c = 0, 1 and 4 at 8 Å−1 (arrow A in Fig. 5). The beat can be related to the
small difference in the atomic distances [25]

2k∆r = (2n + 1)π , n = 0, 1, 2, . . . , (19)

where ∆r is the small difference in the interatomic distances. In the present double-
well system ∆r = 0.2 Å, so that the beat is expected at k ∼= 8.0 Å−1, which is
consistent with our result at 1520K, where the quantum tunneling effect can be
neglected. We also observe the beat for c = 4 but it is not so pronounced. The
phase for c = 1 shows steps at 8 Å−1 (arrow A) and 17 Å−1 (arrow B), where the
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Fig. 6. The intensity |G(k)| (a) and phase φ(k) (b) and complex plane expression (c)
of thermal EXAFS damping function G(k) for the quantum (solid line) and the classical
(dashed line) approaches at T = 15.2 K. The cumulant expansion up to fourth order

(dash–dotted line) is also presented.

jump is about π. The beat is more remarkable at high temperature than at low
temperature. In Fig. 5(c), we plot (Gx, Gy) near the real axis for c = 1; because
P (q) is a symmetric function, we see that Gy 6= 0. The phase of G(k) rapidly
changes near at 8 Å−1 (arrow A) and 17 Å−1 (arrow B) where the beat is observed.
The characteristic feature in Fig. 5 (a) and (b) are understood from the trajectory
of (Gx, Gy) for the quantum calculation. From 2 Å−1 to 10 Å−1 it is nearly on the
straight line which • crosses the imaginary axis at 8 Å−1 almost parallel to the real
axis. So that we find |G(k)|min at ∼ 8 Å−1. From 12 Å−1 to 20 Å−1 the trajectory
is again on a straight line quite close to the origin, which gives small |G(k)| as
observed in Fig. 5 (a) wheras gives large change in φ(k) (see Fig. 5 (b)).

Next, we discuss the validity of the classical approximation and the cumulant
expansion of the damping function G(k). Figure 6 shows (a) the amplitude |G(k)|,
(b) phase φ(k) and (c) complex plane expression of the thermal damping function
for the quantum path-integral (solid line) and the classical (dashed line) calculations
at T = 15.2K for c = 1. The cumulant expansion up to fourth order (dash–dotted
line) is also shown. As the classical approximation is poor at low temperature,
the amplitude |G(k)| in the classical approximation really gives a poor agreement
with the quantum path-integral calculation because the probability density P (q) is
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Fig. 7. The amplitude |G(k)| (a) and phase φ(k) (b) and complex plane expression (c) in
thermal damping function G(k) of EXAFS for the quantum (solid line) and the classical
(dashed line) calculations at T = 1520 K. The cumulant expansion up to fourth order

(dotted line) is also shown.

strongly affected by tunneling. On the other hands, the cumulant expansion gives
good agreement with the quantum path-integral calculation. The quantum path-
integral calculation for the phase φ(k) monotonically increases, and the classical
result is similar to the quantum result, but is a little larger. On the other hand,
the cumulant expansion is quite good up to k = 12 Å−1, whereas gets a little
poor above 12 Å−1. In the complex plane expression (c), the trajectory for the
classical approximation is similarly expanded from the trajectory for the quantum
path-integral approach. This is reason why they show similar behavior in φ(k)
but different behavior in |G(k)|. The trajectory for the cumulant approximation is
quite close to the quantum trajectory, which gives rise to the nearly same |G(k)|,
whereas G(k) moves more rapidly for the cumulant approximation, in particular at
large k, than for the quantum method which results in the large difference of φ(k).
In contrast to the quantum calculation, the classical calculation gives a trajectory
whose part from 7 Å−1 to 10 Å−1 • is nearly on a circle around the origin: This
gives |G(k)| ∼const. in that region.

Figure 7 shows (a) the amplitude |G(k)|, (b) phase φ(k) and (c) complex plane
expression in the thermal damping function of EXAFS for the quantum path-
integral (solid line) and the classical (dashed line) calculation at T = 1520K for
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Fig. 8. The schematic model double-well potentials for the chemical reaction expressed
by eq. (20)

c = 1. The cumulant expansion up to fourth order (dotted line) is also shown. At
such high temperature, the bare potential and the local effective potential is almost
the same and the classical approximation gives a good result in |G(k)|, and φ(k).
The cumulant expansion up to fourth order cannot predict the observed ”beat”.

3.3 Application to chemical reaction rate

In this subsection we apply the path integral effective potential method to study
quantum tunneling effects in chemical reaction process. Figure 8 shows schemati-
cally the double-well potential for a chemical reaction, where the reaction is assumed
as

A · · ·B − C
k1−→ A − B · · ·C , (20)

where k1 is the reaction rate constant for this reaction. We assumed that B atom
moves in the double-well potential, whereas A and C atoms are fixed at the left
and right hand sides of the potential (see Fig. 8). A chemical bond B–C is formed
when the atom B is in the right well of the potential. On the other hand, the bond
A-B formed if the atom B moves to the left well. Figure 9 shows model potentials
used for the present calculations with same potential barrier at q = 0 for various
c-values (g-values are adjusted). We assume that k1 is expressed equation as,

k1 = C exp

(

−
Ea

kBT

)

, (21)

where C is a frequency constant and Ea is an activation energy of the reaction
which is equivalent to the potential barrier from the lower well (q = 0.1 Å). Figure
10 shows the Arrhenius plot of log k1 as a function of 1/T . We calculate these
values of log k1 vs. 1/T , where the activation energy Ea is replaced by the effective
potential barrier of the local effective potential expressed by eq.(7) as same manner
as described in ref. [21]. Therefore these plots contain the quantum tunneling
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Fig. 9. The model double-well potentials for the chemical reaction coordinate for c = 0
(g = 1.74), c = 0.5 (g = 2.15), c = 1 (g = 2.61), c = 2 (g = 3.38), c = 4 (g = 5.69). The

barrier is kept constant for various c-values.

effect in the chemical reaction shown by eq.(20). Dotted straight line shows the
classical limit where the effective potential is same as bare potential. That is, Ea

is the potential barrier and it does not depend on c-values. Other curves deviated
from the classical straight line show the tunneling behaviors. The tunneling effect
is stronger for smaller c-value (more symmetric potential). We should note that
the tunneling effect is different even for the same potential barrier (or Ea). The
tunneling probability is quite sensitive to the hight of the potential well of the
chemical product side. It is another interesting point that the result of c = 4
(strongly asymmetric single-well potential) is quite close to that in case of Morse
type potential discussed previously [21].

The present result shown in Fig. 10 can be considered as the model for the
reaction as

(p−)H2 + H → H + (o−)H2 , (22)

where atoms A, B and C are replaced as H (hydrogen) atoms [26]. In the previous
study [26] experimental result was compared to the theoretical result calculated
using the Eckart potential as the tunneling model. The present path integral results
reproduce such a behavior well.
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Fig. 10. The Arrhenius plot for the model double-well potentials for c = 0 (g = 1.74),
c = 0.5 (g = 2.15), c = 1 (g = 2.61), c = 2 (g = 3.38), c = 2 (g = 5.69). The dashed

straight line is classical result.

4 Conclusion

The real space method based on finite temperature path integral theory has
been applied to the EXAFS thermal factors for strongly anharmonic systems. The
path integral calculation shows quite different distribution function P (q) from the
classical one, in particular, for c = 0, (the symmetric double-well potential). It has
a peak at q = 0 Å because of tunneling effect through the potential barrier. The
asymmetric potentials give rise to peak shift from the potential bottom.

The two characteristic features are observed for the asymmetric double well
potential:

(1) The amplitude of EXAFS damping function |G(k)| shows ”beat” in the case
of the double-well potential. We can estimate the distance between the two
bottoms of potential from the wave number at the ”beat”.

(2) In the temperature dependence of third (fourth) order cumulants, there is
minimum (maximum) point (Tm) which is characteristic for the double-well
potential and reflects the asymmetric potential shape.

The asymmetric double-well potential is applied to chemical reaction coordinate
for the simple unimolecule reaction system. The path integral effective potential
method well reproduces the behavior of the quantum tunneling effect.
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