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1. INTRODUCTION

Nonlinear phenomena have been one of the most
popular topics during last years. Nevertheless, it must
be admitted that nonlinear classical fields have not
received general consideration. This is probably due to
the mathematical difficulties which arise because of the
nonrenormalizability of the Fermi and other nonlinear
couplings [1]. Nonlinear self-coupling of the spinor
fields may arise as a consequence of the geometrical
structure of space-time and, more precisely, because of
the existence of torsion. Ivanenko [2, 3] and Rodichev
[4] showed that a relativistic theory imposes in some
cases a fourth-order self-coupling. In 1950, Weyl [5]
proved that if the affine and the metric properties of
space-time are taken as independent, the spinor field
obeys either a linear equation in a space with torsion or
a nonlinear one in a Reimannian space. As the self-
action is of the spin–spin type, it allows the assignment
of a dynamical role to the spin and offers a clue about
the origin of the nonlinearities. This question was fur-
ther clarified in some important papers by Utiyama,
Kibble, and Sciama [6–8]. In the simplest scheme, the
self-action is of the pseudovector type, but it can be
shown that one can also get a scalar coupling [9]. An

excellent review of the problem may be found in [10].
Nonlinear quantum Dirac fields were used by Heisen-
berg [11, 12] in his ambitious unified theory of elemen-
tary particles. They have been the object of renewed
interest since the publication of the widely known
paper by Gross and Neveu [13]. A nonlinear spinor
field, suggested by the symmetric coupling between
nucleons, muons, and leptons, was investigated by
Finkelstein et al. [14] in the classical approximation.
Although the existence of a spin-1/2 fermion is both
theoretically and experimentally undisputed, these are
described by 

 

quantum

 

 spinor fields. Possible justifica-
tions for the existence of classical spinors were
addressed in [15].

The quantum field theory in curved space-time has
been a matter of great interest in recent years because
of its applications to cosmology and astrophysics. The
evidence for the existence of strong gravitational fields
in our Universe led to the study of the quantum effects
of material fields in external classical gravitational
field. In [16, 17], Parker considers spin-0 and spin-1/2
fields respectively, in a FRW space-time that is not
quantized. The equations governing the spin-0 field are
the covariant generalization of the special-relativistic
free-field equations, whereas the spin-1/2 field satisfies
the fully covariant generalization of the Dirac equation.
In [16], the author showed that massless particles of
arbitrary nonzero spin, such as photons or gravitons,
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are not created by expansion, regardless of its form.
Consideration of the special-relativistic limit in [17]
provides new proof of the connection between spin and
statistics. It is shown that the expansion of the universe
in general results the production of spin-1/2 particles,
which is not the case in the limits of zero and infinite
mass. He also considered the Friedmann expansion of a
radiation-filled universe, emphasizing the effect of the
initial stage of the expansion. Since the appearance of
these papers on scalar fields [16] and spin-1/2 fields
[17], several authors have studied this subject. Present-
day cosmology is based largely on Friedmann’s solu-
tions of the Einstein equations which describe the com-
pletely uniform and isotropic universe (“closed” and
“open” models, i.e., bounded or unbounded universe).
The main feature of these solutions is their non-station-
arity. The idea of an expanding universe, following
from this property, is confirmed by the astronomical
observations and it now safe to assume that the isotro-
pic model provides, in its general features, an adequate
description of the present state of the universe.

Though spatially homogeneous and isotropic Fied-
man–Robertson–Walker (FRW) models are widely
considered as a good approximation of the present and
early stages of the universe, the large-scale matter dis-
tribution in the observable universe, largely manifested
in the form of discrete structures, does not exhibit
homogeneity of a higher order. In contrast, the cosmic
background radiation, which is significant in the micro-
wave region, is extremely homogeneous, however,
recent space investigations detect anisotropy in the cos-
mic microwave background. The observations from
Cosmic Background Explorer’s differential radiometer
have detected and measured cosmic microwave back-
ground anisotropies in different angular scales. These
anisotropies are believed to hide in their fold the entire
history of cosmic evolution dating back to the recombi-
nation era and are being considered as indicative of the
geometry and the content of the Universe. More about
cosmic microwave background anisotropy is expected
to be uncovered by the investigations of the microwave
anisotropy probe. There is widespread consensus
among cosmologists that cosmic microwave back-
ground anisotropies in small angular scales hold the
key to the formation of discrete structures. The theoret-
ical arguments [18] and recent experimental data that
support the existence of an anisotropic phase that
approaches an isotropic one leads us to consider the
models of universe with anisotropic background.
Zel’dovich was the first to assume that the early izotro-
pization of the cosmological expanding process could
have taken place as a result of the quantum effect of
particle creation near singularity [19]. This assumption
was further supported by several authors [20–22]. Inter-
est in studying the Klein–Gordon and Dirac equations
in anisotropic models has increased since Hu and
Parker [22] showed that the creation of scalar particles
in anisotropic backgrounds can dissipate the anisotropy
as the Universe expands.

A Bianchi type-I (BI) universe, being the straight-
forward generalization of the flat Friedmann–Robert-
son–Walker (FRW) Universe, is one of the simplest
models of an anisotropic Universe that describes a
homogenous and spatially flat Universe. Unlike the
FRW Universe which has the same scale factor for each
of the three spatial directions, a BI universe has a dif-
ferent scale factor in each direction, thereby introduc-
ing an anisotropy to the system. Moreover, it has the
agreeable property that near the singularity it behaves
like a Kasner Universe, even in the presence of matter,
and consequently falls within the general analysis of
the singularity given by Belinskii et al. [23]. Also, in a
Universe filled with matter for 

 

p

 

 = 

 

ζε

 

, 

 

ζ

 

 < 1, it has been
shown that any initial anisotropy in a BI universe
quickly dies away and a BI universe eventually evolves
into a FRW Universe [24]. Since the present-day Uni-
verse is surprisingly isotropic, this feature of the BI uni-
verse makes it a prime candidate for studying the pos-
sible effects of an anisotropy in the early Universe on
present-day observations. In light of the importance of
the above-mentioned information, several authors have
studied the BI universe from different aspects.

In [25], Chimento and Mollerach studied the Dirac
equations in a BI universe and obtained their classical
solutions. They also claimed that for each value of the
momentum, only two independent solutions exist and
showed that it is not possible to obtain the solutions
from those of a FRW universe only by perturbation.
One of the solutions obtained would describe a particle
with a given helicity, while the other one would repre-
sent antiparticles with the opposite helicity. This fact
posed a very interesting problem—spin-1/2 particles
cannot live in a BI, at least if they keep their well-
known properties of flat space-time. This problem was
handled by Castagnino et al. [26], where it was shown
that if the Dirac equation is separable, the number of
independent solutions is four, contrary to the claim
made in [25]. The spinor field in a BI universe was also
studied by Belinskii and Khalatnikov. In this paper,
they solved the Einstein–Dirac equations when both the
cosmological constant and the mass of the spinor field
vanish (neutrinos). They also noticed that for BI models
filled with neutrinos, the principal directions of expan-
sion vary with time. Using Hamiltonian techniques,
M. Henneaux studied class-A Bianchi universes gener-
ated by a spinor source [27, 28]. In [27], he derived the
general solution to the massive Dirac equation in Bian-
chi type-I space-time with a cosmological constant [27]
which was further extended for the Bianchi type-II
model [28].

In a number of papers [29–31], several authors stud-
ied the behavior of gravitational waves (GW’s) in a BI
universe. In [30], the evolution equations for small per-
turbations in the metric, energy density, and material
velocity were derived for an anisotropic viscous BI uni-
verse. It was shown that the results were independent of
the equation of state of the cosmic fluid and its viscos-
ity. It was also shown that the GWs need not necessarily
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be transversal in an anisotropically expanding BI uni-
verse and the longitudinal components of the gravita-
tional waves have no physical significance. In [31], Cho
and Speliotopoulos studied the propagation of classical
gravitational waves in a BI universe. They found that
GWs in a BI universe are not equivalent to two mini-
mally coupled massless scalar fields as in a FRW uni-
verse. Because of its tensorial nature, the GW is much
more sensitive to the anisotropy in space-time than the
scalar field, and it gains an effective mass term. More-
over, they found a coupling between the two polariza-
tion states of the GW, which is not present in a FRW
universe.

A nonlinear spinor field (NLSF) in an external FRW
cosmological gravitational field was first studied by
G.N. Shikin in 1991 [32]. Here we would like to note
that the presence of a singular point to time in its space-
time meric is another important property of the isotro-
pic model. The presence of such a singular point means
that the time is restricted. The motivation for the intro-
duction a nonlinear term in the spinor field Lagrangian
was to answer the natural question that arises in con-
nection with the presence of a singular point, i.e., to
what extent the presence of a singular point is an inher-
ent property of the relativistic cosmological models or
whether it is only a consequence of the specific simpli-
fying assumptions underlying these models. The study
by Shikin [32] shows that the presence of spinor filed
nonlinearity is not enough to remove singularity in
FRW space-time. The natural choice was to introduce
anisotropy into the model and analyze the nonlinear
spinor field equations in an external BI universe; this
was carried out in [33]. In that paper, we considered the
nonlinear term in the spinor field Lagrangian as an arbi-
trary function of all possible invariants generated from
spinor bilinear forms. We also studied the possibility of
elimination of initial singularity, especially for the Kas-
ner Universe. For a few years, we studied the behavior
of self-consistent NLSF in a BI universe [34, 35] both
in the presence of perfect fluid and without it; this was
followed by [36–38], where we studied the self-consis-
tent system of interacting spinor and scalar fields.
Recently, we have been studying [39, 40] the role of the
cosmological constant (

 

Λ

 

) in the Lagrangian which
together with Newton’s gravitational constant (

 

G

 

) is
considered as one of the fundamental constants in Ein-
stein’s theory of gravity [41, 42].

2. REVIEW OF BI COSMOLOGY

A diagonal Bianchi type-I space-time (hereafter BI)
is a spatially homogeneous space-time which admits an
abelian group 

 

G

 

3

 

, acting on spacelike hyper-surfaces,
generated by the spacelike Killing vectors 

 

x

 

1

 

 = 

 

∂

 

1

 

,

 

x

 

2

 

 = 

 

∂

 

2

 

, and 

 

x

 

3

 

 = 

 

∂

 

3

 

. In synchronous coordinates, the
metric is [43]:

(2.1)

If the three scale factors are equal (i.e., 

 

a

 

1

 

 = 

 

a

 

2

 

 = 

 

a

 

3

 

),
(2.1) describes an isotropic and spatially flat Fried-
mann–Robertson–Walker (FRW) universe. The BI uni-
verse has a different scale factor in each direction,
thereby introducing an anisotropy to the system. Thus,
a Bianchi type-I (BI) universe, being the straightfor-
ward generalization of the flat Friedmann–Robertson–
Walker (FRW) universe, is one of the simplest models
of an anisotropic universe, describing a homogenous
and spatially flat universe. When the two metric func-
tions are equal (e.g., 

 

a

 

2

 

 = 

 

a

 

3

 

), the BI space-time is
reduced to the important class of plane symmetric
space-time (a special class of the Locally Rotational
Symmetric space-times [44, 45] which admits a 

 

G

 

4

 

group of isometries acting multiply transitively on the
space-like hyper-surfaces of homogeneity generated by
the vectors 

 

x

 

1

 

, 

 

x

 

2

 

, 

 

x

 

3

 

, and 

 

x

 

4

 

 = 

 

x

 

2

 

∂

 

3

 

 – 

 

x

 

3

 

∂

 

2

 

. The BI has
the agreeable property that near the singularity it
behaves like a Kasner universe, given by

(2.2)

with 

 

p

 

j

 

 being the parameters of the BI space-time which
measure the relative anisotropy between any two asym-
metry axes and satisfy the constraints

(2.3a)

(2.3b)

Thus, out of three parameters, only one is arbitrary.
One particular choice of parametrization is

(2.4a)

(2.4b)

(2.4c)

The condition 0 

 

≤

 

 

 

p

 

 

 

≤

 

 1 on 

 

p

 

 then yields the condi-
tion –1/3 

 

≤

 

 

 

p

 

1

 

 

 

≤

 

 0, 0 

 

≤

 

 

 

p

 

2

 

 

 

≤

 

 2/3, 2/3 

 

≤

 

 

 

p

 

3

 

 

 

≤

 

 1. Another
particular parametrization can be given using an angle
on the unit circle, since (2.3a) and (2.3b) describe the
intersection of a sphere with a plane in the parameter
space (

 

p

 

1

 

, 

 

p

 

2

 

, 

 

p

 

3

 

):

(2.5a)

(2.5b)

(2.5c)

ds
2

dt
2

ai
2

t( ) xi
2
.d

i 1=

3

∑–=

a1 t( ) a1
0
t

p1, a2 t( ) a2
0
t

p2, a3 t( ) a3
0
t

p3,= = =

p1 p2 p3+ + 1=

p1
2

p2
2

p3
2

+ + 1.=

p1
p–

p
2

p 1+ +
------------------------=

p2
p p 1+( )

p
2

p 1+ +
------------------------=

p3
p 1+

p
2

p 1+ +
------------------------.=

p1
1
3
--- 1 ϑcos 3 ϑsin+ +( ),=

p2
1
3
--- 1 ϑcos 3 ϑsin–+( ),=

p3
1
3
--- 1 2 ϑcos–( ).=



S16

PHYSICS OF PARTICLES AND NUCLEI      Vol. 37      Suppl. 1      2006

SAHA

Although ϑ ranges over the unit circle, the labeling
of each pj is quite arbitrary. Thus, the unit circle can be
divided into six equal parts, each of which span 60°,
and the choice of pj is unique within each section sepa-
rately. For ϑ = 0, p1 = p2 = 2/3 and p3 = –1/3, while for
ϑ = π/3, p1 = 1 and p2 = p3 = 0.

Sometimes it proves convenient to introduce a new
time parameter η by

(2.6)

where we define

(2.7)

with Ci ≡ . Note that in the isotropic limit, i.e., a1 =
a2 = a3, η reduces to conformal time. Further, defining

(2.8)

where prime denotes differentiation with respect to η,
we get the following nonzero Christoffel symbols for
the metric (2.1)

(2.9)

The nonzero components of the Ricci tensor now
read

(2.10)

and the Ricci scalar

(2.11)

Note that in the sections to follow, we work with the
usual time t.

3. BASIC EQUATIONS 
AND THEIR GENERAL SOLUTIONS

Using the variational principle, in this section we
derive the basic equations for the corresponding spinor,
scalar, and gravitational fields from the action (3.1).

We consider a system of the nonlinear spinor, scalar,
and BI gravitational fields given by the action

(3.1)

with

(3.2)

η a
1–

t( ) t,d

t

∫=

a t( )[ ]2
C t( ) a1a2a3( )2/3≡ C1C2C3( )1/3

,= =

ai
2

di

Ci'

Ci

-----, D
1
3
--- di

i 1=

3

∑≡ C '
C
-----,= =

Q
1
72
------ di d j–( )2

,
i j<
∑≡

Γηη
η 1

2
---D, Γii

η 1
2
---

diCi

C
----------, Γiη

i Γηi
i 1

2
---di.= = = =

Rηη
3
2
---D' 6Q, Rii+

Ci

2C
------- di' diD+( ),–= =

R C
1–

3D'
3
2
---D

2
6Q+ + .=

� g; ψ ψ ϕ, ,( ) � g– Ωd∫=

� �g �sp �sc �int �pf.+ + + +=

The gravitational part of the Lagrangian (3.2) �g is
given by a Bianchi type-I metric, whereas the terms �sp

and �sc describe the spinor and the scalar fields, respec-
tively. The term �int stands for the interaction between
the spinor and the scalar fields. Finally, �pf describes
the perfect fluid.

3.1. Matter Field Lagrangian

3.1.1. Spinor field, its invariants and covariant
derivatives. For a spinor field ψ, the symmetry between
ψ and  appears to demand that we choose the symme-
trized Lagrangian [7]. Keeping this in mind, we choose
the spinor field Lagrangian as

(3.3)

where the term F describes the self-interaction of a
spinor field and can be presented as some arbitrary
functions of invariants generated from the real bilinear
forms of a spinor field.

Let us now construct the invariants of spinor field.
Since ψ and ψ* (complex conjugate of ψ) have four
components each, one can construct 4 × 4 = 16 indepen-
dent bilinear combinations. They are

(scalar), (3.4a)

(pseudoscalar), (3.4b)

(vector), (3.4c)

(pseudovector), (3.4d)

(antisymmetric tensor), (3.4e)

where σµν = (i/2)[γµγν – γνγµ]. Invariants, corresponding
to the bilinear forms are

(3.5a)

(3.5b)

(3.5c)

(3.5d)

(3.5e)

According to the Pauli–Fierz theorem [46], among
the five invariants only I and J are independent as all
others can be expressed by them: Iv = –IA = I + J and
IT = I – J. In view of the theorem mentioned above, we
choose the nonlinear term F to be the function of I and
J only, i.e., F = F(I, J), thus claiming that it describes
the nonlinearity in the most general form.

In (3.3), ∇µ denotes the covariant differentiation; its
explicit form depends on the quantity it acts on. This
covariant differentiation has the standard properties

ψ

�sp
i
2
--- ψγ µ∇µψ ∇µψγ µψ–[ ] mψψ– F,+=

S ψψ=

P iψγ 5ψ=

v
µ ψγ µψ( )=

A
µ ψγ 5γ µψ( )=

T
µν ψσµνψ( )=

I S
2
,=

J P
2
,=

Iv v µv
µ ψγ µψ( )gµν ψγ νψ( ),= =

IA AµA
µ ψγ 5γ µψ( )gµν ψγ 5γ νψ( ),= =

IT TµνT
µν ψσµνψ( )gµαgνβ ψσαβψ( ).= =
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(3.6a)

(3.6b)

(3.6c)

where the symbol * means the Hermitian adjoint (the
transpose of the complex conjugate). The explicit form
of the covariant derivative of spinor is [47, 48]

(3.7a)

(3.7b)

where Γµ(x) are the Fock–Ivanenko spinor affine con-
nection matrices. γ matrices in the above equations
obey the following algebra

(3.8)

and are connected with the flat space-time Dirac matri-
ces  in the following way

(3.9)

where ηab = diag(1, –1, –1, –1) and  is a set of tetrad
4-vectors. The spinor affine connection matrices Γµ(x)
are uniquely determined up to an additive multiple of
the unit matrix by the equation

(3.10)

with the solution

(3.11)

Let us now write the γ’s and Γµ’s explicitly for the
BI metric (3.18). For the metric (3.18) from (3.9), one
finds

(3.12)

For the affine spinor connections from (3.11), we
find

(3.13)

Flat space-time matrices  we will choose in the
form given in [49]:

∇µ AB( ) ∇µA( )B A ∇µB( ),+=

∇µ A*( ) ∇µA( )*,=

∇µγ ν 0,=

∇µψ ∂ψ
∂x

µ-------- Γµψ,–=

∇µψ ∂ψ
∂x

µ-------- ψΓµ,+=

γ µγ ν γ νγ µ
+ 2g

µν
=

γ

gµν x( ) eµ
a

x( )eν
b

x( )ηab, γ µ x( ) eµ
a

x( )γ a,= =

eµ
a

∇µγ ν
∂γ ν

∂x
µ-------- Γνµ

ρ γ ρ– Γµγ ν– γ νΓµ+ 0,= =

Γµ x( ) 1
4
---gρσ x( ) ∂µeδ

b
eb

ρ Γµδ
ρ

–( )γ σγ δ
.=

γ 0 γ 0, γ 1 a t( )γ 1, γ 2 b t( )γ 2,= = =

γ 3 c t( )γ 3,=

γ 0 γ 0
, γ 1 γ 1

/a t( ), γ 2 γ 2
/b t( ),= = =

γ 3 γ 3
/c t( ).=

Γ0 0, Γ1
1
2
--- ȧ t( )γ 1γ 0

,= =

Γ2
1
2
--- ḃ t( )γ 2γ 0

, Γ3
1
2
--- ċ t( )γ 3γ 0

.= =

γ

Defining γ5 as follows,

we obtain

3.1.2. Scalar field Lagrangian. The massless scalar
field Lagrangian is chosen to be an arbitrary function of
invariant ϒ = ϕ,αϕ,α:

(3.14)

The scalar field Lagrangian (3.14) becomes linear at
ϒ  0, i.e.,

(3.15)

As a massless nonlinear scalar field Lagrangian, one
can choose, e.g., the Born–Infeld Lagrangian (4.56)
that becomes linear at the weak limit.

3.1.3. Interacting term. The interacting term in the
Lagrangian is chosen in the form of derivative coupling
[34, 37, 38], i.e.,

(3.16)

with λ1 being the coupling constant and F1 some arbi-
trary function of I and J, i.e., F1 = F1(I, J). In this paper,
F1(I, J) is taken to be either a power law or a trigono-
metric function of its arguments.

The contribution of the perfect fluid to the system is
performed by means of its energy-momentum tensor,
which acts as one of the sources of the corresponding
gravitational field equations. So here we do not need to
write the Lagrangian density �pf explicitly. The reason
for writing �pf in Eqs. (3.1) and (3.2) action and lag is
to underline that we are dealing with a self-consistent

γ 0

1 0 0 0

0 1 0 0

0 0 1– 0

0 0 0 1–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

, γ 1

0 0 0 1

0 0 1 0

0 1– 0 0

1– 0 0 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
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⎛ ⎞

,= =

γ 2
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0 0 i 0

0 i 0 0
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⎜ ⎟
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⎜ ⎟
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⎛ ⎞

, γ 3

0 0 1 0

0 0 0 1–

1– 0 0 0

0 1 0 0⎝ ⎠
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.= =

γ 5
 = 

i
4
---Eµνσργ µγ νγ σγ ρ

, Eµνσρ–  = g– εµνσρ,

ε0123 1,=

γ 5
i g– γ 0γ 1γ 2γ 3

– iγ 0γ 1γ 2γ 3
– γ 5

,= = =

γ 5

0 0 1– 0

0 0 0 1–

1– 0 0 0

0 1– 0 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.=

�sc Ψ ϒ( ), ϒ ϕ α, ϕ α,
.= =

Ψ ϒ( )
ϒ 0→
lim

1
2
---ϒ ….+=

�int λ1ϕ α, ϕ α,
F1 λ1ϒF1,= =
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system. An interesting discussion of the action and
Lagrangian for a perfect fluid can be found in [50, 51].

3.2. Gravitational Field 

As a gravitational field, we consider the homoge-
neous anisotropic Bianchi type-I space-time. We chose
the gravitational part of the Lagrangian (3.2) in the
form

(3.17)

where R is the scalar curvature, κ = 8πG with G being
Einstein’s gravitational constant, and Λ is the cosmo-
logical constant.

We chose the B–I metric in the form [52]

(3.18)

Here, the metric functions a, b and c are the functions
of time t only. The inequality a ≠ b ≠ c represents the
anisotropy in space-time, whereas their space indepen-
dence shows its homogeneity.

The metric (3.18) has the following non-trivial
Christoffel symbols

(3.19)

The nontrivial components of the Ricci tensors are

(3.20a)

(3.20b)

(3.20c)

(3.20d)

From (3.20), one finds the following Ricci scalar for
the BI universe

(3.21)

The non-trivial components of Riemann tensors in
this case read

(3.22)

�g
R 2Λ+

2κ
-----------------,=

ds
2

dt
2

a
2

t( )dx
2

– b
2

t( )dy
2

– c
2

t( )dz
2
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Γ10
1 ȧ

a
---, Γ20

2 ḃ
b
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3 ċ
c
--,= = =

Γ11
0

aȧ, Γ22
0

bḃ, Γ33
0

cċ.= = =

R0
0 ȧ̇

a
--- ḃ̇

b
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c
--+ +⎝ ⎠

⎛ ⎞ ,–=

R1
1 ȧ̇

a
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ȧ
a
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b
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c
--+⎝ ⎠

⎛ ⎞+ ,–=

R2
2 ḃ̇

b
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ḃ
b
--- ċ

c
-- ȧ

a
---+⎝ ⎠

⎛ ⎞+ ,–=

R3
3 ċ̇

c
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ċ
c
-- ȧ

a
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b
---+⎝ ⎠
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R 2 ȧ̇
a
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b
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c
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ȧ
a
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b
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b
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c
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c
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a
---, R02

02
–

ḃ̇
b
---, R03
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ċ̇
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R12
12 ȧ

a
--- ḃ

b
---, R23

23
–

ḃ
b
--- ċ

c
--, R31

31
–

ċ
c
-- ȧ

a
---.–= = =

Now having all the non-trivial components of Ricci
and Riemann tensors, one can easily write the invari-
ants of gravitational field which we need to study the
space-time singularity. We return to this study later.

3.3. Field Equations

Using the variational principle, let us now write the
field equations corresponding to the action (3.1).

Variation of (3.1) action with respect to spinor field
ψ( ) gives nonlinear spinor field equations

(3.23a)

(3.23b)

where we denote

whereas variation of (3.1) with respect to scalar field
yields the following scalar field equation

(3.24)

Varying (3.1) with respect to metric tensor gµν, one
finds the Einstein’s field equation

(3.25)

where  is the Ricci tensor; R = gµνRµν is the Ricci

scalar; and  is the energy-momentum tensor of the
material field given by

(3.26)

Here  is the energy-momentum tensor of the
spinor field having the form

(3.27)

where �sp with respect to (3.23a) and (3.23b) takes the
form

(3.28)

The energy-momentum tensor of the scalar field

 is given by

(3.29)

ψ

iγ µ∇µψ mψ– �ψ �iγ 5ψ+ + 0,=

i∇µψγ µ
mψ �ψ– �iψγ 5

–+ 0,=

� �1 λ1�2+ 2S
∂F
∂I
------ λ1ϒ

∂F1

∂I
---------+⎝ ⎠

⎛ ⎞ ,= =

� �1 λ1�2+ 2P
∂F
∂J
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∂F1

∂J
---------+⎝ ⎠

⎛ ⎞ ,= =

1
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---------- ∂
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ν-------- g– g

νµ ∂Ψ
∂ϒ
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Rν
µ 1

2
---δν

µ
R– κTν

µ
– Λδν

µ
,+=

Rν
µ

Tν
µ

Tµ
ν

T spµ
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T scµ
ν

T intµ
ν

Tpfµ
ν

.+ + +=

T sp µ
ν

T spµ
ρ i

4
---g

ρν ψγ µ∇νψ ψγ ν∇µψ+(=

– ∇µψγ νψ ∇νψγ µψ– ) δµ
ρ�sp,–

�sp �S �P+( )– F I J,( ).+=

T sc µ
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T scµ
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dΨ
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--------ϕ µ, ϕ ν, δµ
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For the interaction field, we find

(3.30)

 is the energy-momentum tensor of a perfect fluid.
For a Universe filled with perfect fluid, in the comoving
system of reference (u0 = 1, ui = 0, i = 1, 2, 3), we have

(3.31)

The energy density ε of the perfect fluid is related to
the corresponding pressure p by the equation of state

(3.32)

where ζ is a constant and lies in the interval ζ ∈ [0, 1].
Depending on its numerical value, ζ describes the fol-
lowing types of Universes [24]

(dust Universe), (3.33a)

(radiation Universe), (3.33b)

(hard Universes), (3.33c)

(Zel’dovich Universe or stiff matter).(3.33d)

It was also shown by Jacobs [24] that if filled with
matter obeying (3.32) and (3.33), any initial anisotropy
in a BI universe quickly dies away and a BI universe
eventually evolves into a FRW Universe.

3.4. Solutions to the Field Equations

In this subsection, we solve the matter and gravita-
tional field equations. We will study the space-indepen-
dent solutions to the spinor and scalar field equations
(3.23a), (3.23b), and (3.24) so that ψ = ψ(t) and ϕ =
ϕ(t). We also define a time-dependent function τ(t):

(3.34)

which is indeed the volume scale of the BI space-time.
The spinor field equation (3.23a) then can be rewritten as

(3.35)

Introducing Vj(t) = (t), j = 1, 2, 3, 4, from
(3.35), one deduces the following system of equations:

(3.36a)

(3.36b)

(3.36c)

(3.36d)

From (3.23a) and (3.23b), we also write the equa-

tions for the invariants S = , P = , and A =

T intµ
ν

2λ1F1ϕ µ, ϕ ν, δµ
ν�int.–=

Tpf µ
ν

Tpfµ
ν

p ε+( )uµu
ν δµ

ν
p– ε p– p– p–, , ,( ).= =

ppf ζεpf,=

ζ 0,=

ζ 1/3,=

ζ 1/3 1,( ),∈

ζ 1,=

τ abc g– ,= =

iγ 0 ∂
∂t
----- τ̇

2τ
-----+⎝ ⎠

⎛ ⎞ ψ mψ– �ψ �iγ 5ψ+ + 0.=

τψ j

V̇1 i m �–( )V1 �V3–+ 0,=

V̇2 i m �–( )V2 �V4–+ 0,=

V̇3 – i m �–( )V3 �V1+ 0,=

V̇4 – i m �–( )V4 �V2+ 0.=

ψψ iψγ 5ψ
ψγ 5γ 0ψ

(3.37a)

(3.37b)

(3.37c)

where S0 = τS, P0 = τP, and A0 = τA, leading to the fol-
lowing relation

(3.38)

From the scalar field equation (3.24), in this case we
have

(3.39)

Let us now solve the Einstein equations. For this
purpose we rewrite the Einstein equations (3.25) corre-
sponding to the metric (3.18) explicitly,

(3.40a)

(3.40b)

(3.40c)

(3.40d)

where overdots denote a differentiation with respect to t.
Using the property of flat space-time Dirac matrices

and the explicit form of covariant derivative ∇µ, one
finds the expressions for the components of the energy-
momentum tensor:

(3.41)

Let us express a, b, c in terms of τ. For this we notice
that subtraction of Einstein equations (3.40b) and
(3.40a) leads to the equation

(3.42)

From (3.42), one finds

(3.43)
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c
-- ċ
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b
---–⎝ ⎠

⎛ ⎞ ȧ
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where X1 is the integration constant. This means that as
τ  ∞, the expansion rate becomes isotropic in the
(x, y)-plane, i.e.,

(3.44)

with q being some integration constant.
In general, the Eq. (3.43) gives the following rela-

tion between the metric functions a and b:

(3.45)

with D1 being the constant of integration. Analogously,
one also finds

(3.46)

(3.47)

where D2, D3, X2, X3 are integration constants. Note
that, as in case of (3.43), one can easily prove that the
expansion rate becomes isotropic in all directions as
τ  ∞.

After a little manipulation with the Eqs. (3.45),
(3.46) and (3.47), we find the following functional
dependence between the constants Xi’s and Di’s:

(3.48)

Finally, on account of (3.34) from (3.45), (3.46), and
(3.47), we write the metric functions a(t), b(t), and c(t)
explicitly as [53]

(3.49a)

(3.49b)

(3.49c)

where

Thus, the system of Einstein’s equations is com-
pletely integrated. In this process of integration, only
the first three of the complete system of Einstein equa-
tions have been used. General solutions to these three
second order equations have been obtained. The solu-
tions contain four arbitrary constants: D1, D3, X1, X3. To
verify the correctness of the obtained solutions, it is
necessary to use the fourth equation. This can be done
either by putting a, b, c into Eq. (3.40d), or by solving
all four equations of the system (3.40) together.

ȧ
a
---

ḃ
b
--- a⇒ qb,= =

a
b
--- D1 X1

td
τ
----∫⎝ ⎠

⎛ ⎞ ,exp=

b
c
--- D2 X2

td
τ
----∫⎝ ⎠

⎛ ⎞ ,exp=

c
a
--- D3 X3

td
τ
----∫⎝ ⎠

⎛ ⎞ ,exp=

D1D2D3 1, X1 X2 X3+ + 0= =

a t( ) A1τ1/3
B1/3( ) τ 1–

td∫[ ],exp=

b t( ) A2τ1/3
B2/3( ) τ 1–

td∫[ ],exp=

c t( ) A3τ1/3
B3/3( ) τ 1–

td∫[ ],exp=

A1 D1/D3( )3 , A2 1/ D1
2
D3( )3 ,= =

A3 D1D3
2( )3 ,=

B1 = X1 X3, B2–  = 2X1 X3+( ), B3–  = X1 2X3.+

Insertion of a, b, c into (3.40d) should lead either to
identity or to some additional constraint between the
constants. Indeed, putting a, b, c from (3.49) into
(3.40d) one come to the equality

(3.50)

with the solution in quadrature

(3.51)

In our further investigation, we consider a second
possibility of using all four equations of the system
(3.40). For this, we take the sum of Einstein equations
(3.40a), (3.40b), (3.40c), and (3.40d) multiplied by 3,
i.e. ((3.40a) + (3.40b) + (3.40c) + 3 × (3.40d)). This
leads to the second order differential equation for defin-
ing τ(t):

(3.52)

For the right-hand-side of (3.52) to be a function of
τ only, the solution to this equation is well-known [54].
As we see in the next section, the right-hand-side of
(3.52) is indeed a function of τ. Given the explicit form
of F and �int from (3.52), one finds the concrete solu-
tion for τ in quadrature.

For purposes of our further study, we rewrite the
metric functions and their derivatives in a compact form
setting a1, a2, and a3 for a, b, and c, respectively. From
(3.49), we then have

(3.53a)

(3.53b)

(3.53c)

Defining the Hubble constant in analogy with a
FRW universe from (3.53), we obtain

(3.54)

or a generalized one

. (3.55)

The deceleration parameter given by

(3.56)

for a FRW universe with R being the scale factor can
also be generalized for the BI space-time to obtain
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(3.57)

Inserting (3.53) into (3.57), one obtains

(3.58)

Let us now go back to the Einstein equation (3.25).
Taking the divergence of the Einstein equation, we
obtain

(3.59)

which in our case reads

(3.60)

We have

which gives

(3.61)

On the other hand,

(3.62)

Putting (3.61) and (3.62) into (3.60), one finds

(3.63)

where S0 = τS and P0 = τP. From (3.37a) and (3.37b),

we have (m – �)  – �  = 0. Further taking into
account the equation of state, i.e., p = ζε, we find

(3.64)

with the solutions

(3.65)

where ε0 is the integration constant. Note that the rela-
tion (3.65) holds for any combination of the material
field Lagrangian, e.g., spinor or scalar, or interacting
spinor and scalar fields. Thus we see that the right-hand

qi
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ν
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ν
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ρ
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Ṫ0
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τ
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0
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⎛ ⎞ ϕ̇2+=
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=  mS F I J,( )– 2
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τ
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1 ζ+( )ε
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τ

-----+ 0,=

ε
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τ1 ζ+
----------, p

ζε0

τ1 ζ+
----------,= =

side of (3.52) is a function of τ only. Then (3.52), mul-
tiplied by 2 , can be written as

(3.66)

We write the solution to Eq. (3.66) in quadrature:

(3.67)

From here on, we set t0 = 0, as this gives only the
shift of the initial time. Given the explicit form of
F(I, J), from (3.67), one finds concrete function τ(t).
Once the value of τ is obtained, one can get expressions
for components ψj(t), j = 1, 2, 3, 4. Thus the initial sys-
tems of Einstein and Dirac equations have been com-
pletely integrated.

3.5. Invariants of Space-Time

To investigate the existence of singularity (singular
point) of the gravitational case, one has to study the
invariant characteristics of the space-time. In general
relativity, these invariants are composed from the cur-
vature tensor and the metric one. Contrary to the elec-
trodynamics, where there are two invariants only (J1 =
FµνFµν and J2 = ∗FµνFµν), in 4-D Riemann space-time,
there are 14 independent invariants. They are [55]

(3.68a)

(3.68b)
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(3.68d)
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where  =  +  and ∗Rαβµν =

 = , ∗  =  with

Eαβµν =  and Eαβµν = . Here, εαβµν is

the totally antisymmetric Levi–Civita tensor with
ε0123 = 1. Instead of analyzing all 14 invariants men-
tioned above, one can confine this study to only three,
namely, the scalar curvature I1 = R, I2 = RµνRµν, and the
Kretschmann scalar I3 = RαβµνRαβµν [56, 57]. At any
regular space-time point, these three invariants, I – 1, I2,
and I3 should be finite. Let us rewrite these invariants in
detail.

For the Bianchi I metric, one finds the scalar curva-
ture

(3.69)

Since the Ricci tensor for the Bianchi I metric is

diagonal, the invariant I2 = RµνRµν ≡  is a sum of
squares of diagonal components of the Ricci tensor, i.e.,

(3.70)

with

(3.71a)

(3.71b)

(3.71c)

(3.71d)

Analogously, for the Kretschmann scalar in this case

we have I3 = , a sum of squared components of

all nontrivial :

(3.72)

It was established earlier that the metric functions a,
b, c and their derivatives are in functional dependence
with τ. Therefore, in view of (3.53), we see that at any
space-time point where τ = 0, the invariants I1, I2, I3
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τ
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τ abc.=

become infinity, hence the space-time becomes singu-
lar at this point.

3.6. Physical Observable Values

To build a descriptive picture of any physical theory,
we need to express the results through real physical val-
ues that can be measured experimentally. In General
Relativity, where we are dealing with objects in 4D
space-time, the problem of defining the physical
observable values is not a trivial one. A mathematical
apparatus to calculate the physical observable values in
4D pseudo-Riemannian space was first introduced by
Zelmanov and is referred to as the theory of chronomet-
ric invariants [58–60]. By chronometric invariant val-
ues, it is understood that physical observable values in
the accompanying frame should be invariant with
respect to the transformation of time.

Let us study this point in detail. Consider two sys-
tems of coordinates xi and x ' i. These two systems are
said to be related to the same system of reference if they
obey the following relations:

(3.73)

The above conditions mean that the systems of coor-
dinates belonging to the same system of reference are
stationary with respect to each other. On the other hand,
if two system of coordinates move relative to each
other, they belong to different systems of references.
Then the coordinate transformation that leaves the two
systems of coordinates in the same system of reference
can be written as a system of two transformations real-
ized together: chronometric transformations and 3D
transformation

(3.74a)

(3.74b)

Quantities invariant under the group of transforma-
tions (3.74) are considered to be chronometric invariant
quantities. According to the Zelmanov theorem, chro-
nometrically invariant (physical observable) projec-
tions of 4D vector Qα are [60]

(3.75)

where uα is the 4D velocity with uαuα = 1 and Pαβ is the
projection operator:

(3.76a)

(3.76b)

(3.76c)

(3.76d)
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To study the role of the nonlinear spinor and scalar
fields in the formation of configurations with localized
energy density and limited total energy, spin, and
charge of the spinor field, we first define the spinor cur-
rent and spin tensor.

Using the solutions obtained, one can write the com-
ponents of spinor current:

(3.77)

Taking into account that  = , where ψ† =

( , , , ) and ψj = Vj/ , j = 1, 2, 3, 4 for
the components of spin current, we write

(3.78a)

(3.78b)

(3.78c)

(3.78d)

The component j0 defines the charge density of
spinor field that has the following chronometric-invari-
ant form

(3.79)

Note that the definition of chronometric invariant
values adopted here differs from the one suggested by
Zelmanov. In our case, we simply underline the fact
that the experimentalist measures ρ, not j0. So, being
the physical observable value, ρ can be termed as chro-
nometrically invariant. The total charge of the spinor
field is defined as

(3.80)

Since ρ = ρ(t) and  = τ(t), for the charge Q to
make any sense, we should integrate it for any finite
range by x, y, and z, and then normalize it to unity.

Let us consider the spin tensor [49]

(3.81)

We write the components Sik, 0 (i, k = 1, 2, 3), defin-
ing the spatial density of spin vector explicitly. From
(3.81) we have

(3.82)

which defines the projection of spin vector on the k
axis. Here, i, j, k takes the value 1, 2, 3, and i ≠ j ≠ k.

j
µ ψγ µψ.=

ψ ψ†γ 0

ψ1
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* τ
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ρ j0 j
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.=

Q ρ g3– x y z.ddd
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∞

∫
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∞
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µν ε, 1

4
---ψ γ εσµν σµνγ ε

+{ }ψ.=

S
ij 0, 1

4
---ψ γ 0σij σijγ 0

+{ }ψ 1
2
---ψγ 0σijψ,= =

Thus, for the projection of spin vectors on the X, Y, and
Z axes, we find

(3.83a)

(3.83b)

(3.83c)

The chronometric invariant spin tensor takes the
form

(3.84)

and the projection of the spin vector on the k axis is
defined by

(3.85)

Once we solve the spinor field equations, inserting
them into (3.78)–(3.80), (3.83), and (3.85), we find the
corresponding physical observable quantities. We
return to these definitions in the next section, where the
exact solutions of the spinor field will be given for some
concrete choice of nonlinearity.

3.7. Λ Term and Its Role in the Evolution
of the Universe

To allow a steady-state cosmological solution to the
gravitational field equations, Einstein [41, 42] intro-
duced a fundamental constant, known as the cosmolog-
ical constant or Λ term, into the system. Soon after
E. Hubble had experimentally established that the Uni-
verse is expanding, Einstein returned to the original
form of his equations citing his temporary modification
of them as the biggest blunder of his life. The Λ term
made a temporary comeback in the late 60’s. Finally,
after the pioneering paper by A. Guth [61] on inflation-
ary cosmology, researchers began to study the models
with the Λ term with growing interest (an excellent
review on the cosmological constant can be found in
[62]). In this paper, a negative Λ corresponds to the uni-
versal repulsive force, while a positive one gives an
additional gravitational force. Note that a negative Λ is
often considered to be a form of dark energy. To see the
role of a Λ term in general, let us study the system of
Einstein equation once again. In doing so, we first
rewrite the equation for τ as

(3.86)

On the other hand, from the Bianchi identity  = 0,
we find
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(3.87)

After a little manipulation from (3.86) and (3.87),

one finds the following expression for :

(3.88)

where the definition of the generalized Hubble constant
/τ = 3H has been used. Let us now study the relation

(3.88) in detail. Consider the case where Λ = 0. At the
moment when the expansion rate is zero (this might be
at a time prior to the “Big Bang,” or a time in the far
future when the universe has ceased to expand), we

have H = 0. Then the nonnegativity of  suggests that
C00 ≤ 0. Let us now consider another case when τ is
large enough for the term 1/τ2 to be omitted. As we

know,  (note that  is the energy density of usual
matter) decreases with the increase of τ. If τ is big

enough for  to be neglected, from (3.88) we find

  0.

This means that for τ to be infinitely large, λ should
be non-positive. In case of Λ = 0, we find that beginning
from some value of τ, the rate of expansion of the Uni-
verse becomes trivial, i.e., the universe does not expand
with time, whereas for Λ < 0 the expansion process
continues forever. As far as positive Λ is concerned, its
presence imposes some restriction on the energy den-

sity , namely,  can never be small enough to be
ignored. For the material field in question, as will be
shown later, there exists some upper limit for τ as well
(note that τ is essentially nonnegative, i.e., bounded
from below). Thus we see that a positive Λ, depending
on the choice of parameters, can give rise to an oscilla-
tory mode of expansion. Thus we come to the following
conclusion:

Let  be the source of the Einstein field equation;

 is the energy density and , ,  are the prin-

cipal pressure, and  =  = . An ever-expanding
BI Universe may be obtained if and only if the Λ term
is negative (describes a repulsive force and can be
viewed as a form of dark energy) and is introduced into
the system as in (3.25).

3.8. Cosmological Singularity
and the Dominant Energy Condition

Recalling that a timelike geodesic is a world line for
a particle moving without acceleration in the proper
reference system, we define the following:

A spacetime is nonsingular if any timelike geode-
sics, or null geodesics, can be continued into the past

Ṫ0
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and the future without bound, i.e., to infinite proper
length for the timelike geodesics and to an infinite value
of an affine parameter for the null geodesics. Such a
spacetime is termed “causally, geodesically complete.”
The requirements on the completeness are the mini-
mum necessary so that the spacetime does not contain
a singularity. It is necessary to point out that a space-
time not satisfying these requirements, but with a sin-
gularity, does not necessarily contain points with infi-
nite curvature or with a small hole.

From the physical point of view, of course, one
ought to take as singular any spacetime in which the
geodesic world line of a particle cannot be continued
without bound with respect to the proper time of this
particle, for such a singular spacetime would lead to a
violation of conservation laws.

As applied to the cosmological problem, the Hawk-
ing–Penrose theorem reads as follows [63]:

Theorem. A space-time � cannot satisfy causal
geodesic completeness if the GTR equations hold and if
the following conditions are fulfilled:

(i) The space-time � does not contain closed time-
like curves.

(ii) The energy condition (dominant energy condi-
tion) is satisfied at every point. The energy condition
may be expressed as

(3.89)

With Einstein’s equations

(3.90)

(3.89) becomes

(3.91)

If, in an eigentetrad of Tµν, ε denotes the energy den-
sity and p1, p2, p3 denote the three principal pressures,
then (3.91) can be written as

(3.92a)

(3.92b)

The weak energy condition is

(3.93)

which is a consequence of (3.89).
(iii) On each timelike or null geodesic γ, there is at

least one point for which

(3.94)

where Ka is the tangent to the curve γ at the given point
and where the brackets on the subscripts imply anti-
symmetrization. If γ is timelike, we can rewrite (3.94) as
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(3.95)

(iv) The space-time � contains either (a) a trapped
surface, (b) a point P for which the convergence of all
the null geodesics through P changes sign somewhere
to the past of P, or (c) a compact spacelike hypersur-
face.

In our further analysis of the results, consider spe-
cifically the dominant energy condition. As will be
shown later, the regular solutions obtained by means of
the nonlinear term do not always satisfy the dominant
energy condition.

4. QUALITATIVE ANALYSIS OF THE RESULTS

In this section, we shall analyze the general results
obtained in the previous section. In the subsections that
follow, we will study the system with nonlinear spinor
and nonlinear scalar fields respectively, as well with
interacting spinor and scalar fields in the absence of
perfect fluid and Λ term. Further, we will introduce the
Λ term and then perfect fluid to determine their role in
the evolution of the universe.

4.1. Nonlinear Spinor Field in BI Universe

In this subsection we study the nonlinear spinor field
in BI universe. In doing so, we first consider the linear
case. The reason for getting the solution to the self-con-
sistent system of equations for the linear spinor and
gravitational fields is the necessity of comparing this
solution with that for the system of equations for the
nonlinear spinor and gravitational fields, which permits
clarification of the role of nonlinear spinor terms in the
evolution of the cosmological model in question.

In this case we get explicit expressions for the com-
ponents of spinor field functions and metric functions:

(4.1a)

(4.1b)

(4.1c)

(4.1d)

with C1, C2, C3, C4 being the integration constants. On
the other hand, from (3.37a) we find

(4.2)

where C0 is an integration constant and related to the

previous ones as C0 =  +  –  – . For the
components of the spin current from (3.78a)–(3.78d),
we find

(4.3a)

RabcdK
c
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d
0.≠

ψ1 t( ) C1/ τ imt–[ ],exp(=

ψ2 t( ) C2/ τ imt–[ ],exp(=

ψ3 t( ) C3/ τ imt[ ],exp(=

ψ4 t( ) C4/ τ imt[ ],exp(=

S
C0

τ
------,=

C1
2

C2
2

C3
2

C4
2

j
0 1

τ
--- C1

2
C2

2
C3

2
C4

2
+ + +[ ],=

(4.3b)

(4.3c)

(4.3d)

whereas, for the projection of spin vectors on the X, Y
and Z axes, we find

(4.4a)

(4.4b)

(4.4c)

From (3.80), we find the charge of the system in a
volume �

(4.5)

Thus, we see that the total charge of the system in a
finite volume is always finite.

Let us now determine the function τ. In absence of
perfect fluid, for the linear spinor field, we have

(4.6)

Taking (4.6) into account, for τ we write

(4.7)

with the solutions

(4.8)

where M =  and y1, y0, q1, q2 are the constants.

Let us now analyze the solutions obtained.
First, we study the case when Λ = 0. It can be shown

that [35]

(4.9)

This means that the quadratic polynomial (1/2)Mt2 +
y1t + y0 = 0 possesses real roots, i.e., τ(t) in case of Λ = 0

turns into zero at t = t1, 2 = –y1/M ± 
and the solution obtained is the singular one. At t  ∞,
in this case we have

which leads to the conclusion about the asymptotical
isotropization of the expansion process for the initially

j
1 2

aτ
----- C1C4 C2C3+[ ] 2mt( ),cos=

j
2 2

bτ
----- C1C4 – C2C3[ ] 2mt( )sin ,=

j
3 2

cτ
----- C1C3 – C2C4[ ] 2mt( )cos ,=

S
23 0, 1

bcτ
-------- C1C2 C3C4+[ ],=

S
31 0,

0,=

S
12 0, 1

2abτ
------------ C1

2
C2

2
– C3

2
C4

2
–+[ ].=

Q C1
2

C2
2

C3
2

C4
2

+ + +[ ]�.=

T0
0

mS, T1
1

T2
2

T3
3

0.= = = =

τ̇̇ M 3Λτ,–=

τ

1/3Λ( ) M q1 3Λt–( )sinh–[ ], Λ 0,<

1/2( )Mt
2

y1t y0, Λ+ + 0,=

1/3Λ( ) M q2 3Λt( )sin–[ ], Λ 0,>⎩
⎪
⎨
⎪
⎧

=

3
2
---κmC0

y1
2

2My0– X1
2

X1X3 X3
2
/3 0.>+ +(=

y1/M( )2
2y0/M–

τ t( ) 3
4
---κmC0t

2
, a t( ) b t( ) c t( ) t

2/3
,≈ ≈ ≈ ≈



S26

PHYSICS OF PARTICLES AND NUCLEI      Vol. 37      Suppl. 1      2006

SAHA

anisotropic BI space. Thus, the solution to the self-con-
sistent system of equations for the linear spinor and
gravitational fields is the singular one at the initial time.
In the initial state of evolution of the field system, the
expansion process of space is anisotropic, but at t  ∞,
the isotropization of the expansion process takes place.
As one sees, the components of spin current and projec-
tions of spin vector are singular at space-time points
t1, 2, where τ vanishes.

For Λ < 0, we see that the solution is singular at t =

t0 = (1/ )arcsinh(M/q1), and the isotropization of
the expansion process takes place as t  ∞. Note that
the isotropization process in this case is rather rapid.

For Λ > 0, we have the oscillatory solutions. Taking
into account that τ is a non-negative quantity, it can be
shown that the model has singular solutions at t = (4k +

1)π/2 , k = 0, 1, 2, 3, …, with M = q2. For M > q2,
we have τ that is always positive definite, i.e., the solu-
tions obtained are regular at each space-time point.

Let us now go back to the nonlinear case. We con-
sider the following forms of nonlinear term: (i) F = F(I);
(ii) F = F(J); (iii) F = F(K±) with K± = I ± J.

(i) Let us consider the case when F = F(I). From
(3.37a), we find

(4.10)

Note that in this case we denote the constants in the
same way as we did for the linear case, but the constants
in these cases are not necessarily identical. Spinor field
equations in this case read

(4.11a)

(4.11b)

(4.11c)

(4.11d)

As in the considered case F = F(S), from (4.10) it
follows that F(I) and �1 are functions of τ only. Taking
this fact into account, we get explicit expressions for
the components of spinor field functions

(4.12a)

(4.12b)

(4.12c)

(4.12d)
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ponents of the spin current from (3.78a)–(3.78d), we
find

(4.13a)

(4.13b)
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whereas, for the projection of spin vectors on the X, Y,
and Z axes, we find

(4.14a)

(4.14b)

(4.14c)

We now study the equation for τ in detail, choosing
the nonlinear spinor term as F = λI (n/2) = λSn, with λ
being the coupling constant and n > 1. In this case, for τ,
one gets

(4.15)

The first integral of the foregoing equation takes the
form

(4.16)

Here,  is the integration constant that is positively

defined and connected with the constants Xi as  =

(  + X1X3 + )/9κC0 [35]. The sign C0 is determined

by the positivity of the energy-density  of the linear
spinor field, i.e.,

(4.17)

It is obvious from (4.17) that C0 > 0. Now one can
write the solution to the equation (4.16) in quadratures:

(4.18)

The constant of integration in (4.18) has been taken
to be zero, as it only gives the shift of the initial time.
Let us study the properties of solution obtained for dif-
ferent choice of n, λ, and Λ. First we study the case with
Λ = 0.

For n > 2 from (4.18), one gets

(4.19)
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This leads to the conclusion about isotropization of
the expansion process of the BI space-time. It should be
remarked that the isotropization takes place if and only
if the spinor field equation contains the massive term
(cf. the parameter m in (4.18)). This is not the case for
a massless spinor field, since from (4.18) we get

(4.20)

Inserting (4.20) into (3.49a)–(3.49c), one comes to
the conclusion that the functions a(t), b(t), and c(t) are
different.

Let us consider the properties of solutions to Eq. (4.15)
when t  0. For λ < 0, from (4.18) we get

(4.21)

i.e., solutions are singular. For λ > 0, from (4.18) it fol-
lows that τ = 0 cannot be reached for any value of t, as
in this case the denominator of the integrand in (4.18)
becomes imaginary. This means that for λ > 0, there
exist regular solutions to the previous system of equa-
tions [34]. The absence of the initial singularity in the
considered cosmological solution appears to be consis-
tent with the violation for λ > 0 of the dominant energy
condition in the Hawking–Penrose theorem.

A particular choice of spinor field nonlinearity
(generated by self-action) gives rise to a singularity-
free BI cosmological model even in absence of the Λ
term but at the expense of a broken dominant energy
condition in the Hawking–Penrose theorem.

Proof. To prove that in the case considered the dom-
inant energy condition is violated, we rewrite it in the
following form:
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(4.22c)

(4.22d)

which for the BI metric read
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(4.23d)

Let us go back to the energy density of spinor field,
which in this case coincides with the total energy den-
sity. From
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the energy density of spinor field becomes negative. On
the other hand, we have

(4.26)

for any non-negative value of τ. Thus, we see all four
conditions in (4.23) violated, i.e., the absence of initial
singularity in the considered cosmological solution
appears to be consistent with the violation of the domi-
nant energy condition in the Hawking–Penrose theo-
rem.

Let us consider the Heisenberg–Ivanenko equation
[64] setting n = 2 in (4.15). In this case, the equation for
τ(t) does not contain the nonlinear term and its solution
coincides with that of the linear one. The spinor field
functions in this case are written as follows:

(4.27a)

(4.27b)

(4.27c)

(4.27d)

where Z = , B = M(t1 – t2), and t1, 2 = –y1/M ±

 are the roots of the quadratic equa-
tion Mt2 + 2y1t + 2y0 = 0. As in the linear case, the
obtained solution is singular at initial time and asymp-
totically isotropic as t  ∞.

We now study the properties of solutions to
Eq. (4.15) for 1 < n < 2. In this case, it is convenient to
present the solution (4.18) in the form

(4.28)

As t  ∞, from (4.28) we get the equality (4.19),
leading to the isotropization of the expansion process.
If m = 0 and λ > 0, τ(t) lies on the interval

If m = 0 and λ < 0, the relation (4.28) at t  ∞
leads to the equality

(4.29)

τn 1– λC0
n 1–

m
---------------,<

T1
1

T2
2

T3
3 λ n 1–( )C0

n

τn
--------------------------- 0>= = =

V1

C1

τ
------ imt–[ ]Z

4iλC0/B
,exp=

V2

C2

τ
------ imt–[ ]Z

4iλC0/B
,exp=

V3

C3

τ
------ imt[ ]Z

4iλC0/B–
,exp=

V4

C4

τ
------ imt[ ]Z

4iλC0/B–
,exp=

t t1–( )
t t2–( )

----------------

y1/M( )2
2y0/M–

τd

mτ λτ2 n–
C0

n 1–
– y1

2
+

-------------------------------------------------------∫ 3κC0t.=

0 τ t( ) y1
2
/λC0

n 1–( )
1/ 2 n–( )

.≤ ≤

τ t( ) 3/4( )n
2κ λ C0

n[ ]
1/n

t
2/n

.≈
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Substituting (4.29) into (3.49) and taking into
account that at t  ∞,

due to –2/n + 1 < 0, we obtain

(4.30)

This means that the solution obtained tends to the
isotropic one. In this case, the isotropization is provided
not by the massive parameter, but by the degree n in the
term F = λSn. Equation (4.28) implies

(4.31)

which means the solution obtained is initially singular.
Thus, for 1 < n < 2, there exist only singular solutions
at the initial time. At t  ∞, the isotropization of the
expansion process of the BI space takes place both for
m ≠ 0 and for m = 0.

Finally, let us study the properties of the solution to
the equation (4.15) for 0 < n < 1. In this case, we use the
solution in the form (4.28). Since now 2 – n > 1, then
with the increasing of τ(t) in the denominator of the

integrand in (4.28), the second term λτ2 – n

increases faster than the first one. Therefore the solu-
tion describing the space expansion can be possible
only for λ < 0. In this case at t  ∞, for m = 0 as well
as for m ≠ 0, one can get the asymptotic representation
(4.29) of the solution. This solution, as for the choice
1 < n < 2, provides asymptotically isotropic expansion
of the BI space-time. For t  0, in this case we shall
get only the singular solution of the form (4.31).

For a nonzero Λ term, we study the following situa-
tions depending on the sign of Λ and λ.

case (i). Λ = –ε2 < 0, λ > 0. In this case for n > 2 and
t  ∞, we find

(4.32)

Thus we see that the asymptotic behavior of τ does
not depend on n and is defined by the Λ term. From
(3.49), it is obvious that asymptotic isotropization takes
place.

From (4.18), it also follows that τ cannot be zero at
any moment, since the integrand turns out to be imagi-
nary as τ approaches zero. Thus, the solution obtained
is a nonsingular one, thanks to spinor field nonlinearity,
and is asymptotically isotropic. As has been noted ear-
lier, the absence of initial singularity in the considered
cosmological model results in the violation of the dom-
inant energy condition.

case (ii). Λ > 0 and λ > 0. For n > 2, (4.18) admits
only nonsingular oscillating solutions, since τ > 0 and
is bounded from above. Consider the case with n = 4
and for simplicity set m = 0. Then, from (4.18), one gets

td
τ
----∫

n 3κ λ n
2
C0

n( )
1/n

n 2–( )2
2/n

---------------------------------------t
2/n– 1+

0,≈

a t( ) b t( ) c t( ) τ t( )[ ]1/3
t

2/3n ∞.∼ ∼ ∼ ∼

τ t( ) t 0→ 3κC0y1
2
t 0,≈

C0
n 1–

τ t( ) e
3εt

.≈

(4.33)

case (iii). Λ < 0 and λ < 0. In this case we find

(4.34)

and

(4.35)

which means that the solutions obtained are initially
singular, and asymptotic isotropization takes place as t
approaches ∞.

case (iv). Λ > 0 and λ < 0. In this case, for the initial
value of t we find the solution that coincides with
(4.34), i.e.,

(4.36)

On the other hand, since Λ > 0, τ should be bounded
from above, otherwise the integrand becomes imagi-
nary. Thus, beginning from some t = t0, where t0 is big
enough, we can present the solution in the form

(4.37)

Thus, we see that in this case the solution is singular
and oscillatory. After the analysis done above, we con-
clude that the nonlinear term dominates the initial stage
of evolution, while the Λ term dominates the asymp-
totic stage.

(ii) We study the system when F = F(J), which
means that in the case considered � = 0. Let us note
that, in the unified nonlinear spinor theory of Heisen-
berg, the massive term remains absent, and according to
Heisenberg, the particle mass should be obtained as a
result of quantization of spinor prematter [65]. In the
nonlinear generalization of classical field equations, the
massive term does not possess the significance that it
possesses in the linear one, as it by no means defines the
total energy (or mass) of the nonlinear field system.
Thus, without losing the generality, we can consider
massless spinor field putting m = 0. Then, from (3.37),
one gets

(4.38)

The system of spinor field equations in this case
reads

(4.39a)

(4.39b)

(4.39c)

τ t( )

=  
1

2Λ
----------- κC0τ0 κ2

C0
2τ0

2
4ΛλC0

4
+ 2 3Λtsin+[ ]

1/2
.

τ
t 0→
lim 3λn

2
C0

n
t

2
/4–[ ]

1/n
,≈

τ
t ∞→
lim e

3Λt
,≈

τ
t 0→
lim 3λn

2
C0

n
t

2
/4–[ ]

1/n
.≈

τ
t t0≥
lim 3Λt.sin≈

P t( )
D0

τ
------, D0 const.= =

V̇1 �1V3– 0,=

V̇2 �1V4– 0,=

V̇3 �1V1+ 0,=
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(4.39d)

Defining U(σ) = V(t), where σ = , we rewrite

(4.39) as

(4.40a)

(4.40b)

(4.40c)

(4.40d)

where prime (') denotes differentiation with respect to σ.
Differentiating the first equation of system (4.40) and
taking into account the third one, we get

(4.41)

which leads to the solution

Analogically for U2 and U4, one gets

where Di are the constants of integration. Finally, we
can write

(4.42a)

(4.42b)

(4.42c)

(4.42d)

Putting (4.42) into the expressions (4.38), one
comes to

For the components of the spin current from (3.78),
we find

(4.43a)

(4.43b)

(4.43c)

V̇4 �1V2+ 0.=

�1 td∫

U1' U3– 0,=

U2' U4– 0,=

U3' U1+ 0,=

U4' U2+ 0,=

U1'' U1+ 0,=

U1 D1e
iσ

iD3e
iσ–

,+=

U3 iD1e
iσ

D3e
iσ–

.+=

U2 D2e
iσ

iD4e
iσ–

,+=

U4 iD2e
iσ

D4e
iσ–

,+=

ψ1
1

τ
------ D1e

iσ
iD3e

iσ–
+( ),=

ψ2
1

τ
------ D2e

iσ
iD4e

iσ–
+( ),=

ψ3
1

τ
------ iD1e

iσ
D3e

iσ–
+( ),=

ψ4
1

τ
------ iD2e

iσ
D4e

iσ–
+( ).=

D0 2 D1
2

D2
2

D3
2

– D4
2

–+( ).=

j
0 2

τ
--- D1

2
D2

2
D3

2
D4

2
+ + +[ ],=

j
1 4

aτ
----- D2D3 D1D4+[ ] 2 �1 td∫[ ],cos=

j
2 4

bτ
----- D2D3 – D1D4[ ] 2 �1 td∫[ ]sin ,=

(4.43d)

whereas, for the projection of spin vectors on the X, Y,
and Z axes, we find

(4.44a)

(4.44b)

(4.44c)

We now choose the nonlinear term as F = λJn = λP2n,
with λ being the coupling constant. In this case, for the
components of energy-momentum tensor, we get

(4.45)

In account of (4.45) and (4.38) from (3.52) for τ, we
obtain

(4.46)

with the solutions in quadrature

(4.47)

with  being the integration constant such that y2 =

 + X1X3 +  > 0.

Let us now analyze the solution obtained here. As
one can see, the case n = 1 is the linear one. First we
consider the case when λ < 0. Depending on the value
of n and Λ, we obtain the following results:

(4.48)

(4.49)

and

(4.50)

whereas for Λ > 0, it is bounded from above. Thus we
see that for the term F considered with λ < 0, the solu-
tion is initially singular and in the absence of the Λ
term, the space-time is asymptotically anisotropic for
n > 1, while in case of n < 1, the isotropization process
takes place. Introduction of a negative Λ term gives rise
to the asymptotic isotropization process, while the pos-
itive Λ term provides oscillatory solutions.

Let us now see what happens to the system when the
coupling constant is positive. As one can see from
(4.47), for λ > 0 and n > 1, τ = 0 cannot be reached at
any moment t, as in this case the integrand turns out to

j
3 4

cτ
----- D1D3 – D2D4[ ] 2 �1 ) td∫[ ]cos ,=

S
23 0, 2

bcτ
-------- D1D2 D3D4+[ ],=

S
31 0,

0,=

S
12 0, 1

2abτ
------------ D1

2
D2

2
– D3

2
D4

2
–+[ ].=

T0
0 λP

n
, T1

1
– T2

2
T3

3 λ 2n 1–( )P
n
.= = = =

τ̇̇ 3/2( )κλ 2n 2–( )D0
2nτ1 2n–

3Λτ,–=

τd

y1
2 κλD0

2nτ2 2n–
– Λτ2

–
------------------------------------------------------------∫ 3t,=

y1
2

X1
2

X3
2

τ t( ) t 0→
3κλ– nD0

n
t[ ]

1/n
, n 1,>

3y1t, n 1<⎩
⎨
⎧

≈

τ t( ) t ∞→
3κλ– nD0

n
t[ ]

1/n
, n 1, Λ<  = 0,

3y1t, n 1, Λ> 0=⎩
⎨
⎧

≈

τ t ∞→ e
3Λ– t

, Λ 0,<≈
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be imaginary. Thus, the solution is always regular. But,
as follows from (4.45), the energy density in this case is
negative while the pressure components are positive,
which is in violation of the energy dominant condition.
For n < 1, we obtain solutions analogical to those for
λ < 0.

(iii) In this case, we study F = F(I, J). Choosing

(4.51)

in the case of massless NLSF, we find

Putting them into (3.37), we find

(4.52)

Choosing F =  for the components of the
energy-momentum tensor, we get

(4.53)

In view of (4.53) and (4.52), from (3.52) we obtain

(4.54)

with the solution

(4.55)

with  =  + X1X3 + . From the similarity of the
equations (4.47) and (4.55), one comes to the analogi-
cal conclusion made for the case when F = λJn, i.e., for
a negative coupling constant (λ < 0), the solution is ini-
tially singular and in the absence of the Λ term, the
space-time is asymptotically anisotropic for n > 1,
while in case of n < 1, the isotropization process takes
place; in case of λ > 0, we obtain regular solutions with
breaking of the dominant energy condition; introduc-
tion of a negative Λ term gives rise to the asymptotic
isotropization process, while the positive Λ term pro-
vides oscillatory solutions. Note that one comes to an
analogous conclusion choosing F = λS2nP2n.

4.2. Nonlinear Scalar Field
in the Absence of a Spinor Field

Let us consider the nonlinear scalar field in absence
of a spinor field. As a nonlinear scalar field equation,
we choose the Born–Infeld equation, given by the
Lagrangian [66]

(4.56)

with ϒ = ϕαϕα, and σ being the parameter of nonlinear-
ity. From (4.56), we also have

F F K±( ), K+ I J+ Iv IA,–= = = =

K– I J– IT ,= =

� 2SFK±
, � 2PFK±

, FK±
± dF/dK±.= = =

S0
2

P0
2± D±.=

λK±
n

T0
0 λK±

n
, T1

1
– T2

2
T3

3 λ 2n 1–( )K±
n
.= = = =

τ̇̇ 3/2( )κλ 2n 2–( )D±
nτ1 2n–

3Λτ,–=

τd

y1
2 κλD±

nτ2 2n–
– Λτ2

–
----------------------------------------------------------∫ 3t,=

y1
2

X1
2

X3
2

Ψ ϒ( ) 1
σ
--- 1 1 σϒ+–( ),–=

(4.57)

Inserting (4.56) into (3.24) for the scalar field, we
obtain the equation

(4.58)

that gives

(4.59)

From (4.59), it follows that

(4.60)

showing that ϒ is kinklike.
For the case considered in this subsection, we have

(4.61)

and

(4.62)

For τ in this case, we have

(4.63)

with the solution in quadrature

(4.64)

Further analysis of (4.64) gives

(4.65)

i.e., the solution is initially singular,

(4.66)

i.e., the asymptotic isotropization process does not take
place in the absence of a Λ term,

(4.67)

i.e., the solution is asymptotically isotropic for Λ < 0;
and finally for Λ > 0, we find an oscillatory solution,
since in that case, τ is nonnegative and bounded from

Ψ ϒ( )
σ 0→
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1
2
---ϒ….=
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2Cs

τ2
4σCs

2
–

----------------------------,=
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2

τ2
4σCs

2
–

------------------------.= =

ϒ τ 0→
1
σ
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T sc0
0

2ϒdΨ
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1
σ
--- 1 1 4σCs

2
/τ2

––( )= =

T sc1
1

T sc2
2

T sc3
3 Ψ ϒ( )–= = =

=  
1
σ
--- 1 1/ 1 4σCs

2
/τ2

––( ).

τ̇̇ 3κ
2σ
------ 2τ τ2

4σCs
2

––(=

– τ2
/ τ2

4σCs
2

– ) 3Λτ,–

τd

κ/σ( ) τ2
1 1 4σCs

2
/τ2

––( )[ ] Λτ2
– C+

------------------------------------------------------------------------------------------------------∫

=  3t.

τ t 0→ 3Ct,≈

τ t ∞→ 3 2κCs
2

C+( )t, Λ≈ 0;=

τ t ∞→ e
3Λ– t
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above (otherwise the integrand in (4.64) turns out to be
imaginary).

Let us study the energy density distribution of non-
linear scalar field. From (3.40d), we find

(4.68)

which shows that the energy density of the scalar field
is not localized.

4.3. Nonlinear Spinor and Nonlinear Scalar Field 
with Minimal Coupling

Let us consider the system with nonlinear spinor and
scalar field given by the spinor nonlinearity as a func-
tion of I, i.e., F = λSn, while the scalar nonlinearity is
given by (4.56). The field functions in this case will be
the same as those in the two previous subsections, while
the function τ in this case is determined by

(4.69)

with C being the constant of integration. A detailed
analysis of (4.69) gives the following results:

(4.70)

i.e., for λ < 0, the solution is initially singular. For λ > 0,
we come to the conclusion that τ cannot be zero as in
this case the integrand will be imaginary. This means
that we obtain solutions that are regular in each time-
point, but as in previous subsection, we see that it
breaks the dominant energy condition. Thus we see that
the initial stage is completely dominated by nonlinear
spinor term. For tto∞, we find

, (4.71)

i.e., an asymptotically isotropic solution for a massive
spinor in the absence of a Λ term,

(4.72)

i.e., in case of a massless spinor, the scalar field plays
the dominant role at the asymptotic stage in the absence
of a Λ term. It should be noted that, as in case of non-
linear scalar field alone, the isotropization process does
not take place. Finally, let us see what happens when
one introduces a non-zero Λ term. In this case, we find

(4.73)

i.e., that the solution is asymptotically isotropic for Λ <
0; and finally, for Λ > 0, we find an oscillatory solution,
since in that case, τ is nonnegative and bound from
above, otherwise the integrand in (4.64) turns out to be
imaginary. Setting F = λPn for the massless spinor field,
we come to an analogous conclusions.

4.4. Interacting Spinor and Scalar Field

In this subsection, we give a detailed analysis of the
system of interacting spinor and scalar fields. We con-
sider the spinor field setting F = 0 that is initially linear
and the scalar one that is linear too, i.e., Lsc = (1/2)ϒ =
ϕ,αϕ,α. We choose the interaction term in the form Lint =
(1/2)λ1ϒF1(I, J), with λ1 being the coupling constant.

As a result, we obtain the spinor field equations with
induced nonlinearity. For the scalar field, we obtain

(4.74)

In view of (4.74), we find

(4.75)

For the spinor field, we obtain

(4.76)

where, in view of (4.75), �2 and �2 are as follows:

with F2(I, J) = 1/[1 + λ1F1(I, J)]. Thus, we obtain the
spinor field equation with induced nonlinearity. Since
the solutions to the equation (4.76) coincide with those
of the nonlinear spinor field equation with correspond-
ing F(I, J) and F1(I, J), we simply write the solutions
without giving the details. Now, taking into account
that the components of the energy-momentum tensor in
this case are

(4.77)

from (3.52) for τ, we obtain

(4.78)

For F1 = F1(I), we find S = C0/τ and

T sc0
0

t( ) t 0→ ∞, T sc0
0

t( ) t ∞→ 0,
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n
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/σ( ) 1 1 4σCs

2
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----------------------------------------------------------------------------------------------------------------------------------------------------------∫ 3t,=

τ t 0→ 3/4( )κλn
2
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τ t ∞→ 3κmC0t
2
, m 0, Λ≠≈ 0=
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2
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τ t ∞→ e
3Λ– t

, Λ 0,<≈
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------------------------------------------, C const.= =
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----------------------------------------------.= =

iγ 0 ∂
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2τ
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λ1�2 λ1Sϒ
∂F1

∂I
--------- C

2

2τ2
--------

∂F2

∂S
---------,–= =

λ1�2 λ1Sϒ
∂F1

∂J
--------- C

2

2τ2
--------

∂F2

∂P
---------,–= =

T0
0

mS
1
2
---ϕ̇2 λ1F1ϕ̇2,+ +=

T1
1

T2
2

T3
3 λ1�2S λ1�2P
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2
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(4.79a)

(4.79b)

(4.79c)

(4.79d)

with C1, C2, C3, C4 being the integration constants,

which are related to C0 as C0 =  +  –  – . In
this case, we have �2 = 0, while λ1�2 =
(C2/2C0)∂F2/∂τ. In account of this, (4.78) can be inte-
grated to write

(4.80)

Setting F1 = Sn, i.e., F2 = τn/(τn + λ1 ), we estimate

(4.81)

(4.82)

and

(4.83)

whereas, for Λ > 0, it is bounded from above. Thus, we
see that the solutions are initially singular; in the
absence of a Λ term, only the massive spinor provides
asymptotic isotropization; introduction of a Λ term
leads to asymptotic isotropization or oscillatory solu-
tions depending on its sign.

Let us study the system for some other choice of
interacting term. Note that the Λ term contribution is
same for these choices, so we consider the case in the
absence of a Λ term.

To investigate the system of spinor and scalar field
equations with direct interaction, we consider the inter-
acting term such that

(4.84)

where λ is the interaction parameter and n is some arbi-
trary constant. Inserting (4.84) into (3.67), one obtains

(4.85)

where  = C2/2 + C1.

Let us study different cases of choosing λ and n.
4.4.1. λ > 0, n > 0. In this case, (4.85) leads to the

following behavior of τ(t):

ψ1 t( ) C1/ τ i m λ1�2–( ) td∫–[ ],exp(=

ψ2 t( ) C2/ τ –i m λ1�2–( ) td∫[ ],exp(=

ψ3 t( ) C3/ τ i m λ1�2–( ) td∫[ ],exp(=

ψ4 t( ) C4/ τ i m λ1�2–( ) td∫[ ],exp(=

C1
2

C2
2

C3
2

C4
2

τd

κ mC0τ C
2
/2( )F2+[ ] Λτ2

– y1
2

+
---------------------------------------------------------------------------------∫ 3t.=

C0
n

τ t( ) t 0→ 3y1t,≈

τ t( ) t ∞→
3 κC

2
y1

2
+( )t, m = 0, Λ = 0,

3/4( )κmC0t
2
, m 0, Λ≠ 0,=⎩

⎨
⎧

≈

τ t ∞→ e
3Λ– t

, Λ 0,<≈

F2 S( ) 1 λS
n

+ 1 λ
C0

n

τn
------,+= =

τd

mC0τ λC
2
C0

n
/2τn

C2
2

+ +
---------------------------------------------------------------∫ 3κt,=

C2
2

(4.86a)

(4.86b)

i.e., the solution is initially singular and the asymptoti-
cal isotropization of the expansion process of initially
anisotropic BI space-time takes place without the influ-
ence of the scalar field. Thus, the evolution of the inter-
acting fields system at λ > 0 and n > 0 is qualitatively
the same as that of the system with minimal coupling.

4.4.2. λ = –σ2 < 0, n > 0. In this case, from (4.85),
we find that the asymptotic expression of τ coincides
with (4.86b), whereas τ = 0 cannot be reached, as in this
case the denominator of the integrand in (4.85)
becomes imaginary at τ  0. There exists the mini-
mum value τmin = τ0 > 0, which is defined from the
equation

This means that for λ < 0 and n > 0, there exist reg-
ular solutions to the previous system of equations. The
absence of the initial singularity in the considered cos-
mological solution appears to be consistent with the
violation for λ < 0, of the dominant energy condition in
the Hawking–Penrose theorem.

4.4.3. λ > 0, n = –k2 < 0. In this case, the equation
(4.85) takes the form

(4.87)

Let us study concrete solutions for some values of k2.
(a) k2 = 1. Then, from (4.87), one gets

(4.88)

The solution is singular at t0 = 2C2/  and is
asymptotically isotropic.

(b) k2 = 2. In this case, we have

(4.89)

where ∆ = . Thus, we see that, in
the case considered here, the solution is singular at t0
with t0 being the root of the equation

(4.90)
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As one sees from (4.89), the asymptotic isotropiza-
tion of the BI universe takes place.

4.4.4. λ = –σ2 < 0, n = –k2 < 0. Let us consider con-
crete solutions for some values of k2 as in 4.4.3. 

(a) k2 = . In this case, one gets

(4.91)

with  = σ2C2/ . We can conclude that the
solution is initially regular and that it is asymptotically
isotropic.

(b) k2 = 1. In this case, we write

(4.92)

If in (4.92) m – σ2C2/  > 0, then the solution

coincides with that for 4.4.3, where M = m – σ2C2/ .

For m – σ2C2/  = –T2 < 0, from (4.92) one gets

(4.93)

In this case, we have

(4.94a)

(4.94b)

where t1, 2 = . Thus, the solution
obtained describes the cosmological model, which
begins to expand at t1, acquires its maximum at t = 0,
and then collapses into a point at t2.

(c) k2 = 2. In this case, for τ, one gets

(4.95)

where ∆ = .

From (4.95), it follows that the model begins to
expand at

acquires maximum

at
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2
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and finally at

collapses into a point.
For F1 = F1(J) for the massless spinor field, we

obtain the solutions

(4.96a)

(4.96b)

(4.96c)

(4.96d)

with σ = . Further, choosing F1 = λPn for τ, in

this case we have

(4.97)

where we used P = D0/τ. From (4.97), we estimate

(4.98)

(4.99)

whereas for Λ > 0, τ is bounded from above. Thus, we
see that the solutions are initially singular; in absence of
the Λ term, no asymptotic isotropization process takes
place; introduction of the Λ term leads to asymptotic
isotropization or oscillatory solutions depending on its
sign. Contrary to the nonlinear spinor case when non-
linearity provides initially regular solutions depending
on the sign of λ, the induced nonlinearity does not give
rise to singularity-free solutions.

4.5. BI Universe is Filled with Perfect Fluid Only

Let us now analyze the system filled with perfect
fluid. As we saw earlier, the introduction of perfect fluid
does not change the field equations, thus leaving the
solutions to the NLSF equations externally unchanged.
Changes in the solutions performed by perfect fluid are
carried out through Einstein equations, namely through τ.

In the absence of material field, in this case, from
(3.52) we find

(4.100)
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with the solution

(4.101)

where C is an integration constant. From (4.101), one
estimates

(4.102a)

(4.102b)

(4.102c)

(4.102d)

Let us now consider the system as a whole with the
nonlinear term being F = λSn. In this case, we get

(4.103)

As one can see in the case of dust (ξ = 0), the fluid
term can be combined with the massive one, whereas in
the case of stiff matter (ξ = 1), it mixes with the con-
stant. In the absence of a massive term (e.g., when we
consider F = F(J)), the asymptotic behavior of τ is
determined by

(4.104)

As one can see, the space-time is asymptotically iso-
tropic if ζ < 1 and anisotropic if ζ = 1. Thus, in the
absence of a Λ term for a massless spinor field, the
asymptotic isotropization process of the initially aniso-
tropic space-time depends on the value of ζ, i.e., the
matter the space-time is filled with.

5. SYSTEM WITH TIME-DEPENDENT G AND Λ
As has been mentioned earlier, Einstein’s theory of

gravity contains two parameters, considered as funda-
mental constants: Newton’s gravitational constant G
(κ = 8πG) and the cosmological constant Λ [41, 42].
A possible time variation of G has been suggested by
Dirac and extensively discussed in the literature [67–71].
The “cosmological constant” Λ as a function of time
was studied by many authors. Chen and Wu [72] advo-
cated the possibility that the cosmological constant var-
ies in time as 1/R2, with R being the scale factor of the
Robertson–Walker model. Further, Abdel–Rahman
[73] considered a model with the same kind of varia-
tion, while Berman et al. [74–76] stressed that the rela-
tion R ∝ t–2 plays an important role in cosmology. Ber-
man and Gomide [77] also showed that all the phases of
the universe, i.e., radiation, inflation, and pressure-free,
may be considered as particular cases of the decelara-
tion parameter q = constant type, where

(5.1)

dτ

τ 1 ζ–( )
C+

---------------------------- 3κε0t,=

τ t
2
, for ζ∝ 0, dust( ),=

τ t
3/2
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--------------------------------------------------------------------------------------∫  = 3κt.±

τ t infty→ ε0 ζ 1+( )/2[ ]t( )2/ ζ 1+( )
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q RṘ̇/Ṙ
2
,–=

where dots stand for the time derivative. This definition
was extended by Singh and Agrawal [78] to the Bianchi
cosmological models. Perfect fluid cosmological mod-
els with time varying constants were also studied in
[79, 80]. Models with viscous fluid and time-dependent
constants were studied by a number of authors [81–84].
Recently, a self-consistent system of a nonlinear spinor
field and a BI gravitational field with time dependent
gravitational constant (G) and cosmological constant
(Λ) has been studied by the author [40]. In this subsec-
tion, we will present the main results obtained in [40].
Note that in this case, the scalar and spinor field equa-
tions will remain unchanged. Formally, the spinor and
scalar fields as well as the metric functions will be the
same as for time independent G and Λ. Changes occur
only in the equation for τ, plus we have an extra equa-
tion for determining G. Einstein’s field equations with
variable cosmological and gravitational “constants” Λ
and G are given by

(5.2)

Taking the divergence of (5.2), we obtain

(5.3)

which for the BI metric reduces to

(5.4)

If we suppose the energy conservation law  = 0
to hold, then (5.4) reduces to

(5.5a)

(5.5b)

Solving (5.5a), we come to (3.65). Let us now define G.

Taking into account that  =  and  =
, we rewrite (5.5b) as

(5.6)

On the other hand, inserting a, b, c from (3.49) into
(3.40), we obtain

(5.7)

where � =  + X1X3 + . Dividing (5.6) by (5.7), we
find the following equation for G
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(5.8)

Now, along with other authors, we suppose Λ to be
a given function of τ, namely, Λ = Λ0/τ2. On the other

hand,  and  are also some functions of τ. These
allow us to write the solution (3.52) in quadrature, i.e.,
in the form (3.67). But in this case, (3.52) or (3.67) turn

out to be rather complicated, since along with  and

, G also depends on t. So, one has to solve (3.52) and
(5.8) simultaneously, which is far too complicated. To
this end, we recall the results obtained in previous sub-
sections. As one remembers, the solutions, which are in
accord with the Hawking–Penrose theorem, are ini-
tially singular with the universe being anisotropic. This
can be achieved by setting τ = αt for t  0, with α
being some constant. On the other hand, setting τ = βt2,
for t  ∞ and β being constant, we get a universe that
is in accord with the present day isotropic state. Now,
setting Λ = Λ0/τ2 from (5.8), we find [40]

(5.9)

and

(5.10)

Here we would like to emphasize the properties of the
Bianchi type-I Universe. As was noticed in [23], this
Universe has the agreeable property that near the singu-
larity it behaves like a Kasner Universe, even in the
presence of matter, and consequently falls within the
general analysis of the singularity. Since in a Kasner

Universe a = , b = , and c = , with p1 +

p2 + p3 =  +  +  = 1, our assumption to set τ ∝
t at initial time is correct. On the other hand, in a Uni-
verse filled with matter for p = γε, γ < 1, it has been
shown that any initial anisotropy in a BI universe
quickly dies away and a BI universe eventually evolves
into a FRW universe [24]. Setting τ ∝ t2 is also correct.

If we consider Λ = Λ0/τ2 and G = constant, then the

conservation law  = 0 doesn’t hold separately, as
in that case (5.5b) leads to Λ = const, which contradicts
our assumption. In this case, from (5.4) we find

(5.11)

with the solution

(5.12)
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τ2
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Setting F = Kn with K = {I, J, (I ± J), IJ} from (3.67),
we conclude that even in the presence of time depen-
dent Λ in the Einstein’s equation, perfect fluid plays no
role in the early stage of expansion or isotropization of
the BI universe, leaving it to the nonlinear spinor term,
which confirms our claim made in [35, 38].

6. INTERACTING SPINOR AND SCALAR FIELD 
IN A BI UNIVERSE FILLED 

WITH MAGNETO-FLUID
In this section we consider the case when the BI

Universe is filled with magneto-fluid. An LRS BI
model containing a magnetic field directed along one
axis with a barotropic fluid was investigated by Thorne
[85]. Jacobs [86, 87] investigated BI models with mag-
netic field satisfying a barotropic equation of state. Bali
[88] studied the behavior of the magnetic field in a BI
universe for perfect fluid distribution. For simplicity,
we consider the spinor field setting F = 0 that is initially
linear and the scalar one that is linear too, i.e., Lsc =
(1/2)ϒ = ϕ,αϕ ,α. We choose the interaction term in the
form Lint = (1/2)λ1ϒF1(I, J), with λ1 being the coupling
constant. As a result, we obtain the spinor field equa-
tions with induced nonlinearity. Actually, the introduc-
tion of magneto-fluid brings significant changes in the
components of the energy-momentum tensor. Since the
spinor and scalar field equations in this case remain
unchanged, we confine this study only to solving the
Einstein equations and the one for τ. Let us begin with
the energy-momentum tensor.

The energy-momentum tensor of the magneto-fluid
is chosen to be

(6.1)

where Eµν is the electro-magnetic field given by
Lichnerowich [89]

(6.2)

Here uµ is the flow vector satisfying

(6.3)

 is the magnetic permeability, and hµ is the magnetic
flux vector defined by

(6.4)

where ∗Fµν is the dual electro-magnetic field tensor
defined as

(6.5)

Here, Fαβ is the electro-magnetic field tensor and εµναβ
is the totally anti-symmetric Levi–Civita tensor with
ε0123 = +1. Here, the comoving coordinates are taken to
be u0 = 1, u1 = u2 = u3 = 0. I choose the incident mag-
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netic field to be in the direction of the x axis so that the
magnetic flux vector has only one nontrivial compo-
nent, namely h1 ≠ 0. In view of the aforementioned
assumption from (6.4), one obtains F12 = F13 = 0. I also
assume that the conductivity of the fluid is infinite. This
leads to F01 = F02 = F03 = 0. Thus I have only one non-
vanishing component of Fµν, which is F23. Then from
the first set of Maxwell equations

(6.6)

where the semicolon stands for covariant derivative,
one finds

(6.7)

Then, from (6.4) in account of (6.5), one finds

(6.8)

Finally, for , one finds the following non-trivial
components

(6.9)

ε and p in (6.1) are the energy density and pressure of
perfect fluid obeying p = ζε.

Let us now solve the Einstein equations. In doing so,
I first write the expressions for the components of the
energy-momentum tensor explicitly:

(6.10a)

(6.10b)

(6.10c)

(6.10d)

Thus, the introduction of magneto-fluid generates
nonhomogeneity in the energy-momentum tensor of
the material field.

In view of  =  from (3.40b), (3.40c), one finds

(6.11)

with D and X being integration constants.

Following Bali [88], let us assume that the expan-
sion (θ) in the model is proportional to the eigenvalue

 of the shear tensor . Since for the BI space-time

(6.12)

(6.13)

the aforementioned condition leads to

(6.14)

with N being the proportionality constant.

In account of (3.34) from (6.11) and (6.14), after some
manipulation for the metric functions one finds [90]

(6.15a)

(6.15b)

(6.15c)

The equation for τ in this case can be written as

(6.16)

Recalling the definition of �, we write the solution
to Eq. (6.16) in quadrature

(6.17)

with E being some integration constant. Eqs. (6.16) and
(6.17) can be analyzed in the same line as we have done

previously. Thus, a self-consistent system of spinor,
scalar, and gravitation fields has been studied in the
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presence of magneto-fluid and cosmological term Λ.
With the presence of the F23 component of the electro-
magnetic field tensor, the system can be viewed as one
where all four fields, i.e., scalar, electro-magnetic,
spinor, and gravitational, are taken into consideration.

7. NUMERICAL ANALYSIS 
OF THE RESULTS

In this section, we consider the case when both F
and F1 are the functions of I = S2 only, setting F = λSp

and F1 = Sq. As the scalar field Lagrangian, we consider
Ψ = (1/2)ϒ. Note that (i) λ = 0 and λ1 = 0 corresponds
to the case with linear spinor field, (ii) λ = 0 corre-
sponds to interacting linear spinor and scalar field, and
(iii) λ1 = 0 corresponds to minimal coupling of nonlin-
ear spinor and linear scalar field. Moreover, setting
spinor mass m = 0, we obtain the system for massless
spinor field with the nonlinear term being a function of
J or I ± J, e.g. F = λPp. 

In this section, we consider the case when both F
and F1 are functions of I = S2 only, setting F = λSp and
F1 = Sq. As the scalar field Lagrangian, we consider Ψ =
(1/2)ϒ. Let us go back to the equations for τ. In general,
we have to solve the following system of equations:

(7.1)

(7.2)

Defining the Hubble parameter, this system can be
rewritten as
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(7.5)

The other way to solve this system is to use the rela-
tion (3.88) between the quantities in question estab-
lished above, i.e., consider the system
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Since in our case  and  are functions of τ only
and are explicitly analytically established, we proceed
as follows:
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(7.10)

Here, p is the set of problem parameters, namely, p =
{κ, m, λ, λ1, p, q, ε0, Λ}. From a mechanical point of
view, Eq. (7.9) can be interpreted as an equation of
motion of a single particle with unit mass under the force

(τ, p). Then the following first integral exists [91]:

(7.11)

with the potential

(7.12)

Here we set Cs = 1 and C0 = 1. Giving boundary condi-
tions the Eq. (7.9) can be solved by continuous analog
of Newton method [92], whereas given initial (or
asymptotic) value, one can numerically solve velocity
by the Runge–Kutta method.

Let us formulate the boundary condition. To formu-
late the boundary conditions, we recall that the BI
space-time models an expanding universe, i.e., the size
of the universe should be small enough at the initial
stage, whereas with time increasing, it becomes bigger
and bigger. Since for Λ > 0 the value of τ is bound from
above, the idea of choosing a large value for τ at the
present time (which is sufficiently big) is valid only for
Λ ≤ 0. For a positive Λ, one can choose the periodical
boundary conditions. As a result of what has been said
above, we see that at the initial stage, perfect fluid plays
the principal role and τ at this stage obeys

(7.13)

with the solution
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whereas at large t, we have for τ

(7.15)

with the solutions

(7.16)

Eq. (7.9), together with the boundary conditions for-
mulated above, give the evolutionary picture of a BI
universe within the scope of the model itself. For a
more realistic picture, the boundary conditions for τ can
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be formulated from physical reasoning as well. If we
consider that at time zero the size of the universe van-
ishes, the temperature and density soar to infinity. To
avoid this singularity at the beginning moment of the
universe, the length of the universe at each spatial direc-
tion can be taken as Planck size (� = 1.616 × 10–33 cm).
A detailed discussion on this assumption can be found
in [93]. To formulate the boundary condition at the
other end, we recall that the Hubble constant H is
related to τ as

(7.17)

Given the present day value of H from (7.17), one
finds the value of τ at a time t = tN

(7.18)

As was mentioned earlier, the problem (7.9) can be
solved numerically by the Runge–Kutta method as well
given the initial (or asymptotic) value of τ and its first
derivative with time . In line with the above discus-
sion, at time zero, any small but positive value τ0 can be
taken for τ, whereas  in this case is the positive root of
(7.11) for the given τ0. For a backward direction
Runge–Kutta method, the asymptotic value of τ can be
evaluated from (7.18) with  being the negative root of
(7.11) for the corresponding τN. In case of Λ > 0, the
positivity of the radical in velocity imposes additional
restrictions on the choice of initial (asymptotic) value
of τ. For example, with other parameters fixed, for a def-
inite integration constant � we have a finite range of τ0.

In what follows, we analyze Eqs. (7.9) and (7.10) for
a different choice of F(I) as well as for different prob-
lem parameters p.

3H
τ̇
τ
--.=

τ t tN= 3HtN[ ].exp=

τ̇

τ̇

τ̇

1. F = Sn

Let us first choose F to be a power law of S (or I),
setting F = Sn. In this case, setting C0 = 1 and C = 1, we
rewrite 
 as

(7.19)

with the potential

(7.20)

Note that the nonnegativity of the radical in
Eq. (7.11) in view of Eq. (7.20) imposes a restriction on
τ from above in the case of Λ > 0. This means that in the
case of Λ > 0 the value of τ runs between 0 and some
τmax, where τmax is the maximum value of τ for the given p.
This equation has been studied for different values of
parameters p. Here we demonstrate the evolution of τ
for different choices of τ0 for fixed “energy” E and vice
versa.

As the first example, we consider a massive spinor
field with m = 1. Other parameters are chosen in the fol-
lowing way: coupling constant λ = 0.1, power of non-
linearity n = 4, and cosmological constant Λ = 1/3. We
also choose ζ = 0.5, describing a hard Universe.

In Fig. 1, we plot corresponding potential �(τ) mul-
tiplied by the factor 2/3. As is seen from Figs. 1 and 2,
choosing the integration constant E we may obtain two
different types of solutions. For E > 0.5, solutions are
nonperiodic, whereas for Emin < E ≤ 0.5, the evolution
of the Universe is oscillatory.

As a second example, we consider the massless
spinor field. Other parameters of the problem are left
unaltered, with the exception of ζ. Here we choose ζ = 1
describing stiff matter. It should be noted that this par-
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Universe.
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ticular choice of ζ gives rise to a local maximum. This
results in two types of solutions for a single choice of E.

As can be seen from Fig. 3, if E is taken to be above
the level M, there exist only nonperiodic solutions,
whereas for Emin < E < �(τ = 0) = –0.5, the solutions
are always oscillatory. For E ∈ (–0.5, M), there exit two
types of solutions depending on the choice of τ0. In Fig. 4,
we plot the evolution of τ for E ∈ (–0.5, M). As is seen,
for τ0 ∈ (0, A) (here τ0 = 0.1), we have mathematical
solutions that are oscillatory and τ in this case becomes
negative in some interval of time. Since by definition τ
is non-negative, we plot only the part of the solution
where τ ≥ 0 (cf. Fig. 4, dashed curve). Note that only
that part of τ defined in the interval of time t ∈ (0, Tf) is
physically relevant. For τ0 ∈ (B, C), we again have the
oscillatory mode of the evolution of τ. These two
regions are separated by the no-solution zone (A, B).

Let us also consider the case with Λ < 0. For a neg-
ative Λ, as well as in the absence of the Λ term, the evo-
lution of τ is always exponential, as is seen in Fig. 5. In
this case, the initial anisotropy of the BI space-time
quickly dies away and the Universe becomes isotropic.

Let us analyze the dominant energy condition in the
Hawking–Penrose theorem [52, 63]. For a BI Universe,
the dominant energy condition can be written in the
form [53]

(7.21a)

(7.21b)

(7.21c)

(7.21d)

Let us note that in [53] we considered a self-consis-
tent system of nonlinear spinor and BI gravitational
fields in the presence of a perfect fluid and a Λ term. It
was shown that in this case the regular solutions can be
obtained by virtue of the spinor field nonlinearity
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and/or a positive Λ term. It was shown also that the
absence of initial singularity in the considered cosmo-
logical solution is consistent with the violation of the
dominant energy condition in the Hawking–Penrose
theorem. Note that regular solutions obtained for a lin-
ear spinor field by means of a positive Λ term do not
violate this condition.

Let us now analyze the dominant energy condition
for the system at hand. To analyze this condition for the
system of the interacting spinor and scalar fields, we
rewrite the components of the energy momentum ten-
sor. For energy density in this case we have

(7.22)

As one sees from Eq. (7.22) for any positive value of
τ, energy density is always positive and definite. As

T0
0 mC0

τ
---------- C

2τn 2–

2 τn λC0
n

+( )
-----------------------------

ε0

τ1 ζ+
----------.+ +=

Potential �(τ)

Case: m = 0, ζ = 1, Λ = 1/3–0.45

–0.50

–0.55

–0.60

0 0.5 1.0
τ

M

A B

C

Fig. 3. View of the potential �(τ) [Eq. (7.20)] with BI
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τ  0,   ∞, whereas  decreases as τ
increases. For the pressure components in this case we
have

(7.23)

The second term in Eq. (7.23) is always positive;

this means that  has a greater value when the BI Uni-
verse is filled with dust, i.e., when ζ = 0. To investigate
the dominant energy condition we study the pressure

term (since  =  = , hereafter we mention it as

) at length. For simplicity, we set C = 1 and C0 = 1.
It is clear from Eq. (7.23) that if

(7.24)

we have  < 0. In this case, the dominant energy con-
dition remains unbroken. From Eq. (7.24), we see for
λ = 0 that the foregoing inequality holds for any τ > 0.
This means that, like the linear spinor field [53], the
system with minimally coupled scalar and spinor fields
possesses regular solutions without broken dominant
energy condition. For an interacting system, this condi-
tion holds for any negative n with a positive λ and vice
versa. Let us now see what happens when both n and λ
are positive (negative). Note that the coupling constant
λ may take any value. The magnitude of λ defines the
strength of interaction.

Let us go back to Eq. (7.24). As can be seen, for any
reasonable value of λ the inequality (7.24) holds at
large τ. On the other hand, as τ  0, the correspond-

ing energy density  tends to infinity. So the condi-
tions (4.23) hold for small τ as well. Finally, let us ana-
lyze the situation in the neighborhood of τ = 1. The
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energy density  at this point is reasonably small,
whereas, as is shown in Fig. 7, violation of the domi-

nant energy condition, i.e., the situation when  dom-

inates over , may occur only for a relatively large
value of n. Thus we conclude that in case of interacting
spinor and scalar fields, it is possible to construct regu-
lar solutions [94] without violating the dominant
energy condition of the Hawking–Penrose theorem (cf.
Fig. 6).

2. F = sinS

Let us now consider the case with F being a trigono-
metric function of S, namely, F = sinS. In this case, for

 we have

(7.25)

with the potential

(7.26)

It should be noted that unlike the case with F being
a power law of S = 1/τ, where the nonlinearity appears
in the region with a large value of τ, in the case under
consideration, a number of interesting properties
emerge in the region where 0 < τ < 1, namely, in the
vicinity of the singular point τ = 0. A graphical view of
the potential �(τ) (Eq. (7.26)) is given in Figs. 8 and 9.
Here we choose the problem parameters as follows: κ =
2/3, spinor mass m = 1, coupling constant λ = 0.01, cos-
mological constant Λ = 2/3, ε0 = 1, and ζ = 2/3. Since
S = 1/τ and �(τ) ∝ 1/sin(S), a large number of small
oscillations occur as τ  0 [cf. Fig. 9].

It is clear from Figs. 8 and 9 that depending on the
choice of integration constant E we have two types of
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for a small value of n it is possible to construct a regular
solution without violating the dominant energy condition.
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solutions demonstrated in Fig. 2. Moreover, for some
values of E there exist more than one periodic solution.

Let us now study the system for a negative Λ. Con-
trary to the case with F = Sn, where all the solutions for
a negative Λ grow exponentially, in this case, an inter-

esting situation occurs for some special choice of
parameters.

As one sees from Fig. 10, depending on the integra-
tion constant and the initial value of τ, the mode of evo-
lution can be both finite and exponential. For the inte-
gration constant being at the level AB in Fig. 10 (here it
is –3), with τ0 ∈ (0, τA), the evolution of τ is finite and
similar to the one illustrated in Fig. 2 corresponding to
E = 1, whereas, for τ0 > τB we have an exponentially
expanding τ. Thus we conclude that for the interacting
term being a trigonometric function of its arguments,
the system even with a negative Λ admits a nonexpo-
nential mode of evolution.

To investigate the dominant energy condition let us
write the components of the energy momentum tensor.
For simplicity we set C0 = 1 and in terms of S for the
energy density we write

(7.27)

Since τ is a positive quantity, S is positive as well. As
one sees from Eq. (7.27), for any positive value of S and
λ < 1, energy density is always positive, definite, and

proportional to S2. Since S = 1/τ, this means that 
reaches a maximum as τ  0 and tends to zero as
τ  ∞.

For the pressure components, we have

(7.28)

As can be seen, for a λ < 1, the pressure  may be
either positive or negative depending on the sign of
cosS. Moreover, its maximum value is proportional to
S3. Thus, in the case of F = sinS, for any ζ defined as in
Eq. (3.33) and any nontrivial λ, there exist intervals (Si ,

Si + 1) such that for S ∈ (Si , Si + 1), the inequality  <

 takes place as is shown in Fig. 11. Therefore, we
conclude that the regular solutions obtained in this case
result in the broken dominant energy condition.

8. CONCLUSIONS AND PROSPECTS

We consider a system of interacting spinor and sca-
lar fields in a Bianchi type-I (BI) cosmological model.
The nonlinearity in the spinor field Lagrangian is given
by an arbitrary function of the invariants generated

from the bilinear spinor forms S =  and P = ;
the scalar Lagrangian is chosen as an arbitrary function
of the scalar invariant ϒ = ϕ,αϕ ,α, which becomes linear
at weak field limit. Self-consistent solutions to the non-
linear spinor, scalar, and BI gravitational field equa-
tions have been obtained. The problems of initial singu-
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larity and asymptotical isotropization process have
been thoroughly studied. It has been shown that, for
some special type of nonlinearity, the model provides a
regular solution. If the nonlinear term occurs due to
spinor field self-action, this singularity-free solution
results in violating the dominant energy condition in
the Hawking–Penrose theorem, whereas, in the case of
interacting spinor and scalar fields, it is possible to
attain regular solutions without violating the dominant
energy condition. It has been established that the spinor
field nonlinearity plays a crucial role in the initial stage,
while the spinor mass or scalar field nonlinearity in case
of massless spinor is crucial at the asymptotic stage if
the Λ term remains absent. It has also been shown that
the introduction of Λ term in the Lagrangian generates
oscillations of the BI model even in case of linear
spinor field, whereas oscillatory solutions in case of
nonlinear spinor field without the Λ term are subject to
the choice of nonlinearity. Moreover, for the linear
spinor field, the Λ term provides oscillatory solutions;
these are regular everywhere without violating the
dominant energy condition. Note that in the present
paper we confined our study to the perfect fluid and
magneto-fluid. Models with viscous and Van der Waals
fluid, as well as dark energy, have recently been studied
by us in a number of papers [95–99], and some other
works are under preparation. We plan to review these in
the near future. The nonlinear spinor field has also been
studied within the framework of Bianchi VI [100] and
plane-symmetric space-time [66, 101]. It was shown
that the introduction of a nonlinear spinor field can
accelerate the growth of the Universe. In connection
with the recent acceleration of the Universe, this fact
impels us to consider the spinor field as a possible can-
didate for the so-called source of dark energy. Some
works with this assumption can be found in literature,
e.g., Ribas et al. [102].
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