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1. Introduction

The lack of a well-posed definition of local energy–momentum tensor is the con-

sequence of the Principle of Equivalence,1 which lies at the heart of Einstein’s

theory of general relativity. Nevertheless, quest for the local tensors describing

the strength of gravitational field has long been going on. One of the first suc-

cessful attempt to address this problem was taken by Bel2–4 and independently

Robinson.5,6 In their works, in analogy with the electromagnetic energy–momentum

tensor, they constructed a four-index tensor for the gravitational field in vacuum.

The properties of the now famous Bel–Robinson (BR) tensor are similar to the

traditional energy–momentum tensor and following Senovilla7,8 can be formulated

as follows: (i) it possesses a positive-definite time-like component and a “causal”

momentum vector; (ii) its divergence vanishes (in vacuum); (iii) the tensor is

zero if and only if the curvature of the spacetime vanishes; (iv) it has positiv-

ity property similar to the electromagnetic one; and some others. Construction
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of BR and the study of its properties were widely considered by a number of au-

thors, e.g., Desher et al.,9,10 Teyssandier,11,12 Senovilla,7 Bergqvist,13 Andersson,14

Wingbrant,15 Choquet-Bruhat et al.16 etc.

It should be noted that the authors of the papers mentioned above considered

the BR and established its properties in general. On the other hand, in general

relativity there exists a number of interesting and widely studied models of space-

time. Therefore, in our view it is interesting to consider the BR within the scope of

some concrete metric. In a recent paper17 we studied the BR within the framework

of Bianchi type I (BI) universe using two different definitions. The purpose of this

paper is to extend that study for some other definitions and analyze the dominant

energy property (DEP) and dominant super-energy property (DSEP) within this

model.

2. Bianchi I Universe: A Brief Description

A Bianchi type-I (BI) universe is the straightforward generalization of the flat

Robertson–Walker (RW) universe and is one of the simplest models of an anisotropic

universe that describes a homogeneous and spatially flat universe. It has the agree-

able property that near the singularity it behaves like a Kasner universe, even in

the presence of matter, and consequently falls within the general analysis of the sin-

gularity given by Belinskii et al.18 Also in a universe filled with matter for p = ζε,

ζ < 1, it has been shown that any initial anisotropy in a BI universe quickly dies

away and a BI universe eventually evolves into a Friedmann–RW (FRW) universe.19

Since the present-day universe is surprisingly isotropic, this feature of the BI uni-

verse makes it a prime candidate for studying the possible effects of an anisotropy in

the early universe on present-day observations. In light of the importance mentioned

above, several authors have studied BI universe from different aspects.

A diagonlal BI spacetime is a spatially homogeneous spacetime, which admits

an Abelian group G3, acting on spacelike hypersurfaces, generated by the spacelike

Killing vectors x1 = ∂1, x2 = ∂2 and x3 = ∂3. In synchronous coordinates, the

metric is20,21:

ds2 = dt2 −
3
∑

i=1

a2
i (t)dx2

i . (2.1)

If the three scale factors are equal (i.e. a1 = a2 = a3), Eq. (2.1) describes

an isotropic and spatially flat FRW universe. The BI universe has a different scale

factor in each direction, thereby introducing an anisotropy to the system. Thus, a BI

universe, being the straightforward generalization of the flat FRW universe, is one

of the simplest models of an anisotropic universe that describes a homogeneous and

spatially flat universe. When two of the metric functions are equal (e.g., a2 = a3)

the BI spacetime is reduced to the important class of plane symmetric spacetime

(a special class of the locally rotational symmetric spacetimes22,23), which admits

a G4 group of isometries acting multiply transitively on the spacelike hypersurfaces
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of homogeneity generated by the Killing vectors x1, x2, x3 and x4 = x2∂3 − x3∂2.

The BI has the agreeable property that near the singularity it behaves like a Kasner

universe, given by

a1(t) = a0
1t

p1 , a2(t) = a0
2t

p2 , a3(t) = a0
3t

p3 , (2.2)

with pj being the parameters of the BI spacetime which measure the relative

anisotropy between any two asymmetry axes and satisfy the constraints

p1 + p2 + p3 = 1 , p2
1 + p2

2 + p2
3 = 1 . (2.3)

As one sees, p1, p2 and p3 cannot be equal. Only two of them can be equal, and

only in two special cases, namely, (0, 0, 1) and (−1/3, 2/3, 2/3). In all other cases

p1, p2 and p3 are different, moreover, one of them is negative, while the other two

are positive. If it is supposed that p1 < p2 < p3, then their values are confined to

the following intervals:

−1/3 ≤ p1 ≤ 0 , 0 ≤ p2 ≤ 2/3 , 2/3 ≤ p3 ≤ 1 .

The solutions of the algebraic equations (2.3) can be presented as

p1 =
−p

p2 + p + 1
, p2 =

p(p + 1)

p2 + p + 1
, p3 =

p + 1

p2 + p + 1
. (2.4)

Thus instead of three, we have now one parameter p, which lies in the interval

0 ≤ p ≤ 1.

Another particular parametrization can be given using an angle on the unit

circle, since Eq. (2.3) describes the intersection of a sphere with a plane in the

parameter space (p1, p2, p3):

p1 =
1 + cosϑ +

√
3 sin ϑ

3
, p2 =

1 + cosϑ −
√

3 sin ϑ

3
, p3 =

1 − 2 cosϑ

3
.

Although ϑ ranges over the unit circle, the labeling of each pj is quite arbitrary.

Thus the unit circle can be divided into six equal parts, each of which span 60◦, and

the choice of pj is unique within each section separately. For ϑ = 0, p1 = p2 = 2
3

and p3 = − 1
3 while for ϑ = π/3, p1 = 1 and p2 = p3 = 0.

For later convenience we list the Christoffel symbol, scalar curvature, Ricci,

Riemann and Weyl tensors for the BI spacetime. The nontrivial Christoffel symbols

are the following:

Γi
i0 =

ȧi

ai
, Γ0

ii = aiȧi , i = 1, 2, 3 ,

and the nontrivial components of Riemann tensors are

R0i
0i = − äi

ai
, Rij

ij = − ȧi

ai

ȧj

aj
, i, j = 1, 2, 3, i 6= j . (2.5)

Finally the nontrivial components of the Ricci tensors for the BI metric are

R0
0 = −

3
∑

i=1

äi

ai
, Ri

i = −
[

äi

ai
+

ȧi

ai

(

ȧj

aj
+

äk

ak

)

]

,

i, j, k = 1, 2, 3, i 6= j 6= k ,
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and the scalar curvature is

R = −2

(

3
∑

i=1

äi

ai
+

ȧ1

a1

ȧ2

a2
+

ȧ2

a2

ȧ3

a3
+

ȧ3

a3

ȧ1

a1

)

. (2.6)

It is convenient to separate the Riemann tensor into a trace-free part and a

“Ricci” part. This gives the Weyl tensor

Cijkl = Rijkl −
1

(n − 2)
(gikRjl + gjlRik − gjkRil − gilRjk)

+
1

(n − 1)(n − 2)
(gikgjl − gilgjk)R .

This tensor has manifestly all the symmetries of the Riemann tensor; but con-

trary to the Riemann tensor while it gives rise to Ricci tensor, the Weyl tensor

gives

gikCijkl ≡ 0 . (2.7)

A further distinction is that while the Riemann tensor can be defined in a

manifold endowed only with a connection, the Weyl tensor can be defined only

when a metric is also defined. In four dimensions the Riemann tensor has 20 distinct

components, while the Weyl and the Ricci have ten components each. The nontrivial

components of the Weyl tensor for the BI spacetime are

C0i0i =
ai

6ajak
{2äiajak − äjakai − äkaiaj − ȧiȧjak − ȧkȧiaj + 2ȧj ȧkai} ,

Cjkjk = −ajak

6ai
{2äiajak − äjakai − äkaiaj − ȧiȧjak − ȧkȧiaj + 2ȧj ȧkai} ,

i, j, k = 1, 2, 3, i 6= j 6= k .

(2.8)

From (2.8) one easily finds the following relation:

C0i0i = − a2
i

a2
ja

2
k

Cjkjk , i, j, k = 1, 2, 3, i 6= j 6= k . (2.9)

Now having all the nontrivial components of Ricci and Riemann tensors, one

can easily write the invariants of gravitational field which we need to study the

spacetime singularity. Moreover, we can now construct the BR tensor that is defined

differently by different authors.

3. Einstein Equations and Their Solutions

In this section we study the Einstein equation. In doing so let us first write the

Einstein equation for the BI metric governing the evolution of the Universe. In the

presence of a cosmological constant Λ, the Einstein equation has the form

ä2

a2
+

ä3

a3
+

ȧ2

a2

ȧ3

a3
= κT 1

1 + Λ , (3.1a)
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ä3

a3
+

ä1

a1
+

ȧ3

a3

ȧ1

a1
= κT 2

2 + Λ , (3.1b)

ä1

a1
+

ä2

a2
+

ȧ1

a1

ȧ2

a2
= κT 3

3 + Λ , (3.1c)

ȧ1

a1

ȧ2

a2
+

ȧ2

a2

ȧ3

a3
+

ȧ3

a3

ȧ1

a1
= κT 0

0 + Λ . (3.1d)

Here over-dot means differentiation with respect to t and T ν
µ is the energy–

momentum tensor of the matter field which we choose in the form:

T ν
µ = (ε + p)uµuν − pδν

µ , (3.2)

where uµ is the flow vector satisfying

gµνuµuν = 1 . (3.3)

Here ε is the total energy density of a perfect fluid and/or dark energy density,

while p is the corresponding pressure. p and ε are related by an equation of state

which will be studied below in detail. In a co-moving system of coordinates from

(3.2) one finds

T 0
0 = ε , T 1

1 = T 2
2 = T 3

3 = −p . (3.4)

In view of (3.4) from (3.1a)–(3.1d) one immediately obtains24

ai(t) = Di[τ(t)]1/3 exp

[

Xi

∫

[τ(t′)]−1 dt′
]

, i = 1, 2, 3 .

Here Di and Xi are some arbitrary constants obeying

D1D2D3 = 1 , X1 + X2 + X3 = 0 ,

and τ is a function of t defined to be

τ = a1a2a3 . (3.5)

From (3.1a)–(3.1d) for τ one finds

τ̈

τ
=

3κ

2
(ε − p) + 3Λ . (3.6)

On the other hand, the conservation law for the energy–momentum tensor gives

ε̇ = − τ̇

τ
(ε + p) . (3.7)

After a little manipulation from (3.6) and (3.7) we find

τ̇2 = 3(κε + Λ)τ2 + C1 , (3.8)

with C1 being an arbitrary constant. Let us now, in analogy with Hubble constant,

define

τ̇

τ
=

ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3
= 3H . (3.9)
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On account of (3.9) from (3.8) one derives

κε = 3H2 − Λ − C1/(3τ2) . (3.10)

It should be noted that the energy density of the Universe is a positive quantity.

It is believed that at the early stage of evolution when the volume scale τ was close

to zero, the energy density of the Universe was infinitely large. On the other hand,

with the expansion of the Universe, i.e. with the increase of τ , the energy density

ε decreases and an infinitely large τ corresponds to a ε close to zero. Now if we

consider the case when τ = τL is big enough for the T 0
0 and 1/τ2

L be ignored, from

(3.10) then follows

3H2 − Λ → 0. (3.11)

Then on account of (3.9) from (3.11) for τ one finds

τ = τL exp [
√

3Λ t]. (3.12)

As it is seen from (3.12) in this case Λ is essentially non-negative. In case of Λ = 0

we find that beginning from some value of τ the rate of expansion of the Universe

becomes trivial, that is the universe does not expand with time. Whereas, for Λ > 0

the expansion process continues forever. Moreover, it is believed that the presence

of the dark energy (which can be explained with a positive Λ as well) results in

the accelerated expansion of the Universe. As far as negative Λ is concerned, its

presence imposes some restriction on ε, namely, ε can never be small enough to be

ignored. In case of the perfect fluid given by p = ζε there exists some upper limit

for τ as well (note that τ is essentially non-negative, i.e. bound from below). In our

previous papers we came to the same conclusion24,25 (with a positive Λ which in

the present paper appears to be negative). A suitable choice of parameters in this

case may give rise to an oscillatory mode of expansion, whereas in case of a van

der Waals fluid the highly nonlinear equation of state may result in an exponential

expansion as well.

Inserting (3.9) and (3.10) into (3.6) one now finds

Ḣ = −1

2

(

3H2 − Λ +
C1

3τ2
+ κp

)

= −κ

2
(ε + p) − C1

3τ2
. (3.13)

In view of (3.10), from (3.13), it follows that if the perfect fluid is given by a stiff

matter where p = ε, the corresponding solution does not depend on the constant

C1.

Let us now go back to Eq. (3.8). It is in fact the first integral of (3.6) and can

be written as

τ̇ = ±
√

C1 + 3(κε + Λ)τ2 . (3.14)

On the other hand, rewriting (3.7) in the form

ε̇

ε + p
=

τ̇

τ
, (3.15)
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and taking into account that p is a function of ε, one concludes that the right-hand

side of Eq. (3.6) is a function of τ only, i.e.

τ̈ =
3κ

2
(ε − p)τ + 3Λτ = F(τ) . (3.16)

From a mechanical point of view Eq. (3.16) can be interpreted as an equation of

motion of a single particle with unit mass under the force F(τ). Then the following

first integral exists25:

τ̇ =
√

2[E − U(τ)] . (3.17)

Here E can be viewed as energy and U(τ) is the potential of the force F . Comparing

Eqs. (3.14) and (3.17) one finds E = C1/2 and

U(τ) = −3

2
(κε + Λ)τ2 . (3.18)

Let us finally write the solution to Eq. (3.6) in quadrature:
∫

dτ
√

C1 + 3(κε + Λ)τ2
= t + t0 , (3.19)

where the integration constant t0 can be taken to be zero, since it only gives a shift

in time. Equations (3.6) and (3.7) for perfect fluid obeying different equations of

state has been thoroughly studied by us.24,25

4. Bel Robinson Tensors

BR tensor first appeared in the endless search for a covariant version of gravita-

tional energy. In general relativity, the energetic content of an electromagnetic field

propagating in a region free of charge is described by the well-known symmetric

traceless tensor

T αβ
el = − 1

4π

(

F αλF β
λ − 1

4
gαβF µνFµν

)

, (4.1)

where F αβ is the electromagnetic field tensor. This tensor satisfies:

T αβ
el ;α = 0 (4.2)

as a consequence of Maxwell equations with jµ = 0. The tensor T αβ
el enables us to

define a local density of electromagnetic energy as measured by an observer moving

with the unit 4-velocity u:

wel(u) = T αβ
el uαuβ . (4.3)

It follows from (4.1) that the energy density is positive definite for any time-like

vector u.

Within the scope of general relativity, however, it is well known that the concept

of local energy density is meaningless for a gravitational field. To overcome this

difficulty one is led to introduce the notion of super-energy tensor constructed with
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the curvature tensor Rµναβ . The first example of such a tensor was exhibited by

Bel,2 that was further generalized to the case of an arbitrary gravitational field.3

Note that a similar tensor was also introduced by Robinson.5 This tensor is now

commonly known as the BR tensor as well. Since we are going to compare some

distinct definitions of BR in this paper, before defining them let us see what kind of

properties they should have. In general, the BR tensor has the following symmetry

properties:

Bµναβ = Bνµαβ , (4.4a)

Bµναβ = Bµνβα , (4.4b)

Bµναβ = Bαβµν . (4.4c)

The symmetry property leads to the fact that in n-dimensional case there are

n(n+1)[n(n+1)+2]/8 independent components of the BR tensor. In case of n = 4

out of 256 components only 55 are linearly independent.

In literature there are a few definitions of BR. Here we mention only three.

I. By analogy with the tensor (4.1) which may be written as

Tµν = FµαF α
ν + ∗Fµα ∗ F α

ν , (4.5)

the BR tensor is defined as9:

Bµναβ = Rρ σ
µ αRρνσβ + ∗Rρ σ

µ α ∗ Rρνσβ . (4.6)

Here the dual curvature is ∗Rµν
λσ ≡ (1/2)εµν

αβRαβ
λσ . It should be noted that

this definition is adequate only in 4 dimensions and in vacuum. Otherwise this

tensor cannot satisfy the DEP26 and therefore this expression should not be used

in other dimensions or in non-Ricci-flat spacetimes.

Using the definition of dual curvature, from (4.6) we find

Bµναβ = Rρ σ
µ αRρνσβ + Rρ σ

µ βRρνσα − 1

2
gµνR ρστ

α Rβρστ . (4.7)

The properties (4.4a) and (4.4b) follow immediately from (4.6) thanks to the

symmetry property of Riemann tensor. The property (4.4c) is straightforward from

(4.6), but for (4.7) it requires

gµνR ρστ
α Rβρστ = gαβR ρστ

µ Rνρστ . (4.8)

In view of (2.5) for the BR tensor in this case we obtain the following nontrivial

components:

B0000 =

3
∑

i=1

ä2
i

a2
i

,

Biiii = ä2
i + ȧ2

i

{

ȧ2
j

a2
j

+
ȧ2

k

a2
k

}

,
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B0i0i = aiäi

{

äj

aj
+

äk

ak

}

,

Bijij = äiäj + aiȧiaj ȧj
ȧ2

k

a2
k

,

B00ii = ä2
i − ȧ2

i

{

ȧ2
j

a2
j

+
ȧ2

k

a2
k

}

,

Biijj = ȧ2
i ȧ

2
j − a2

i ä
2
j − a2

i ȧ
2
j

ȧ2
k

a2
k

, i, j, k = 1, 2, 3 i 6= j 6= k .

Inserting (2.5) into (4.8) we obtain the following additional relations:

(

äi

ai

)2

±
(

äj

aj

)2

=

(

ȧk

ak

)2
[

(

ȧi

ai

)2

±
(

ȧj

aj

)2
]

, i, j, k = 1, 2, 3, i 6= j 6= k . (4.9)

Among the six constrains in (4.9) only three are linearly independent. After a little

manipulations with them finally obtains the following relations between the metric

functions:

äi

ai
=

ȧj

aj

ȧk

ak
, i, j, k = 1, 2, 3, i 6= j 6= k . (4.10)

As one sees, in account of (4.10) the Einstein equation (3.1a)–(3.1d) leads to T 0
0 =

T 1
1 = T 2

2 = T 3
3 , which can be realized only when the source field satisfies the

following equation of state:

p = −ε . (4.11)

It is well known that only vacuum satisfies the state of equation given by (4.11).

Thus we see that if we are to define BR tensor given by (4.6) or (4.7) we should

deal with the Einstein equations with the source field given by a vacuum.

II. The restriction that arises above is due to the fact that in defining the BR

tensor we used the dual term with the duality operator acting on the left pair only.

To avoid this restrictions the BR tensor can be defined by11,12,27

2Bµναβ = Rρ σ
µ αRρνσβ + ∗Rρ σ

µ α ∗ Rρνσβ

+ R ∗ρ σ
µ α R ∗ρνσβ + ∗ R ∗ρ σ

µ α ∗R∗ρνσβ , (4.12)

where the duality operator acts on the left or on the right pair of indices according

to its position. Nowadays this is known as the Bel tensor and was introduced by

Bel3 in a slightly different form.

From (4.12) one easily finds

Bµναβ = Rρ σ
µ αRρνσβ + Rρ σ

µ βRρνσα − 1

2
gµνR ρστ

α Rβρστ

− 1

2
gαβR ρστ

µ Rνρστ +
1

8
gµνgαβRρστηRρστη .
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Under the new definition the symmetry properties (4.4a), (4.4b) and (4.4c) follow

immediately, without any restriction to the metric functions.

Let us now write the nontrivial components of the BR tensor for the BI metric.

In view of (2.5) we now find

B0000 =
1

2

{

3
∑

i=1

ä2
i

a2
i

+
ȧ2
1

a2
1

ȧ2
2

a2
2

+
ȧ2
2

a2
2

ȧ2
3

a2
3

+
ȧ2
3

a2
3

ȧ2
1

a2
1

}

,

Biiii = a4
i B0000 ,

B0i0i = −aiȧi

{

ȧj

aj

äj

aj
+

ȧk

ak

äk

ak

}

,

Bijij = aiaj

{

äiäj + ȧiȧj
ȧ2

k

a2
k

}

,

B00ii =
1

2

{

−ä2
i + ȧ2

i

(

ȧ2
j

a2
j

+
ȧ2

k

a2
k

)

+ a2
i

(

ä2
j

a2
j

+
ä2

k

a2
k

−
ȧ2

j

a2
j

ȧ2
k

a2
k

)

}

,

Biijj =
1

2

{

ȧ2
i ȧ

2
j − ä2

ja
2
j − a2

i ä
2
j −

ȧ2
k

a2
k

(ȧ2
i a

2
j + a2

i ȧ
2
j ) + a2

i a
2
j

ȧ2
k

a2
k

}

,

i, j, k = 1, 2, 3, i 6= j 6= k .

But the BR tensor defined in this way is not trace-free and is not completely

symmetric. It is achieved if and only if the manifold is Ricci flat, i.e. Rij = 0.

Since for the BI universe we have nontrivial components of Ricci tensor, we give an

alternative definition of BR where it is totally symmetric and trace-free.

III. Here we give another definition that gives rise to BR tensor, that is trace-

less and totally symmetric. It can be achieved by constructing BR by means of

Weyl tensor13,28.

Bµναβ = Cρ σ
µ αCρνσβ + ∗Cρ σ

µ α ∗ Cρνσβ . (4.13)

It can be shown that this BR is totally symmetric, i.e.

Bijkl = B(ijkl) . (4.14)

Moreover, as one can easily find from (2.7), the BR defined through Weyl tensor is

trace-free, i.e.

gjlBijkl ≡ 0 . (4.15)

Let us study this case in detail. Using the properties of Levi–Cività tensor, we

first rewrite (4.13) in the form

Bµναβ = Cρ σ
µ αCρνσβ + Cρ σ

µ βCρνσα − 1

2
gµνC ρστ

α Cβρστ . (4.16)
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After a little manipulation one easily finds the following nontrivial components of

the BR tensor.

B0000 = (g11C1010)
2 + (g22C2020)

2 + (g33C3030)
2 , (4.17)

which on account of (2.9) gives

B0000 = (
1

a2
2a

2
3

C2323)
2 +

(

1

a2
3a

2
1

C3131

)2

+

(

1

a2
1a

2
2

C1212

)2

. (4.18)

On the other hand for we find

B1111 = (C1010)
2 + (g22C1212)

2 + (g33C1313)
2 , (4.19)

which in view of (2.9) can be rewritten as

B1111 =

(

a2
1

a2
2a

2
3

C2323

)2

+

(

1

a2
3

C3131

)2

+

(

1

a2
2

C1212

)2

,

= a4
1

[

(

1

a2
2a

2
3

C2323

)2

+

(

1

a2
3a

2
1

C3131

)2

+

(

1

a2
1a

2
2

C1212

)2
]

= a4
1B0000 . (4.20)

In view of (4.18) and (4.20) symbolically we can write

B0000 =

(

1

a2
ja

2
k

Cjkjk

)2

+

(

1

a2
ka2

i

Ckiki

)2

+

(

1

a2
i a

2
j

Cijij

)2

=
1

6

{

3
∑

i=1

ä2
i

a2
i

+
ȧ2
1

a2
1

ȧ2
2

a2
2

+
ȧ2
2

a2
2

ȧ2
3

a2
3

+
ȧ2
3

a2
3

ȧ2
1

a2
1

−
(

ä1

a1

ä2

a2
+

ä2

a2

ä3

a3
+

ä3

a3

ä1

a1

)

− ȧ1

a1

ä2

a2

(

ä1

a1
+

ä2

a2
− 2

ä3

a3
+

ȧ2
3

a2
3

)

− ȧ2

a2

ä3

a3

(

ä2

a2
+

ä3

a3
− 2

ä1

a1
+

ȧ2
1

a1
3

)

− ȧ3

a3

ä1

a1

(

ä3

a3
+

ä1

a1
− 2

ä2

a2
+

ȧ2
2

a2
2

)

}

,

(4.21a)

Biiii = a4
i B0000 , (4.21b)

Bijij = 2C0i0iC0j0j

=
1

18a2
k

(2ȧiaj ȧk − aiȧj ȧk − ȧiȧjak − aiaj äk − äiajak + 2aiäjak)

× (2aiȧj ȧk − ȧiaj ȧk − ȧiȧjak − aiaj äk − aiäjak + 2äiajak) , (4.21c)

B0k0k = − a2
k

a2
i a

2
j

Bijij , i, j, k = 1, 2, 3, i 6= j 6= k . (4.21d)
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Thus we have used three different definitions of BR. The first one defined in

Ref. 9 imposes some restriction on the metric functions, namely for the BI space-

time, it coincides with vacuum solution of Einstein equations. The second definition

removes this restriction, but since BI metric admits nontrivial Ricci tensor, the BR

in this case is not totally symmetric. Finally we gave the definition used by Bergqvist

and Senovilla. It satisfies all the properties of BR and it is totally symmetric. In

what follows we study the DEP and DSEP for BR in BI Universe.

5. Cosmological Singularity and the Dominant Energy Condition

Recalling that a timelike geodesic is a world line for a particle moving without

acceleration in the proper reference system we define the following:

A spacetime is nonsingular if any timelike geodesics, or null geodesics, can be

continued into the past and the future without bound, i.e. to infinite proper length

for the timelike geodesics and to an infinite value of an affine parameter for the

null geodesics. Such a spacetime is termed “causally, geodesically complete”. The

requirements on the completeness are the minimum necessary so that the spacetime

does not contain a singularity. It is necessary to point out that a spacetime not

satisfying these requirements, however, one with a singularity, does not necessarily

contain points with infinite curvature or with small hole.

From physical point of view, of course, one ought to take as singular any space-

time in which the geodesic world line of a particle cannot be continued without

bound with respect to the proper time of this particle, for such a singular space-

time would lead to a violation of conservation laws.

As applied to the cosmological problem, the Hawking-Penrose theorem reads as

follows29:

Theorem. A spacetime M cannot satisfy causal geodesic completeness if the GTR

(General Theory of Relativity) equations hold and if the following conditions are

fulfilled:

(i) The spacetime M does not contain closed time-like curves.

(ii) The energy condition (DEP) is satisfied at every point.

The energy condition may be expressed as

tαtα = 1 implies Rαβtαtβ ≤ 0 . (5.1)

With Einstein’s equations

Rαβ − 1

2
gαβR = −κTαβ , (5.2)

(5.1) becomes

tαtα = 1 implies Tαβtαtβ ≥ 1

2
T µ

µ . (5.3)
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If, in an eigentetrad of Tµν , ε denotes the energy density and p1, p2, p3 denote the

three principal pressures, then (5.3) can be written as

ε +
∑

α pα ≥ 0 ;

ε + pα ≥ 0 , α = 1, 2, 3 .
(5.4)

The weak energy condition is

tαtα = 0 implies Rαβtαtβ ≤ 0 ,

which is a consequence of (5.1).

(iii) On each time-like or null geodesic γ, there is at least one point for which

K[aRb]cd[eKf ]K
cKd 6= 0 , (5.5)

where Ka is the tangent to the curve γ at the given point and where the brackets

on the subscripts imply antisymmetrization. If γ is timelike, we can rewrite (5.5)

as

RabcdK
cKd 6= 0 . (5.6)

(iv) The spacetime M contains either (a) a trapped surface, (b) a point P for

which the convergence of all the null geodesics through P changes sign somewhere

to the past of P, or (c) a compact spacelike hypersurface.

The DEP for the BI metric can be written in the form:

T 0
0 ≥ T 1

1 a2
1 + T 2

2 a2
2 + T 3

3 a2
3 , (5.7a)

T 0
0 ≥ T 1

1 a2
1 , (5.7b)

T 0
0 ≥ T 2

2 a2
2 , (5.7c)

T 0
0 ≥ T 3

3 a2
3 . (5.7d)

In analogy with the Hawking–Penrose theorem stated above, Senovilla and oth-

ers introduced DEP for the higher dimensional tensors. A detailed description of

singularity theorems and their consequences can be found in the review paper by

Senovilla30.

The DSEP as defined by Senovilla reads7:

Theorem. A rank-s tensor Tµ1···µs
, is said to satisfy the DSEP if

Tµ1···µs
kµ1

1 · · · kµs

s ≥ 0 (5.8)

for any future-pointing causal vectors kµ1

1 · · · kµs

s . To justify its name the dominant

DSEP obeys the following lemma.

Lemma. If a tensor Tµ1···µs
satisfies the DSEP, then

T0···0 ≥ |Tµ1···µs
| , ∀ µ1, . . . , µs = 0, . . . , n − 1 (5.9)

in any orthonormal basis {eν}.
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It was also established in Ref. 31, that any tensor satisfying the DEP possesses

the following property:

Property. Tµ1···µs
satisfies DEP if and only if

Tµ1···µs
lµ1

1 · · · lµs

s ≥ 0 (5.10)

for any set lµ1

1 · · · lµs

s of future-pointing null vectors.

Let us now back to the 4-rank BR tensor and to check the DSEP for it. Since

BR defined as (4.13) is a completely symmetric, trace-free 4-rank tensor, then it

satisfy the DEP.32 Therefore from the foregoing theorem, lemma and property for

Bijkl we can write:

Babcdk
a
1kb

2k
c
3k

d
4 ≥ 0 , (5.11)

B0···0 ≥ |Babcd| , ∀ a, b, c, d = 0, 1, 2, 3 (5.12)

and

Babcdl
a
1 lb2l

c
3l

d
4 ≥ 0 . (5.13)

Apparently, in view of (4.21b), Eq. (5.12) imposes some restriction on the metric

functions, e.g., a4
i ≤ 1. But this is not the case, since we have used a coordinate

basis to compute the BR tensor components (4.21a)–(4.21d) and Eq. (5.9) refers to

an orthonormal basis. We recall that in an orthonormal basis, the components of

the Weyl tensor obey the following relation:

C0i0i = −Cjkjk , i, j, k = 1, 2, 3 and i 6= j 6= k . (5.14)

In view of (5.14) the expressions (4.21a)–(4.21d) now read

B0000 = (Cjkjk)2 + (Ckiki)
2 + (Cijij )

2 , (5.15a)

Biiii = B0000 , (5.15b)

Bijij = 2C0i0iC0j0j , (5.15c)

B0k0k = −Bijij , i, j, k = 1, 2, 3, i 6= j 6= k . (5.15d)

Thus in connection with the above Lemma relative to DSEP, Eq. (5.12) is ful-

filled without any restrictions on the metric functions.

6. Conclusions

In view of the importance of the BI model in the study of the present day Uni-

verse, we considered the most simple model with a perfect fluid as a source field.

The corresponding solutions to the Einstein equations have been obtained. Three

alternative definitions of Bel–Robinson tensor are considered. It is shown that the

definition used by Deser et al. is consistent with the Einstein equations when the

source field is given by a vacuum only. The second definition used by Teyssandier
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is free from this restriction, but BR defined in this way is not totally symmetric.

Definition used by Senovilla and Bergqvist does not suffer from this shortcomings,

i.e., it has all the symmetries and the DSEP is satisfied.
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