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Abstract. Self-consistent system of spinor, scalar and Bl gravitational fields is
considered. Exact solutions to the field equations in terms of volume scale of the
Bl metric are obtained. Einstein field equations in account of the cosmological
constantA and perfect fluid are studied. Oscillatory mode of expansion of the
universe is obtained. It is shown that for the interaction term being a power
function of the invariants of bilinear spinor forms and> 0 and given other
parameterse.g, coupling constant, spinor massgc, there exists a finite range

of integration constant which generates oscillatory mode of evolution.

1. Introduction

The discovery of the cosmic microwave radiation has stimulated a growing interest in
anisotropic, general-relativistic cosmological models of the universe. The choice of anisot-
ropic cosmological models in the system of Einstein field equation enable us to study
the early day universe, which had an anisotropic phase that approaches an isotropic
one [1]. BI universe is the simplest model of an anisotropic universe and eventually
evolves into a Freidmann-Robertson-Walker (FRW) universe [2], if filled with matter
obeyingp = (e, (¢ < 1, wheree andp are the energy and pressure of the material
field, respectively. Since the present-day universe is surprisingly isotropic, this feature
of the Bl Universe makes it a prime candidate for studying the possible effects of an
anisotropy in the early universe on present-day observations.

In this paper we study the self-consistent system of spinor, scalar and Bl gravitational
fields in presence of perfect fluid. Solutions of Einstein equations coupled to a spinor and
a scalar fields in Bl spaces have been extensively studied by Saha and Shikin [3]-[6].
In those papers, the field equations were solved qualitatively. In this report, we consider
some key equations occurred in those papers. Initial value problem has been posed for
those equations and solved numerically. Application of numerical methods enables us to
view this problem from totally different angle and gives rise to some interesting results
previously unknown.
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2. Fundamental Equations and General Solutions

The action of the nonlinear spinor, scalar and gravitational fields can be written as

S(g; v, ) = /(R+L)¢jgd9, (@)

whereR is the Ricci scalar and is the spinor and scalar field Lagrangian density chosen
in the form [3]

AW - o
L= % PV — VM/W"?/}} — myp + §¢,a@’a(1 + AF). )

Here\ is the coupling constant anfd is some arbitrary functions of invariants generated
from the real bilinear forms of a spinor field. We chodseo be the function of = 52 =
(Y)? andJ = P? = (iyy°y)?,i.e, F = F(I,J), that describes the nonlinearity in the
most general of its form [5]. As one sees, for= 0 we have the system with minimal
coupling.

The gravitational field in our case is given by a Bianchi type | (Bl) metric in the form

ds? = a}(da®)? — a3(da")? — a3(da?)? — a3(da®)?, 3)

with ap = 1, 2° = ¢t andc = 1. The metric functions; (i = 1,2, 3) are the functions
of timet only. B

Variation of (1) with respect to spinor field (1)) gives nonlinear spinor field equa-
tions

V'V ) — map + DY + Gin®yp =0, (4a)
iV 0" 4+ my — DY — Giy® =0, (4b)
where we denote
D =ASpop*0F/0I, G = APy 0 *0F/0J,
whereas, variation of (1) with respect to scalar field yields the following scalar field equa-
tion

= (Va1 AP)e,) < ©)

Varying (1) with respect to metric tensgy,, one finds the gravitational field equation
which in account of cosmological constahthas the form

a9 as Qs as 1
24223 g5l - A, (6a)
az as a2 as
as ai as ai 2
2 2T 5T A, (6b)
a3 ai as a1
a1 as a1 as
—+—+——:HT§’—A
a1 a2 ay a2
a1 Qo as as as ai
— =24 2= 2= = kTP - A (6d)
a1 az a2 ag as a1

(6c)
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Herex is the Einstein gravitational constant and over-dot means differentiation with re-
spect tat. The energy-momentum tensor of the material field is given by

T[L) = 4gpy (ZZW/L v+ ZZJ%VN/) v/l"/’%ﬂ/’ Vﬂ”%ﬂﬁ)
+ (A= AF)p up? =L+ T, (7)

HereT” = (e, —p, —p, —p) is the energy-momentum tensor of a perfect fluid. En-

u(m)

ergye is related to the pressupaby the equation of state = (. Here( varies between
the intervald < ¢ < 1, whereag = 0 describes the dust Universge,= presents
radiation Unrverse— < (¢ < 1 ascribes hard Universe agd= 1 corresponds to the
stiff matter. The Drrac matrices, (x) of curve space-time are connected with those of
Minkowski space as

= Y=, 1=0,1,2,3. (8)
The explicit form of the covariant derivative of spinoris [7]
Vi =0, —Tytp, Vb =0t + 9Ty, pn=0,1,2,3, )

wherel,(z) are spinor affine connection matrices. For the metric (3) one has the follow-
ing components of the affine spinor connections

L, = (1/2)a,5"%°. (10)

We study the space-independent solutions to the spinor and scalar field Egs.(4) and
(5) so that) = v (t) andyp = ¢(t). Defining

T = apa1a2a3 = \/—g (11)
from (5) for the scalar field we have
0= C/[T(1 + AF)|tat. (12)

SettingV;(t) = 7¢;(t), j = 1,2,3,4, in view of (9) and (10) from (4a) one
deduces the following system of equations:

Vi+i(m—D)Vy —GVs =0, (13a)

‘/2 +i(m — D)V — GV4 =0, (13b)

Vs — i(m—D)V3+ GV, =0, (13c)

V4 — z(m — ’D)VZL +GV5 =0. (13d)

B 5Froom (4a) we also write the equations for the bilinear spinor fasims P and A° =
vy

So —2G A =0, (14a)

Py —2(m — D) AJ =0, (14b)

AS +2(m — D) Py + 2GS, = 0, (14c)
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whereQ, = 7Q, leading to the relatio? + P2 + (A%)? = C?/7%, C? = const. As
one sees, fof' = F(I) (14a) givesS = C, /7, whereas for the massless spinor field with
F = F(J) (14b) yieldsP = Dy/7. In view of it for I’ = F'(I) we obtain the following
expression for the components of spinor field

Pi(t) = Crr 2B hy(t) = Cor V2P,

, , (15)
Ps(t) = Cam7 126 ahy(t) = Cyr™1/2e",

with C; being the integration constants and are relatethtasCy = C? +C3 —C3 —C3.

Here = [(m — D)dt. In case ofF’ = F(J) for the massless spinor field we get
Y1 =71 Y2(D1e" +iDse™7), by = 77/2(Dge' +iDye™"), (16)
Ps = /2 (iDlew + Dge_i”), Py = /2 (iDgei“ + D4e_i”).

The integration constant®; are connected t®, by Dy = 2 (D? + D2 — D? — D3).
Here we set = [ Gdt.

Once the spinor functions are known explicitly, one can write the components of
spinor currentj* = 1y*¢, the charge density of spinor field = (jo - j°)'/2, the

total charge of spinor field) = [ o0\/—3gdzdydz, the components of spin tensor

Srve = Lp{yam + o4 }1p and other physical quantities.
Let us now solve the Einstein equations. In doing so we first write the expressions for
the components of the energy-momentum tensor explicitly:

TO =mS + C?/27%(1 + \F) + ¢,

) 17
T} =T =T =DS+GP — C?/2r%(1 + A\F) — p. a7)

In account of (17) from (6a), (6b), (6¢) we find the metric functions [5]
ai(t) = Dﬂl/?’exp[Xi / [T(t)]ldt} . i=1,2,3, (18)

with the constants of integratiaB; and X; obeying

As one sees from (18) for ~ ¢ with n > 1 the exponent tends to unity at large
t, and the anisotropic model becomes isotropic one. Let us also write the invariants of
gravitational field. They are the Ricci scalar= R ~ 1/7, Iy = R, R"" = R} R ~
1/73 and the Kretschmann scalgy = RQQHVR(XBMV ~ 1/75. As we see, the space-time
becomes singular at a point where= 0, as well as the scalar and spinor fields. Thus
we see, all the functions in question are expressed vit what follows, we write the
equation forr and study it in details.

Summation of Einstein Egs. (6a), (6b), (6¢) and (6d) multiplied by 3 gives

7

:§n(mS+DS+QP+5—p)—3A. (19)
T 2
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From energy-momentum conservation ldj, = 0, in account of the equation of
statep = (e, we obtain

T p=Ceo/THT (20)

In our consideration of’ as a function off, J or I £+ J we get these arguments, as well
asD andg as functions of-. Hence the right-hand-side of (19) is a functionrainly. In
what follows we consider the case with= F(I). Recalling the definition ob, in view

of (12) and (20) Eqg. (19) can be written as

e=c¢o/T

7=F(rp), (21)
where we denote
f@z%anco+Ac302FATVT%1+UuwT»2+gou-o/w§-3AT, (22)

andp = {k, \,m, Cy, C, e, (, A} is the set of the parameters. Here we take into account
thatS = Cy/7. From mechanical point of view Eqg.(21) can be interpreted as an equation
of motion of a single particle with unit mass under the fafe, p). Then the following

first integral exists [8]
T =+/2[FE —-U(T,p)]. (23)

Here E is the integration constant and
= f% {H(’H’LCOT +C?/2(1 + \F) + sonc) - AT2i| ,

is the potential of the forc&. We note that the radical expression must be non-negative.
The zeroes of this expression, which depend on all the problem parametefime the
boundaries of the possible rates of changes(of. Note that settingn = 0 in (22) we
come to the case of massless spinor field viith- F/(J) or F = F(I £ J).

We formulate the initial value problem for the Eq. (21) with initial condition

T(O):T()>0,

which we solve numerically.

Sincer is the volume-scale, it cannot be negative for every0. On the other-hand,
Bl space-time models a non-static univeiise, the derivativer(¢) should be nontrivial at
the initial moment = 0. This leads to fact that for fixeg the constanf’ and the initial
value ofr are inter-related in the sense that for a givethe value ofry should belong to
some interval.

In what follows, we numerically solve (21) for some concrete forn#'of

Let us choose as a power function of, namely, ' = S™. In this case setting
Cy = 1andC = 1 we obtain

3K AnT
f*E{m+2@+wq

n—1

2+50(1;O)73A7, (24)

with the potential
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Note that the nonnegativity of the radical in (23) in view of (25) imposes restriction on
from above in case af > 0. It means that in case df > 0 the value ofr runs between

0 and somer,.x, wherer,., is the maximum value of for the given value op. This
equation has been studied for different values of paramgtetere we demonstrate the
evolution of7 for different choice ofr, for fixed “energy” E andvise versa

2 -

Caseem=1,2=01,n=4,7=05AA=1/3

Potential U(t)

Figure 1: Perspective view of the potentil(r)

As the first example we consider massive spinor field with= 1. Other parameters
are chosen in the following way: coupling constant 0.1, power of nonlinearity: = 4,
and cosmological constant= 1/3. We also choosg = 0.5 describing a hard universe.

In Figure 1 we plot corresponding potentid(r) multiplied by the facto2/3. As
is seen from Figure 1 and Figure 2, choosing the integration conBtavé may obtain
two different types of solutions. Faf > 0.5 solutions are non-periodic, whereas for
FEnin < E < 0.5 the evolution of the universe is oscillatory.

As a second example we consider the massless spinor field. Other parameters of the
problem are left unaltered with the exceptionfoHere we choose = 1 describing stiff
matter. It should be noted that this particular choic€ gives rise to a local maximum.
This results in two types of solutions for a single choiceof

As one sees from Figure 3, fdt > M there exists only non-periodic solutions,
whereas, fof,,,;, < E < —0.5 the solutions are always oscillatory. HBre (—0.5, M)
there exits two types of solutions depending on the choicg, ofin Figure 4 we plot
the evolution ofr for E € (—0.5, M). As is seen, for, € (0, A) we have periodical
solution, but due to the fact thatis non-negative, the physical solutions happen to be
semi-periodic. For € (B, C) we again have oscillatory mode of the evolutionrof
This two region is separated by a no-solution zoAe B).
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Figure 2: Perspective view of for different choice off2

Caseem=0,A=01,n=4,7=1,A=1/3
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Figure 3: Perspective view of the potent&l(7) with Bl universe being filled with stiff matter
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Figure 4: Perspective view of for different choice ofry with E € (—0.5, M)

3. Conclusions

A self-consistent system of spinor, scalar and gravitation fields has been studied in pres-
ence of perfect fluid and cosmological terin Oscillatory mode of evolution of the
universe is obtained. It is shown that for the interaction term being a power function of
the invariants of bilinear spinor forms, the oscillatory solution is possible-iérm is
positive. Itis also shown that only for a finite range the integration congtahngre exists
oscillatory mode of evolution. It should be emphasized that a third type of solution is
possible, if the Bl universe is filled with stiff matter.
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