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Abstract

Within the framework of Bianchi type-I (BI) space-time we study
the Bel-Robinson tensor and its impact on the evolution of the Uni-
verse. We use different definitions of the Bel-Robinson tensor existing
in the literature and compare the results.
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1 Introduction

The quantum field theory in curved space-time has been a matter of great
interest in recent years because of its applications to cosmology and astro-
physics. The evidence of the existence of strong gravitational fields in our

∗Email: saha@thsun1.jinr.ru
†Email: mvisin@theory.nipne.ro



Bianchi type I universe 519

Universe led to the study of the quantum effects of material fields in exter-
nal classical gravitational field. Since the appearance of Parker’s paper on
scalar fields [1] and spin-1

2
fields [2], several authors have studied this sub-

ject. The present cosmology is based largely on Friedmann’s solutions of the
Einstein equations, which describe the completely uniform and isotropic uni-
verse (“closed” and “open” models, i.e., bounded or unbounded universe).
The main feature of these solutions is their nonstationarity. The idea of an
expanding Universe, following from this property, is confirmed by the astro-
nomical observations and it is now safe to assume that the isotropic model
provides, in its general features, an adequate description of the present state
of the Universe. Although the Universe seems homogeneous and isotropic
at present, it does not necessarily mean that it is also suitable for a de-
scription of the early stages of the development of the Universe and there
are no observational data guaranteeing the isotropy in the era prior to the
recombination. In fact, there are theoretical arguments that support the
existence of an anisotropic phase that approaches an isotropic one [3]. In-
terest in studying Klein-Gordon and Dirac equations in anisotropic models
has increased since Hu and Parker [4] have shown that the creation of scalar
particles in anisotropic backgrounds can dissipate the anisotropy as the Uni-
verse expands.

2 The gravitational field

A Bianchi type-I (BI) universe, being the straightforward generalization of
the flat Robertson-Walker (RW) universe, is one of the simplest models of
an anisotropic universe that describes a homogeneous and spatially flat uni-
verse. Unlike the RW universe, which has the same scale factor for each
of the three spatial directions, a BI universe has a different scale factor in
each direction, thereby introducing an anisotropy to the system. It moreover
has the agreeable property that near the singularity it behaves like a Kasner
universe, even in the presence of matter, and consequently falls within the
general analysis of the singularity given by Belinskii et al. [5]. Also in a
universe filled with matter for p = ζ ε, ζ < 1, it has been shown that any
initial anisotropy in a BI universe quickly dies away and a BI universe eventu-
ally evolves into a Friedmann-RW (FRW) universe [6]. Since the present-day
universe is surprisingly isotropic, this feature of the BI universe makes it a
prime candidate for studying the possible effects of an anisotropy in the early
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universe on present-day observations. In light of the importance mentioned
above, several authors have studied BI universe from different aspects.

A diagonal Bianchi type-I space-time (hereafter BI) is a spatially homo-
geneous space-time, which admits an Abelian group G3, acting on spacelike
hypersurfaces, generated by the spacelike Killing vectors x1 = ∂1, x2 = ∂2,
and x3 = ∂3. In synchronous coordinates, the metric is [7, 8]:

ds2 = dt2 −
3

∑

i=1

a2

i (t)dx2

i . (2.1)

If the three scale factors are equal (i.e., a1 = a2 = a3), Eq. (2.1) describes
an isotropic and spatially flat Friedmann-Robertson-Walker (FRW) universe.
The BI universe has a different scale factor in each direction, thereby intro-
ducing an anisotropy to the system. Thus, a Bianchi type-I (BI) universe,
being the straightforward generalization of the flat FRW universe, is one
of the simplest models of an anisotropic universe that describes a homoge-
neous and spatially flat universe. When two of the metric functions are equal
(e.g., a2 = a3) the BI space-time is reduced to the important class of plane
symmetric space-time (a special class of the locally rotational symmetric
space-times [9, 10]), which admits a G4 group of isometries acting multiply
transitively on the spacelike hypersurfaces of homogeneity generated by the
vectors x1, x2, x3, and x4 = x2∂3−x3∂2. The BI has the agreeable property
that near the singularity it behaves like a Kasner universe, given by

a1(t) = a0

1
tp1 , a2(t) = a0

2
tp2 , a3(t) = a0

3
tp3 , (2.2)

with pj being the parameters of the BI space-time which measure the relative
anisotropy between any two asymmetry axes and satisfy the constraints

p1 + p2 + p3 = 1,

p2

1
+ p2

2
+ p2

3
= 1. (2.3)

Thus out of three parameters, only one is arbitrary. One particular choice
of parametrization is

p1 =
−p

p2 + p + 1
,

p2 =
p(p + 1)

p2 + p + 1
, (2.4)

p3 =
p + 1

p2 + p + 1
.
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The condition 0 ≤ p ≤ 1 on p then yields the condition −1

3
≤ p1 ≤

0, 0 ≤ p2 ≤ 2

3
, 2

3
≤ p3 ≤ 1. Another particular parametrization can

be given using an angle on the unit circle, since Eqs. (2.3) describe the
intersection of a sphere with a plane in the parameter space (p1, p2, p3):

p1 =
1

3
(1 + cosϑ +

√
3sinϑ),

p2 =
1

3
(1 + cosϑ −

√
3sinϑ), (2.5)

p3 =
1

3
(1 − 2cosϑ).

Although ϑ ranges over the unit circle, the labeling of each pj is quite
arbitrary. Thus the unit circle can be divided into six equal parts, each of
which span 60◦, and the choice of pj is unique within each section separately.
For ϑ = 0, p1 = p2 = 2

3
and p3 = −1

3
while for ϑ = π/3, p1 = 1 and

p2 = p3 = 0.
Further we write the BI metric in the form:

ds2 = dt2 − a2dx2 − b2dy2 − c2dz2, (2.6)

with a, b, c being the functions of time t only. Here the speed of light is
taken to be unity.

The metric (2.6) has the following non-trivial Christoffel symbols

Γ1

10
=

ȧ

a
, Γ2

20
=

ḃ

b
, Γ3

30
=

ċ

c

Γ0

11
= aȧ, Γ0

22
= bḃ, Γ0

33
= cċ. (2.7)

The nontrivial components of the Ricci tensors are

R0

0
= −

( ä

a
+

b̈

b
+

c̈

c

)

,

R1

1
= −

[ ä

a
+

ȧ

a

( ḃ

b
+

c̈

c

)]

,

R2

2
= −

[ b̈

b
+

ḃ

b

( ċ

c
+

ä

a

)]

, (2.8)

R3

3
= −

[ c̈

c
+

ċ

c

( ȧ

a
+

b̈

b

)]

.
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From (2.8) one finds the following Ricci scalar for the BI universe

R = −2
( ä

a
+

b̈

b
+

c̈

c
+

ȧ

a

ḃ

b
+

ḃ

b

ċ

c
+

ċ

c

ȧ

a

)

. (2.9)

The non-trivial components of Riemann tensors in this case read

R01

01
= − ä

a
, R02

02
= − b̈

b
, R03

03
= − c̈

c
,

R12

12
= − ȧ

a

ḃ

b
, R23

23
= − ḃ

b

ċ

c
, R31

31
= − ċ

c

ȧ

a
. (2.10)

Now having all the non-trivial components of Ricci and Riemann tensors,
one can easily write the invariants of gravitational field which we need to
study the space-time singularity. We return to this study at the end of this
section.

3 Einstein equations and their solutions

In this section we study the Einstein equation. In doing so let us first write
the Einstein equation for the BI metric governing the evolution of the Uni-
verse. In presence of a cosmological constant Λ the Einstein equation has
the form

b̈

b
+

c̈

c
+

ḃ

b

ċ

c
= κT 1

1
+ Λ,

c̈

c
+

ä

a
+

ċ

c

ȧ

a
= κT 2

2
+ Λ,

ä

a
+

b̈

b
+

ȧ

a

ḃ

b
= κT 3

3
+ Λ, (3.11)

ȧ

a

ḃ

b
+

ḃ

b

ċ

c
+

ċ

c

ȧ

a
= κT 0

0
+ Λ.

Here over-dot means differentiation with respect to t and T ν
µ is the energy-

momentum tensor of the matter field which we choose in the form:

T ν
µ = (ε + p)uµu

ν − pδν
µ, (3.12)

where uµ is the flow vector satisfying

gµνu
µuν = 1. (3.13)
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Here ε is the total energy density of a perfect fluid and/or dark energy density,
while p is the corresponding pressure. p and ε are related by an equation
of state which will be studied below in detail. In a co-moving system of
coordinates from (3.12) one finds

T 0

0
= ε, T 1

1
= T 2

2
= T 3

3
= −p. (3.14)

In view of (3.14) from (3.11) one immediately obtains [11]

a(t) = D1τ
1/3 exp[X1

∫ dt

τ(t)
],

b(t) = D2τ
1/3 exp[X2

∫ dt

τ(t)
], (3.15)

c(t) = D3τ
1/3 exp[X3

∫ dt

τ(t)
].

Here Di and Xi are some arbitrary constants obeying

D1D2D3 = 1, X1 + X2 + X3 = 0,

and τ is a function of t defined to be

τ = abc. (3.16)

From (3.11) for τ one find

τ̈

τ
=

3κ

2
(ε − p) + 3Λ. (3.17)

On the other hand the conservation law for the energy-momentum tensor
gives

ε̇ = − τ̇

τ
(ε + p). (3.18)

After a little manipulations from (3.17) and (3.18) we find

τ̇ 2 = 3(κε + Λ)τ 2 + C1, (3.19)

with C1 being an arbitrary constant. Let us now, in analogy with Hubble
constant, define

τ̇

τ
=

ȧ

a
+

ḃ

b
+

ċ

c
= 3H. (3.20)



524 Bijan Saha, Victor Rikhvitsky, Mihai Visinescu

On account of (3.20) from (3.19) one derives

κε = 3H2 − Λ − C1/(3τ
2). (3.21)

It should be noted that the energy density of the Universe is a positive
quantity. It is believed that at the early stage of evolution when the volume
scale τ was close to zero, the energy density of the Universe was infinitely
large. On the other hand with the expansion of the Universe, i.e., with
the increase of τ , the energy density ε decreases and an infinitely large τ
corresponds to a ε close to zero. Say at some stage of evolution ε is too small
to be ignored. In that case from (3.21) follows

3H2 − Λ → 0. (3.22)

As it is seen from (3.22) in this case Λ is essentially non-negative. We can
also conclude from (3.22) that in absence of a Λ term beginning from some
value of τ the evolution of the Universe comes stand-still, i.e., τ becomes
constant, since H becomes trivial, whereas in case of a positive Λ the process
of evolution of the Universe never comes to a halt. Moreover it is believed
that the presence of the dark energy (which can be explained with a positive
Λ as well) results in the accelerated expansion of the Universe. As far as
negative Λ is concerned, its presence imposes some restriction on ε, namely,
ε can never be small enough to be ignored. In case of the perfect fluid given
by p = ζε there exists some upper limit for τ as well (note that τ is essentially
nonnegative, i.e. bound from below). In our previous papers we came to the
same conclusion [11, 12] [with a positive Λ which in the present paper appears
to be negative]. A suitable choice of parameters in this case may give rise to
an oscillatory mode of expansion, whereas in case of a Van der Waals fluid
the highly nonlinear equation of state may result in an exponential expansion
as well.

Inserting (3.20) and (3.21) into (3.17) one now finds

Ḣ = −1

2
(3H2 − Λ +

C1

3τ 2
+ κp) = −κ

2
(ε + p) − C1

3τ 2
. (3.23)

In view of (3.21) from (3.23) follows that if the perfect fluid is given by a
stiff matter where p = ε, the corresponding solution does not depend on the
constant C1.

Let us now go back to the Eq. (3.19). It is in fact the first integral of
(3.17) and can be written as

τ̇ = ±
√

C1 + 3(κε + Λ)τ 2 (3.24)
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On the other hand, rewriting (3.18) in the form

ε̇

ε + p
=

τ̇

τ
, (3.25)

and taking into account that p is a function of ε, one concludes that the right
hand side of the Eq. (3.17) is a function of τ only, i.e.,

τ̈ =
3κ

2
(ε − p)τ + 3Λτ = F(τ). (3.26)

From a mechanical point of view Eq. (3.26) can be interpreted as an
equation of motion of a single particle with unit mass under the force F(τ).
Then the following first integral exists [12]:

τ̇ =
√

2[E − U(τ)] . (3.27)

Here E can be viewed as energy and U(τ) is the potential of the force F .
Comparing the Eqs. (3.24) and (3.27) one finds E = C1/2 and

U(τ) = −3

2
(κε + Λ)τ 2. (3.28)

Let us finally write the solution to the Eq. (3.17) in quadrature:

∫ dτ
√

C1 + 3(κε + Λ)τ 2

= t + t0, (3.29)

where the integration constant t0 can be taken to be zero, since it only gives
a shift in time. The Eqs. (3.17) and (3.18) for perfect fluid obeying different
equations of state has been thoroughly studied by us [11, 12].

4 Bel-Robinson tensors

Bel-Robinson tensor (B) first appeared in the endless search for a covariant
version of gravitational energy; the analogy with the Maxwell stress ten-
sor Tµν = FµαFα

ν + ∗Fµα ∗ Fα
ν . The Bel-Robinson tensor is defined in two

alternative ways [13]

Bµναβ = Rρ σ
µ αRρνσβ + ∗Rρ σ

µ α ∗ Rρνσβ, (4.30)



526 Bijan Saha, Victor Rikhvitsky, Mihai Visinescu

or equivalently

Bµναβ = Rρ σ
µ αRρνσβ + Rρ σ

µ βRρνσα − 1

2
gµνR

ρστ
α Rβρστ . (4.31)

Here the dual curvature is ∗Rµν
λσ ≡ (1/2) ǫµν

αβRαβ
λσ. The Bel-Robinson

tensor has the following symmetry properties:

Bµναβ = Bνµαβ,

Bµναβ = Bµνβα, (4.32)

Bµναβ = Bαβµν .

The symmetry property leads to the fact that that in n-dimensional case
there are n(n+1)[n(n+1)+2]/8 independent components of the Bel-Robinson
tensor. In case of n = 4 out of 256 components only 55 are linearly inde-
pendent. The properties (4.32) and (4.32) follow immediately from (4.30)
thanks to the symmetry property of Riemann tensor. The property (4.33) is
strait forward from (4.30), but for (4.31) it requires

gµνR
ρστ

α Rβρστ = gαβR ρστ
µ Rνρστ . (4.33)

Inserting (2.10) into (4.33) we obtain following additional relations:

(

b̈

b

)2

+
(

c̈

c

)2

=
(

ȧ

a

)2[(

ḃ

b

)2

+
(

ċ

c

)2]

,

(

c̈

c

)2

+
(

ä

a

)2

=
(

ḃ

b

)2[(

ċ

c

)2

+
(

ȧ

a

)2]

,

(

ä

a

)2

+
(

b̈

b

)2

=
(

ċ

c

)2[(

ȧ

a

)2

+
(

ḃ

b

)2]

,

(

ä

a

)2

−
(

b̈

b

)2

= −
(

ċ

c

)2[(

ȧ

a

)2

−
(

ḃ

b

)2]

, (4.34)

(

c̈

c

)2

−
(

ä

a

)2

= −
(

ḃ

b

)2[(

ċ

c

)2

−
(

ȧ

a

)2]

,

(

b̈

b

)2

−
(

c̈

c

)2

= −
(

ȧ

a

)2[(

ḃ

b

)2

−
(

ċ

c

)2]

.

As one can easily find, among the six constrains in (4.34) only three are
linearly independent. After a little manipulations with them finally obtains
the following relations between the metric functions:

ä

a
=

ḃ

b

ċ

c
,

b̈

b
=

ċ

c

ȧ

a
,

c̈

c
=

ȧ

a

ḃ

b
. (4.35)
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As one sees, in account of (4.35) the Einstein equation (3.11) leads to
T 0

0
= T 1

1
= T 2

2
= T 3

3
, which can be realized only when the source field

satisfies the following equation of state:

p = −ε. (4.36)

It is well known that only vacuum satisfies the state of equation given by
(4.36). Thus we see that if we are to define Bel-Robinson tensor given by
(4.30) or (4.31) we should deal with the Einstein equations with the source
field given by a vacuum.

It is due to the fact that in defining the Bel-Robinson tensor we used the
dual term with the duality operator acting on the left pair only. To avoid
this restrictions the Be–Robinson tensor can be defined by [14]

2Bµναβ = Rρ σ
µ αRρνσβ + ∗Rρ σ

µ α ∗ Rρνσβ

+R ∗ρ σ
µ α R ∗ρνσβ + ∗ R ∗ρ σ

µ α ∗R∗ρνσβ, (4.37)

where the duality operator acts on the left or on the right pair of indices
according to its position. From (4.37) one easily finds

Bµναβ = Rρ σ
µ αRρνσβ + Rρ σ

µ βRρνσα − 1

2
gµνR

ρστ
α Rβρστ

− 1

2
gαβR ρστ

µ Rνρστ +
1

8
gµνgαβRρστηRρστη. (4.38)

Under the new definition the symmetry properties (4.32),(4.32) and (4.33)
follow immediately, without any restriction to the metric functions.

Let us now write the non-trivial components of the Bel-Robinson tensor
for the BI metric. In view of (2.10) we now find

B0000 =
1

2

{

ä2

a2
+

b̈2

b2
+

c̈2

c2
+

ȧ2

a2

ḃ2

b2
+

ḃ2

b2

ċ2

c2
+

ċ2

c2

ȧ2

a2

}

,

B1111 =
a2

2

{

ä2 + ȧ2

(

ḃ2

b2
+

ċ2

c2

)

+ a2

(

b̈2

b2
+

c̈2

c2
+

ḃ2

b2

ċ2

c2

)}

,

B2222 =
b2

2

{

b̈2 + ḃ2

(

ċ2

c2
+

ȧ2

a2

)

+ b2

(

c̈2

c2
+

ä2

a2
+

ċ2

c2

ȧ2

a2

)}

,

B3333 =
c2

2

{

c̈2 + ċ2

(

ȧ2

a2
+

ḃ2

b2

)

+ c2

(

ä2

a2
+

b̈2

b2
+

ȧ2

a2

ḃ2

b2

)}

,
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B0101 = −aȧ
{

ḃ

b

b̈

b
+

ċ

c

c̈

c

}

,

B0202 = −bḃ
{

ċ

c

c̈

c
+

ȧ

a

ä

a

}

,

B0303 = −cċ
{

ȧ

a

ä

a
+

ḃ

b

b̈

b

}

,

B1212 = ab
{

äb̈ + ȧḃ
ċ2

c2

}

, (4.39)

B2323 = bc
{

b̈c̈ + ḃċ
ȧ2

a2

}

,

B3131 = ca
{

c̈ä + ċȧ
ḃ2

b2

}

,

B0011 =
1

2

{

−ä2 + ȧ2

(

ḃ2

b2
+

ċ2

c2

)

+ a2

(

b̈2

b2
+

c̈2

c2
− ḃ2

b2

c̈2

c2

)}

,

B0022 =
1

2

{

−b̈2 + ḃ2

(

ċ2

c2
+

ȧ2

a2

)

+ b2

(

c̈2

c2
+

ä2

a2
− ċ2

c2

ä2

a2

)}

,

B0033 =
1

2

{

−c̈2 + ċ2

(

ȧ2

a2
+

ḃ2

b2

)

+ c2

(

ä2

a2
+

b̈2

b2
− ȧ2

a2

b̈2

b2

)}

,

B1122 =
1

2

{

ȧ2ḃ2 − ä2b2 − a2b̈2 − ċ2

c2
(ȧ2b2 + a2ḃ2) + a2b2

ċ2

c2

}

,

B3311 =
1

2

{

ċ2ȧ2 − c̈2a2 − c2ä2 − ḃ2

b2
(ċ2a2 + c2ȧ2) + c2a2

ḃ2

b2

}

,

B2233 =
1

2

{

ḃ2ċ2 − b̈2c2 − b2c̈2 − ȧ2

a2
(ḃ2c2 + b2ċ2) + b2c2

ȧ2

a2

}

,

Thus we obtained the non-trivial components of the Bel-Robinson tensor
for the anisotropic BI metric.

5 Conclusions

In view of the importance of the BI model in the study of the present day
Universe we considered the most simple model with a perfect fluid as a source
field. The corresponding solutions to the Einstein equations have been ob-
tained. Two alternative definitions of Bel-Robinson tensor are considered.
It is shown that one of the definitions imposes some restriction on the met-
ric functions. In particular this definition is consistent with the Einstein
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equations when the source field is given by a vacuum only.
Finally we mention that it is desirable to investigate the so called ”domi-

nant super-energy property” for the Bel-Robinson tensor as a generalization
of the usual dominant energy condition for energy momentum tensors. In
general it is considered that the energy condition rules out exotic phenomena
like closed timelike curves, superluminal signals, etc. The investigation of the
energy condition for the model discussed in this paper will be the subject of
forthcoming work [15].
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