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Spinor field in a Bianchi type-I universe: Regular solutions
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Self-consistent solutions to the nonlinear spinor field equations in general relativity are studied for the case
of Bianchi type-I~BI! space-time. It is shown that, for some special type of nonlinearity the model provides a
regular solution, but this singularity-free solution is attained at the cost of breaking the dominant energy
condition in the Hawking-Penrose theorem. It is also shown that the introduction of aL term in the Lagrangian
generates oscillations of the BI model, which is not the case in the absence of aL term. Moreover, for the
linear spinor field, theL term provides oscillatory solutions, which are regular everywhere, without violating
the dominant energy condition.
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I. INTRODUCTION

Nonlinear phenomena have been one of the most pop
topics during recent years. Nevertheless, it must be adm
that nonlinear classical fields have not received general c
sideration. This is probably due to the mathematical diffic
ties which arise because of the nonrenormalizability of
Fermi and other nonlinear couplings@1#. Nonlinear self-
couplings of the spinor fields may arise as a consequenc
the geometrical structure of the space-time and, more
cisely, because of the existence of torsion. As early as 19
Ivanenko@2–4# showed that a relativistic theory imposes
some cases a fourth-order self-coupling. In 1950, Weyl@5#
proved that, if the affine and the metric properties of t
space-time are taken as independent, the spinor field o
either a linear equation in space with torsion or a nonlin
one in a Riemannian space. As the self-action is of spin-s
type, it allows the assignment of a dynamical role to the s
and offers a clue about the origin of the nonlinearities. T
question was further clarified in some important papers
Utiyama, Kibble, and Sciama@6–8#. In the simplest scheme
the self-action is of pseudovector type, but it can be sho
that one can also get a scalar coupling@9#. An excellent
review of the problem may be found in@10#. Nonlinear quan-
tum Dirac fields were used by Heisenberg@11,12# in his am-
bitious unified theory of elementary particles. They are pr
ently the object of renewed interest since the widely kno
paper by Gross and Neveu@13#.

The quantum field theory in curved space-time has bee
matter of great interest in recent years because of its ap
cations to cosmology and astrophysics. The evidence of
existence of strong gravitational fields in our Universe led
the study of the quantum effects of material fields in exter
classical gravitational field. Since the appearance of Park
paper on scalar fields@14# and spin-12 fields @15#, several
authors have studied this subject. The present cosmolog
based largely on Friedmann’s solutions of the Einstein eq
tions, which describe the completely uniform and isotro
universe~‘‘closed’’ and ‘‘open’’ models, i.e., bounded or un
bounded universe!. The main feature of these solutions
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their nonstationarity. The idea of an expanding Universe,
lowing from this property, is confirmed by the astronomic
observations and it is now safe to assume that the isotr
model provides, in its general features, an adequate des
tion of the present state of the Universe. Although the U
verse seems homogenous and isotropic at present, it doe
necessarily mean that it is also suitable for description of
early stages of the development of the Universe and there
no observational data guaranteeing the isotropy in the
prior to the recombination. In fact, there are theoretical ar
ments that support the existence of an anisotropic phase
approaches an isotropic one@16#. Interest in studying Klein-
Gordon and Dirac equations in anisotropic models has
creased since Hu and Parker@17# have shown that the cre
ation of scalar particles in anisotropic backgrounds c
dissipate the anisotropy as the Universe expands.

A Bianchi type-I ~BI! universe, being the straightforwar
generalization of the flat Robertson-Walker~RW! universe, is
one of the simplest models of an anisotropic universe t
describes a homogenous and spatially flat universe. Un
the RW universe, which has the same scale factor for eac
the three spatial directions, a BI universe has a different s
factor in each direction, thereby introducing an anisotropy
the system. It moreover has the agreeable property that
the singularity it behaves like a Kasner universe, even in
presence of matter, and consequently falls within the gen
analysis of the singularity given by Belinskiiet al. @18#. Also
in a universe filled with matter forp5z«, z,1, it has been
shown that any initial anisotropy in a BI universe quick
dies away and a BI universe eventually evolves into
Friedmann-RW~FRW! universe@19#. Since the present-da
universe is surprisingly isotropic, this feature of the BI un
verse makes it a prime candidate for studying the poss
effects of an anisotropy in the early universe on present-
observations. In light of the importance mentioned abo
several authors have studied a BI universe from differ
aspects.

In @20#, Chimento and Mollerach studied the Dirac equ
tions in a BI universe and obtained their classical solutio
They also claimed that for each value of the momentum o
two independent solutions exist and they showed that i
not possible to obtain the solutions from those of a FR
universe only by perturbation. One of the solutions obtain
©2001 The American Physical Society01-1
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BIJAN SAHA PHYSICAL REVIEW D 64 123501
would describe a particle with a given helicity, while th
other one would represent antiparticles with the opposite
licity. This fact posed a very interesting problem. Spin1

2

particles cannot live in a BI, at least if they keep their we
known properties of flat space-time. This problem w
handled by Castagninoet al. @21#, where they showed that i
the Dirac equation is separable, the number of indepen
solutions is four, contrary to the claim made in@20#. A spinor
field in a BI universe was also studied by Belinskii and Kh
latnikov @22#. In this paper they solved Einstein-Dirac equ
tions when both the cosmological constant and the mas
the spinor field vanish~neutrinos!. They also noticed that fo
BI models filled with neutrinos, the principal directions
expansion vary with time. Using Hamiltonian technique
Henneaux studied class-A Bianchi universes generated
spinor source@23,24#. In @23#, he derived the general solu
tion to the massive Dirac equation in Bianchi type-I spa
time with a cosmological constant@23#, which was further
extended for the Bianchi type-II model@24#.

In a number of papers@25–27#, several authors studie
the behavior of gravitational waves~GWs! in a BI universe.
In @26# the evolution equations for small perturbations in t
metric, energy density, and material velocity were deriv
for an anisotropic viscous BI universe. It has been sho
that the results were independent of the equation of stat
the cosmic fluid and its viscosity. They also showed that
GWs need not necessarily be transversal in an anisotropic
expanding BI universe and the longitudinal components
the gravitational waves have no physical significance.
@27#, Cho and Speliotopoulos studied the propagation
classical gravitational waves in a BI universe. They fou
that GWs in a BI universe are not equivalent to two mi
mally coupled massless scalar fields as in a FRW unive
Because of its tensorial nature, the GW is much more se
tive to the anisotropy in space-time than the scalar field
and it gains an effective mass term. Moreover, they foun
coupling between the two polarization states of the G
which is not present in a FRW universe.

A nonlinear spinor field~NLSF! in an external FRW cos
mological gravitational field was first studied by Shikin
1991@28#. The main purpose of introducing a nonlinear te
in the spinor field Lagrangian is to study the possibility
the elimination of initial singularity. Following@28#, we ana-
lyzed the nonlinear spinor field equations in an external
universe@29#. In that paper, we consider the nonlinear te
in the spinor field Lagrangian as an arbitrary function of
possible invariants generated from spinor bilinear form
There we also studied the possibility of the elimination
initial singularity, especially for the Kasner universe. For
few years we studied the behavior of a self-consistent NL
in a BI universe@30,31# both in the presence of perfect flui
and without it, which was followed by Refs.@32–34#, where
we studied the self-consistent system of interacting sp
and scalar fields. Recently, we studied@35,36# the role of the
cosmological constant (L) in the Lagrangian, which, to
gether with Newton’s gravitational constant (G), is consid-
ered to be the fundamental constant in Einstein’s theory
gravity @37#.
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II. REVIEW OF BI COSMOLOGY

A diagonal Bianchi type-I space-time~hereafter BI! is a
spatially homogeneous space-time, which admits an Abe
group G3, acting on spacelike hypersurfaces, generated
the spacelike Killing vectorsj15]1 , j25]2, andj35]3. In
synchronous coordinates, the metric is@38,39#

ds25dt22(
i 51

3

ai
2~ t !dxi

2 . ~2.1!

If the three scale factors are equal~i.e., a15a25a3), Eq.
~2.1! describes an isotropic and spatially flat Friedman
Robertson-Walker~FRW! universe. The BI universe has
different scale factor in each direction, thereby introduci
an anisotropy to the system. Thus, a Bianchi type-I unive
being the straightforward generalization of the flat FRW u
verse, is one of the simplest models of an anisotropic u
verse that describes a homogeneous and spatially flat
verse. When two of the metric functions are equal~e.g.,a2
5a3), the BI space-time is reduced to the important class
plane symmetric space-time~a special class of the locally
rotational symmetric space-times@40,41#!, which admits a
G4 group of isometries acting multiply transitively on th
spacelike hypersurfaces of homogeneity generated by
vectors j1 , j2 , j3, and j45x2]32x3]2. The BI has the
agreeable property that near the singularity it behaves lik
Kasner universe, given by

a1~ t !5a1
0tp1, a2~ t !5a2

0tp2, a3~ t !5a3
0tp3, ~2.2!

with pj being the parameters of the BI space-time wh
measure the relative anisotropy between any two asymm
axes and satisfy the constraints

p11p21p351, ~2.3a!

p1
21p2

21p3
251. ~2.3b!

Thus out of three parameters, only one is arbitrary. One p
ticular choice of parametrization is

p15
2p

p21p11
, ~2.4a!

p25
p~p11!

p21p11
, ~2.4b!

p35
p11

p21p11
. ~2.4c!

The condition 0<p<1 on p then yields the condition2 1
3

<p1<0, 0<p2< 2
3 , 2

3 <p3<1. Another particular param
etrization can be given using an angle on the unit circ
since Eqs.~2.3! describe the intersection of a sphere with
plane in the parameter space (p1 ,p2 ,p3):

p15
1

3
~11cosq1A3 sinq!, ~2.5a!
1-2
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SPINOR FIELD IN A BIANCHI TYPE-I UNIVERSE: . . . PHYSICAL REVIEW D64 123501
p25
1

3
~11cosq2A3 sinq!, ~2.5b!

p35
1

3
~122 cosq!. ~2.5c!

Although q ranges over the unit circle, the labeling of ea
pj is quite arbitrary. Thus the unit circle can be divided in
six equal parts, each of which span 60°, and the choice opj
is unique within each section separately. Forq50, p15p2
5 2

3 andp352 1
3 while for q5p/3, p151 andp25p350.

Let us now go back to the BI metric. The nontrivi
Christoffel symbols for Eq.~2.1! are

G i i
0 5ai ȧi , G0i

i 5G i0
i 5

ȧi

ai
, ~2.6!

while the components of the nontrivial Ricci tensor read

R0052(
i 51

3
äi

ai
, Rii 5F äi

ai
1

ȧi

ai
S ȧ j

aj
1

ȧk

ak
D Gai

2 ,

i , j ,k51,2,3, iÞ j Þk. ~2.7!

The Ricci scalar for the BI universe has the form

R522S ä1

a1
1

ä2

a2
1

ä3

a3
1

ȧ1

a1

ȧ2

a2
1

ȧ2

a2

ȧ3

a3
1

ȧ3

a3

ȧ1

a1
D .

~2.8!

Sometimes it proves convenient to introduce a new ti
parameterh by

h5E t

a21~ t̄ !d t̄, ~2.9!

where we define

@a~ t !#25C~ t ![~a1a2a3!2/35~C1C2C3!1/3, ~2.10!

with Ci[ai
2 . Note that in the isotropic limit, i.e.,a15a2

5a3 , h reduces to conformal time. Further, defining

di5
Ci8

Ci
, D[

1

3 (
i 51

3

di5
C8

C
, Q[

1

72 (
i , j

~di2dj !
2,

~2.11!

where the prime denotes differentiation with respect toh, we
get the following nonzero Christoffel symbols for the met
~2.1!:

Ghh
h 5

1

2
D, G i i

h5
1

2

diCi

C
, G ih

i 5Gh i
i 5

1

2
di .

~2.12!

The nonzero components of the Ricci tensor now read

Rhh5
3

2
D816Q, Rii 52

Ci

2C
~di81diD ! ~2.13!
12350
e

and the Ricci scalar

R5C21S 3D81
3

2
D216QD . ~2.14!

Note that in the sections to follow, we work with the usu
time t.

III. FUNDAMENTAL EQUATIONS
AND GENERAL SOLUTIONS

The action of the nonlinear spinor and gravitational fie
can be written as

S~g;c,c̄ !5E LA2g dV ~3.1!

with

L5Lg1Lsp1Lm. ~3.2!

HereLg corresponds to the gravitational field

Lg5
R12L

2k
, ~3.3!

whereR is the scalar curvature,k58pG, with G being Ein-
stein’s gravitational constant andL is the cosmological con-
stant. The spinor field LagrangianLsp is given by

Lsp5
i

2
@c̄gm¹mc2¹mc̄gmc#2mc̄c1LN , ~3.4!

where the nonlinear termLN describes the self-interaction o
a spinor field and can be presented as some arbitrary f
tions of invariants generated from the real bilinear forms o
spinor field. Sincec andc! ~complex conjugate ofc) have
four component each, one can construct 434516 indepen-
dent bilinear combinations. They are

S5c̄c ~scalar!, ~3.5a!

P5 i c̄g5c ~pseudoscalar!, ~3.5b!

vm5~ c̄gmc! ~vector!, ~3.5c!

Am5~ c̄g5gmc! ~pseudovector!, ~3.5d!

Tmn5~ c̄smnc! ~antisymmetric tensor!, ~3.5e!

where smn5( i /2)@gmgn2gngm#. Invariants, corresponding
to the bilinear forms, are

I 5S2, ~3.6a!

J5P2, ~3.6b!

I v5vmvm5~ c̄gmc!gmn~c̄gnc!, ~3.6c!

I A5AmAm5~ c̄g5gmc!gmn~c̄g5gnc!, ~3.6d!
1-3
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BIJAN SAHA PHYSICAL REVIEW D 64 123501
I T5TmnTmn5~ c̄smnc!gmagnb~c̄sabc!. ~3.6e!

According to the Pauli-Fierz theorem@42#, among the five
invariants onlyI andJ are independent as all others can
expressed by them:I v52I A5I 1J andI T5I 2J. Therefore,
we choose the nonlinear termF to be the function ofI andJ
only, i.e., LN5F(I ,J), thus claiming that it describes th
nonlinearity in its most general form.Lm is the Lagrangian
of a perfect fluid.

Variation of Eq.~3.1! with respect to a spinor field,c (c̄)
gives the nonlinear spinor field equations

igm¹mc2mc1Dc1Gig5c50, ~3.7a!

i¹mc̄gm1mc̄2Dc̄2Gi c̄g550, ~3.7b!

where we denote

D52S
]F

]I
, G52P

]F

]J
.

Varying Eq. ~3.1! with respect to the metric tensorgmn ,
one finds Einstein’s field equation

Rn
m2

1

2
dn

mR52kTn
m1Ldn

m , ~3.8!

whereRn
m is the Ricci tensor,R5gmnRmn is the Ricci scalar,

andTn
m is the energy-momentum tensor of the material fi

given by

Tm
n 5Tspm

n 1Tm m
n . ~3.9!

HereTspm
n is the energy-momentum tensor of the spinor fie

Tspm
r 5

i

4
grn~ c̄gm¹nc1c̄gn¹mc2¹mc̄gnc2¹nc̄gmc!

2dm
r Lsp , ~3.10!

whereLsp with respect to Eqs.~3.7! takes the form

Lsp52~DS1GP!1F~ I ,J!. ~3.11!

Tmm
n is the energy-momentum tensor of a perfect fluid. Fo

universe filled with perfect fluid, in the concomitant syste
of reference (u051,ui50,i 51,2,3), we have

Tmm
n 5~p1«!umun2dm

n p5~«,2p,2p,2p!, ~3.12!

where energy« is related to the pressurep by the equation of
statep5z «. The general solution has been derived by
cobs @19#. Here z varies between the interval 0<z<1,
whereasz50 describes the dust universe,z5 1

3 presents the
radiation universe,13 ,z,1 ascribes the hard universe, an
z51 corresponds to the stiff matter.

In Eqs.~3.7! and~3.9!, ¹m denotes the covariant differen
tiation; its explicit form depends on the quantity it acts o
This covariant differentiation has the standard properties

¹m~AB!5~¹mA!B1A~¹mB!, ~3.13a!
12350
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¹m~A* !5~¹mA!* , ~3.13b!

¹mgn50, ~3.13c!

where the asterisk denotes the Hermitian adjoint~the trans-
pose of the complex conjugate!. The explicit form of the
covariant derivative of a spinor is@43,44#

¹mc5
]c

]xm
2Gmc, ~3.14a!

¹mc̄5
]c̄

]xm
1c̄Gm , ~3.14b!

whereGm(x) are spinor affine connection matrices.g matri-
ces in the above equations obey the algebra

gmgn1gngm52gmn ~3.15!

and are connected with the flat space-time Dirac matriceḡ
in the following way:

gmn~x!5em
a ~x!en

b~x!hab , gm~x!5em
a ~x!ḡa ,

~3.16!

where hab5diag(1,21,21,21) and em
a is a set of tetrad

4-vectors. The spinor affine connection matricesGm(x) are
uniquely determined up to an additive multiple of the u
matrix by the equation

¹mgn5
]gn

]xm
2Gnm

r gr2Gmgn1gnGm50, ~3.17!

with the solution

Gm~x!5
1

4
grs~x!~]med

beb
r2Gmd

r !gsgd. ~3.18!

Let us now write theg ’s andGm’s explicitly for the BI metric
~2.1! that we rewrite in the form@45#

ds25dt22a2~ t !dx22b2~ t !dy22c2~ t !dz2. ~3.19!

For the metric~3.19! from Eq. ~3.16! one finds

g05ḡ0 , g15a~ t !ḡ1 , g25b~ t !ḡ2 , g35c~ t !ḡ3 ,

g05ḡ0, g15ḡ1/a~ t !, g25ḡ2/b~ t !, g35ḡ3/c~ t !.

~3.20!

For the affine spinor connections from Eq.~3.18! we find

G050, G15
1

2
ȧ~ t !ḡ1ḡ0, G25

1

2
ḃ~ t !ḡ2ḡ0,

G35
1

2
ċ~ t !ḡ3ḡ0. ~3.21!
1-4
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We will choose flat space-time matricesḡ in the form, given
in @46#,

ḡ05S 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

D , ḡ15S 0 0 0 1

0 0 1 0

0 21 0 0

21 0 0 0

D ,

ḡ25S 0 0 0 2 i

0 0 i 0

0 i 0 0

2 i 0 0 0

D , ḡ35S 0 0 1 0

0 0 0 21

21 0 0 0

0 1 0 0

D .

Defining g5 as follows:

g552
i

4
Emnsrgmgngsgr, Emnsr5A2g«mnsr ,

«012351,

g552 iA2gg0g1g2g352 i ḡ0ḡ1ḡ2ḡ35ḡ5,

we obtain

ḡ55S 0 0 21 0

0 0 0 21

21 0 0 0

0 21 0 0

D .

For the space-time~3.19!, the Einstein equations~3.8! now
read

b̈

b
1

c̈

c
1

ḃ

b

ċ

c
5kT1

12L, ~3.22a!

c̈

c
1

ä

a
1

ċ

c

ȧ

a
5kT2

22L, ~3.22b!

ä

a
1

b̈

b
1

ȧ

a

ḃ

b
5kT3

32L, ~3.22c!

ȧ

a

ḃ

b
1

ḃ

b

ċ

c
1

ċ

c

ȧ

a
5kT0

02L, ~3.22d!

where an overdot denotes differentiation with respect tot.
We will study the space-independent solutions to

spinor field equations~3.7! so thatc5c(t). Setting

t5abc5A2g ~3.23!

we rewrite the spinor field equation~3.7a! as

i ḡ0S ]

]t
1

ṫ

2t
Dc2mc1Dc1Gig5c50. ~3.24!
12350
e

SettingVj (t)5Atc j (t), j 51,2,3,4, from Eq.~3.24! one de-
duces the following system of equations:

V̇11 i ~m2D!V12GV350, ~3.25a!

V̇21 i ~m2D!V22GV450, ~3.25b!

V̇32 i ~m2D!V31GV150, ~3.25c!

V̇42 i ~m2D!V41GV250. ~3.25d!

Using the solutions obtained one can write the compone
of a spinor current:

j m5c̄gmc. ~3.26!

Taking into account that c̄5c†ḡ0, where c†

5(c1* ,c2* ,c3* ,c4* ) andc j5Vj /At, j 51,2,3,4 for the com-
ponents of a spin current, we write

j 05
1

t
@V1* V11V2* V21V3* V31V4* V4#, ~3.27a!

j 15
1

at
@V1* V41V2* V31V3* V21V4* V1#, ~3.27b!

j 25
2 i

bt
@V1* V42V2* V31V3* V22V4* V1#, ~3.27c!

j 35
1

ct
@V1* V32V2* V41V3* V12V4* V2#. ~3.27d!

The componentj 0 defines the charge density of a spinor fie
that has the following chronometric-invariant form:

%5~ j 0 j 0!1/2. ~3.28!

The total charge of a spinor field is defined as

Q5E %A23g dx dy dz. ~3.29!

Let us consider the spin tensor@46#

Smn,e5
1

4
c̄$gesmn1smnge%c. ~3.30!

We write the componentsSik,0 ( i ,k51,2,3), defining the spa
tial density of a spin vector explicitly. From Eq.~3.30!, we
have

Si j ,05
1

4
c̄$g0s i j 1s i j g0%c5

1

2
c̄g0s i j c, ~3.31!

which defines the projection of a spin vector on thek axis.
Here i , j ,k takes the value 1,2,3 andiÞ j Þk. Thus, for the
projection of spin vectors on theX,Y, andZ axis we find
1-5
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BIJAN SAHA PHYSICAL REVIEW D 64 123501
S23,05
1

2bct
@V1* V21V2* V11V3* V41V4* V3#,

~3.32a!

S31,05
2 i

2cat
@V1* V22V2* V11V3* V42V4* V3#,

~3.32b!

S12,05
1

2abt
@V1* V12V2* V21V3* V32V4* V4#.

~3.32c!

The chronometric invariant spin tensor takes the form

Sch
i j ,05~Si j ,0S

i j ,0!1/2, ~3.33!

and the projection of the spin vector on thek axis is defined
by

Sk5E
2`

`

Sch
i j ,0A23g dx dy dz. ~3.34!

From Eqs.~3.7! we also write the equations for the invarian
S5c̄c, P5 i c̄g5c, andA5c̄ḡ5ḡ0c,

Ṡ022G A050, ~3.35a!

Ṗ022~m2D!A050, ~3.35b!

Ȧ012~m2D!P012GS050, ~3.35c!

whereS05tS, P05tP, andA05tA, leading to the follow-
ing relation:

S21P21A25C2/t2, C25const. ~3.36!

Let us now solve the Einstein equations. To do it we fi
write the expressions for the components of the ener
momentum tensor explicitly. Using the property of fl
space-time Dirac matrices and the explicit form of the co
riant derivative¹m , one can easily find

T0
05mS2F~ I ,J!1«,

~3.37!
T1

15T2
25T3

35DS1GP2F~ I ,J!2p.

Summation of the Einstein equations~3.22a!, ~3.22b!,
~3.22c!, and~3.22d! multiplied by 3 gives

ẗ

t
5

3

2
k~T1

11T0
0!23L. ~3.38!

For the right-hand side of Eq.~3.38! to be a function oft
only, the solution to this equation is well known@47#. As we
see in the next section, the right-hand side of Eq.~3.38! is
indeed a function oft. Given the explicit form ofLN from
Eq. ~3.38! one finds the concrete solution fort in quadrature.

Let us expressa,b,c throught. For this we notice that
subtraction of Einstein equations~3.22b! and~3.22a! leads to
the equation
12350
t
y-

-

ä

a
2

b̈

b
1

ȧċ

ac
2

ḃċ

bc
5

d

dt
S ȧ

a
2

ḃ

b
D 1S ȧ

a
2

ḃ

b
D S ȧ

a
1

ḃ

b
1

ċ

c
D 50

~3.39!

with the solution

a

b
5D1 expS X1E dt

t D , D15const, X15const.

~3.40!

Analogically, one finds

a

c
5D2 expS X2E dt

t D ,
b

c
5D3 expS X3E dt

t D ,

~3.41!

where D2 ,D3 ,X2 ,X3 are integration constants. In view o
Eq. ~3.23! we find the following functional dependence b
tween the constantsD1 ,D2 ,D3 ,X1 ,X2 ,X3:

D25D1D3 , X25X11X3 .

Finally, from Eqs.~3.40! and~3.41! we writea(t), b(t), and
c(t) in the explicit form

a~ t !5~D1
2D3!1/3t1/3expF2X11X3

3 E dt

t~ t !G , ~3.42a!

b~ t !5~D1
21D3!1/3t1/3expF2

X12X3

3 E dt

t~ t !G ,
~3.42b!

c~ t !5~D1D3
2!21/3t1/3expF2

X112X3

3 E dt

t~ t !G .
~3.42c!

Thus the system of Einstein’s equations is completely in
grated.

Defining the Hubble constant in analogy with a FRW un
verse from Eqs.~3.42! we obtain

H j5
ȧ j

aj
5

ṫ1Yj

3t
, j 51,2,3, ~3.43!

or a generalized one,

H5~H11H21H3!/35 ṫ/3t. ~3.44!

Here a15a, a25b, a35c, Y152X11X3, Y252X11X3,
andY352X122X3. The deceleration parameter given by

q52
R̈R

Ṙ2
~3.45!

for a FRW universe withR being the scale factor can also b
generalized for the BI space-time to obtain
1-6
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qi52
äiai

ȧi
2

52F S äi

ai
DY S ȧi

ai
D 2G52F11S ȧi

ai
D •Y S ȧi

ai
D 2G .

~3.46!

Inserting Eqs.~3.42! into Eq. ~3.46!, one obtains

qi52
ẗ22ṫ22Yi ṫ1Yi

2

ṫ212Yi ṫ1Yi
2

, i 51,2,3. ~3.47!

Let us now go back to the Einstein equation~3.8!. Taking
the divergence of the Einstein equation, we obtain

Tm;n
n 5Tm,n

n 1Grn
n Tm

r 2Gmn
r Tr

n50, ~3.48!

which in our case reads

Ṫ0
01

ṫ

t
~T0

02T1
1!50. ~3.49!

PuttingT0
0 andT1

1 into Eq. ~3.49!, we obtain

«̇1~«1p!
ṫ

t
1~m2D!Ṡ02GṖ050, ~3.50!

whereS05tS and P05tP. From Eqs.~3.35a! and ~3.35b!,
we have (m2D)Ṡ02GṖ050. Further, taking into accoun
the equation of state, i.e.,p5z«, we find

d«

~11z!«
1

dt

t
50, ~3.51!

with the solutions

«5
«0

t11z
, p5

z«0

t11z
, ~3.52!

where«0 is the integration constant. Note that the relati
~3.52! holds for any combination of the material field La
grangian, e.g., spinor or scalar or interacting spinor and
lar fields. Thus we see that the right-hand side of Eq.~3.38!
is a function oft only. Then Eq.~3.38!, multiplied by 2ṫ,
can be written as

2ṫ ẗ5$3@k~T1
11T0

0!22L#t%ṫ5C~t!ṫ. ~3.53!

We write the solution to Eq.~3.53! in quadrature,

E dt

AE C~t!dt

5t. ~3.54!

Given the explicit form ofF(I , J), from Eq.~3.54! one finds
the concrete functiont(t). Once the value oft is obtained,
one can get expressions for componentsc j (t), j 51,2,3,4.
Thus the initial systems of Einstein and Dirac equations h
been completely integrated.

Further we will investigate the existence of singular
~singular point! of the gravitational case, which can be do
12350
a-

e

by investigating the invariant characteristics of the spa
time. In general relativity these invariants are compos
from the curvature tensor and the metric one. Contrary to
electrodynamics, where there are two invariants onlyJ1
5FmnFmn and J25!FmnFmn), in 4D Riemann space-time
there are 14 independent invariants. They are@48#

I 15R, ~3.55a!

I 25RmnRmn, ~3.55b!

I 35RabmnRabmn, ~3.55c!

I 45!RabmnRabmn, ~3.55d!

I 55Rb
aRm

bRa
m , ~3.55e!

I 65RabRmnRambn , ~3.55f!

I 75RabRmn!Rambn , ~3.55g!

I 85RabmnRabsrRsr
mn , ~3.55h!

I 95!RabmnRabsrRsr
mn , ~3.55i!

I 105Ra
bRamRmnRb

n , ~3.55j!

I 115Rn
mRrm

saRsa
b[nRb

r] , ~3.55k!

I 125Rn
m!Rsa

rmRsa
b[nRb

r] , ~3.55l!

I 135Rmn
ab~Aab

mn1Rr
aRs

r Rh
sRm

hdn
b!, ~3.55m!

I 145!Rab
mnAab

mn , ~3.55n!

where Aab
mn54Rr

aRs
r Rm

sRn
b13Rr

aRm
r Rs

bRn
s and !Rabmn

5 1
2 EabsrRsr

mn5 1
2 EsrmnRab

sr , !Rab
mn5 1

2 EabsrRsrmn

with Eabmn5A2g«abmn and Eabmn5(21/A2g)«abmn.
Here «abmn is the totally antisymmetric Levi-Civita tenso
with «012351. Instead of analyzing all 14 invariants me
tioned above, one can confine this study only to 3, nam
the scalar curvature I 15R, I 25Rmn

R mn, and the
Kretschmann scalarI 35RabmnRabmn. At any regular space-
time point, these three invariantsI 1 , I 2 , I 3 should be finite.
Let us rewrite these invariants in detail.

For the Bianchi I metric one finds the scalar curvature

I 15R522
ẗ2ȧḃc2ḃċa2 ċȧb

t
. ~3.56!

Since the Ricci tensor for the Bianchi I metric is diagon
the invariantI 25RmnRmn[Rm

n Rn
m is a sum of squares of di

agonal components of Ricci tensor, i.e.,

I 25@~R0
0!21~R1

1!21~R2
2!21~R3

3!2#, ~3.57!

with

R0
052

äbc1ab̈c1abc̈

t
, ~3.58a!
1-7
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R1
152

äbc1ȧḃc1ȧbċ

t
, ~3.58b!

R2
252

ab̈c1ȧḃc1aḃċ

t
, ~3.58c!

R3
352

abc̈1aḃċ1ȧbċ

t
. ~3.58d!

Analogically, for the Kretschmann scalar in this case
haveI 35Rmn

ab Rab
mn , a sum of squared components of a

nontrivial Rmn
mn :

I 354@~R01
01

21~R01
01!

211~R02
02!

21~R03
03!

2

1~R12
12!

21~R23
23!

21~R31
31!

2

5
4

t2
@~ äbc!21~ab̈c!21~abc̈!21~ ȧḃc!2

1~ ȧbċ!21~aḃċ!2#, t5abc. ~3.59!

From Eqs.~3.42! we have

ai5Ait
1/3expS ~Yi /3!E t21 dtD , ~3.60a!

ȧi5
Yi11

3

ai

t
~ i 51,2,3!, ~3.60b!

äi5
~Yi11!~Yi22!

9

ai

t2
, ~3.60c!

i.e., the metric functionsa,b,c and their derivatives are in
functional dependence witht. As we see from Eqs.~3.60!, at
any space-time point, wheret50 the invariantsI 1 ,I 2 ,I 3 be-
come infinity, hence the space-time becomes singular at
point.

IV. ANALYSIS OF THE RESULTS

In this section we shall analyze the general results
tained in the preceding section. In the following subsectio
we will study the system with linear and nonlinear spin
fields, respectively.

A. Linear spinor field in a BI universe

In this subsection, we study the linear spinor field in a
universe. The reason for getting the solution to the s
consistent system of equations for the linear spinor
gravitational fields is the necessity of comparing this solut
with that for the system of equations for the nonlinear spi
and gravitational fields, which permits clarifications of t
role of nonlinear spinor terms in the evolution of the cosm
logical model in question.

In this case we get explicit expressions for the com
nents of spinor field functions and metric functions:
12350
e

is

-
s,
r

I
f-
d
n
r

-

-

c1~ t !5~C1 /At!exp@2 imt#, ~4.1a!

c2~ t !5~C2 /At!exp@2 imt#, ~4.1b!

c3~ t !5~C3 /At!exp@ imt#, ~4.1c!

c4~ t !5~C4 /At!exp@ imt#, ~4.1d!

with C1 ,C2 ,C3 ,C4 being the integration constants. On th
other hand, from Eqs.~3.35! we find

S5
C0

t
, ~4.2!

whereC0 is an integration constant and related to the pre
ous ones asC05C1

21C2
22C3

22C4
2. For the components o

the spin current from Eqs.~3.27! we find

j 05
1

t
@C1

21C2
21C3

21C4
2#, ~4.3a!

j 15
2

at
@C1C41C2C3#cos~2mt!, ~4.3b!

j 25
2

bt
@C1C42C2C3#sin~2mt!, ~4.3c!

j 35
2

ct
@C1C32C2C4#cos~2mt!, ~4.3d!

whereas, for the projection of spin vectors on theX, Y, andZ
axis, we find

S23,05
1

bct
@C1C21C3C4#, ~4.4a!

S31,050, ~4.4b!

S12,05
1

2abt
@C1

22C2
21C3

22C4
2#. ~4.4c!

From Eq.~3.29! we find the charge of the system in a volum
V,

Q5@C1
21C2

21C3
21C4

2#V. ~4.5!

Thus we see that the total charge of the system in a fi
volume is always finite.

Let us now determine the functiont. In the absence of
perfect fluid for the linear spinor field, we have

T0
05mS, T1

15T2
25T3

350. ~4.6!

Taking Eq.~4.6! into account, fort we write

ẗ5M23Lt ~4.7!

with the solutions
1-8
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t5H ~1/3L!@M2q1 sinh~A23Lt !#, L,0,

~1/2!Mt21y1t1y0 , L50,

~1/3L!@M2q2 sin~A3Lt !#, L.0,

~4.8!

whereM5 3
2 kmC0 and y1 ,y0 ,q1 ,q2 are the constants. Le

us now analyze the solutions obtained.
First we study the case whenL50. It can be shown tha

@31#

y1
222My05~X1

21X1X31X3
2!/3.0. ~4.9!

This means that the quadratic polynomial (1/2)Mt21y1t
1y050 possesses real roots, i.e.,t(t) in the case ofL50
becomes zero att5t1,252y1 /M6A(y1 /M )222y0 /M and
the solution obtained is the singular one. Att→` in this case
we have

t~ t !'
3

4
kmC0t2, a~ t !'b~ t !'c~ t !'t2/3,

which leads to the conclusion about the asymptotical iso
pization of the expansion process for the initially anisotro
BI space. Thus the solution to the self-consistent system
equations for the linear spinor and gravitational fields is
singular one at the timet5t1,2. In the initial state of evolu-
tion of the field system the expansion process of spac
anisotropic, but att→` the isotropization of the expansio
process takes place. As one can see, the components o
current and the projections of spin vector are singular
space-time pointst1,2 wheret vanishes. A qualitative picture
of this case has been given in Fig. 1.

For L,0, we see that the solution is singular att5t0

5(1/A23L)arcsinh(M /q1) and the isotropization of the ex
pansion process takes place ast→`. Note that the izotro-
pization process in this case is rather rapid~cf. Fig. 2!.

For L.0, we have the oscillatory solutions~cf. Fig. 3!.
Taking into account thatt is a non-negative quantity, it ca
be shown that the model has singular solutions att5(4k
11)p/2A3L, k50,1,2,3, . . . with M5q2 . For M.q2, we
havet, which is always positive definite, i.e., the solutio
obtained are regular at each space-time point.

FIG. 1. Perspective view oft for a linear spinor field in the
absence of aL term.
12350
-
c
of
e

is

pin
t

B. Nonlinear spinor field

Let us now go back to the nonlinear case. We consider
following forms of the nonlinear term:~i! LN5F(I ); ~ii !
LN5F(J); ~iii ! LN5F(K6) with K65I 6J.

~i! Let us consider the case whenLN5F(I ). From Eqs.
~3.35! we find in this case

S5
C0

t
, C05const. ~4.10!

Note that in this case we denote the constants in the s
way as we did for the linear case, but the constants in th
cases are not necessarily identical. Spinor field equation
this case read

V̇11 i ~m2D!V150, ~4.11a!

V̇21 i ~m2D!V250, ~4.11b!

V̇32 i ~m2D!V350, ~4.11c!

V̇42 i ~m2D!V450. ~4.11d!

FIG. 2. Perspective view oft for a linear spinor field withL
,0.

FIG. 3. Perspective view oft for a linear spinor field withL
.0.
1-9
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As in the considered case whenLN 5 F depends only onS,
from Eq.~4.10! it follows thatF(I ) andD are functions oft
only. Taking this fact into account, we get explicit expre
sions for the components of spinor field functions,

c1~ t !5~C1 /At!expS 2 i E ~m2D!dtD , ~4.12a!

c2~ t !5~C2 /At!expS 2 i E ~m2D!dtD , ~4.12b!

c3~ t !5~C3 /At!expS i E ~m2D!dtD , ~4.12c!

c4~ t !5~C4 /At!expS i E ~m2D!dtD , ~4.12d!

with C1 ,C2 ,C3 ,C4 being the integration constants and r
lated toC0 as C05C1

21C2
22C3

22C4
2. For the components

of the spin current from Eqs.~3.27! we find

j 05
1

t
@C1

21C2
21C3

21C4
2#, ~4.13a!

j 15
2

at
@C1C41C2C3#cosS 2E ~m2D!dtD , ~4.13b!

j 25
2

bt
@C1C42C2C3#sinS 2E ~m2D!dtD , ~4.13c!

j 35
2

ct
@C1C32C2C4#cosS 2E ~m2D!dtD , ~4.13d!

whereas, for the projection of spin vectors on theX, Y, andZ
axis, we find

S23,05
1

bct
@C1C21C3C4#, ~4.14a!

S31,050, ~4.14b!

S12,05
1

2abt
@C1

22C2
21C3

22C4
2#. ~4.14c!

We now study the equation fort in detail choosing the
nonlinear spinor term asF(I )5lI (n/2)5lSn with l being
the coupling constant andn.1. In this case fort one gets

ẗ5~3/2!k@mC01l~n22!C0
n/tn21#23Lt. ~4.15!

The first integral of the foregoing equation takes the form

ṫ253k@mC0t2lC0
n/tn221g2#23Lt2. ~4.16!

Hereg2 is the integration constant that is positively defin
and connected with the constantsXi as g25(X1

21X1X3
12350
-

1X3
2)/9k C0 @31#. The signC0 is determined by the positivity

of the energy-densityT0
0 of a linear spinor field, i.e.,

T0
05mC0 /t.0. ~4.17!

It is obvious from Eq.~4.17! thatC0.0. Now one can write
the solution to Eq.~4.16! in quadratures:

E t (n22)/2dt

Ak@mC0tn211g2tn222lC0
n#2Ltn

5A3 t.

~4.18!

The constant of integration in Eq.~4.18! has been taken to b
zero, as it only gives the shift of the initial time. Let us stu
the properties of the solution obtained for a different cho
of n, l, andL. First we study the case withL50.

For n.2 from Eq.~4.18! one gets

t~ t !u t→`'~3/4!kmC0t2. ~4.19!

It leads to the conclusion about isotropization of the exp
sion process of the BI space-time. It should be remarked
the isotropization takes place if and only if the spinor fie
equation contains the massive term@cf. the parameterm in
Eq. ~4.18!#. This is not the case for a massless spinor fie
since from Eq.~4.18! we get

t~ t !u t→`'A3kC0g2 t. ~4.20!

Substituting Eq.~4.20! into Eqs. ~3.42!, one comes to the
conclusion that the functionsa(t), b(t), andc(t) are differ-
ent.

Let us consider the properties of solutions to Eq.~4.15!
when t→0. Forl,0 from Eq.~4.18! we get

t~ t !5@~3/4!n2kuluC0
n#1/nt2/n→0, ~4.21!

i.e., solutions are singular. Forl.0, from Eq.~4.18! it fol-
lows thatt50 cannot be reached for any value oft as in this
case when the denominator of the integrand in Eq.~4.18!
becomes imaginary. It means that forl.0 there exist regu-
lar solutions to the previous system of equations@30#. The
absence of the initial singularity in the considered cosm
logical solution appears to be consistent with the violat
for l.0 of the dominant energy condition in the Hawkin
Penrose theorem@49#, which reads as follows.

Theorem.A space-timeM cannot be causally, geodes
cally complete if the GTR equations hold and if the follow
ing conditions are satisfied.

~i! The space-timeM does not contain closed timelik
lines.

~ii ! The conditions~dominant energy condition!

T001T111T221T33>0, ~4.22a!

T001T11>0, ~4.22b!

T001T22>0, ~4.22c!

T001T33>0, ~4.22d!
1-10
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on the equations of state are fulfilled, whereT00 is the energy
density andT11, T22, andT33 are three principal values o
pressure tensor.

~iii ! On each timelike or null geodesic, there is at least o
point for which

K [aRb]cd[eK f ]K
cKdÞ0, ~4.23!

whereKa is the tangent to the curve at the given point a
where the brackets on the subscripts imply antisymmetr
tion.

~iv! The space-timeM contains either~a! a pointP such
that all diverging rays from this point begin to converge
one traces them back to the past, or~b! a compact spacelike
hypersurface.

Proof. To prove that in the case considered the domin
energy condition is violated, we rewrite Eq.~4.22! in the
following form:

T0
0>T1

1a21T2
2b21T3

3c2, ~4.24a!

T0
0>T1

1a2, ~4.24b!

T0
0>T2

2b2, ~4.24c!

T0
0>T3

3c2. ~4.24d!

Let us go back to the energy density of a spinor field. Fr

T0
05

mC0

t
2

lC0
n

tn
~4.25!

it follows that at

tn21,
lC0

n21

m
~4.26!

the energy density of the spinor field becomes negative.
the other hand, we have

T1
15T2

25T3
35

l~n21!C0
n

tn
.0 ~4.27!

for any non-negative value oft. Thus, we see all four con
ditions in ~4.24! are violated, i.e., the absence of initial si
gularity in the considered cosmological solution appears
be consistent with the violation of the dominant energy c
dition in the Hawking-Penrose theorem.

Let us consider the Heisenberg-Ivanenko equation@50#
settingn52 in Eq. ~4.15!. In this case the equation fort(t)
does not contain the nonlinear term and its solution coinci
with that of the linear one. The spinor field functions in th
case are written as follows:

V15
C1

At
e2 imtZ4ilC0 /B, ~4.28a!
12350
e

a-

t

n

o
-

s

V25
C2

At
e2 imtZ4ilC0 /B, ~4.28b!

V35
C3

At
eimtZ24ilC0 /B, ~4.28c!

V45
C4

At
eimtZ24ilC0 /B, ~4.28d!

where Z5(t2t1)/(t2t2), B5M (t12t2), and t1,25
2y1 /M6A(y1 /M )222y0 /M are the roots of the quadrati
equation Mt212y1t12y050. As in the linear case, the
obtained solution is singular at timet5t1,2 and asymptoti-
cally isotropic ast→`.

We now study the properties of solutions to Eq.~4.15! for
1,n,2. In this case it is convenient to present the solut
~4.18! in the form

E dt

Amt2lt22nC0
n211g2

5A3kC0 t. ~4.29!

As t→`, from Eq.~4.29! we get the equality~4.19!, leading
to the isotropization of the expansion process. Ifm50 and
l.0, t(t) lies on the interval

0<t~ t !<~g2/lC0
n21!1/(22n).

If m50 andl,0, the relation~4.29! at t→` leads to the
equality

t~ t !'@~3/4!n2kuluC0
n#1/nt2/n. ~4.30!

Substituting Eq.~4.30! into Eqs.~3.42! and taking into ac-
count that att→`

E dt

t
'

n~3kulun2C0
n!1/n

~n22!22/n
t22/n11→0

due to22/n11,0, we obtain

a~ t !;b~ t !;c~ t !;@t~ t !#1/3;t2/3n→`. ~4.31!

This means that the solution obtained tends to the isotro
one. In this case the isotropization is provided not by
massive parameter, but by the degreen in the term LN
5lSn. Equation~4.29! implies

t~ t !u t→0'A3kC0g2 t→0, ~4.32!

which means the solution obtained is initially singular. Th
for 1,n,2 there exist only singular solutions at initial time
At t→` the isotropization of the expansion process of the
space takes place both form5” 0 and form50.

Finally, let us study the properties of the solution to E
~4.15! for 0,n,1. In this case we use the solution in th
form ~4.29!. Since now 22n.1, then with the increasing o
t(t) in the denominator of the integrand in Eq.~4.29! the
second termlt22nC0

n21 increases faster than the first on
1-11
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Therefore, the solution describing the space expansion
be possible only forl,0. In this case att→`, for m50 as
well as form5” 0, one can get the asymptotic representat
~4.30! of the solution. This solution, as for the choice 1,n
,2, provides an asymptotically isotropic expansion of the
space-time. Fort→0 in this case we shall get only the sin
gular solution of the form~4.32!.

For a nonzeroL term we study the following situation
depending on the sign ofL andl.

Case (i). L52e2,0, l.0. In this case forn.2 andt
→` we find

t~ t !'eA3et. ~4.33!

Thus we see that the asymptotic behavior oft does not de-
pend onn and is defined by theL term. From Eqs.~3.42! it
is obvious that the asymptotic isotropization takes place.

From Eq.~4.18! it also follows thatt cannot be zero a
any moment, since the integrand turns out to be imaginar
t approaches zero. Thus the solution obtained is a nonsi
lar one thanks to the nonlinear term in the Dirac equation
asymptotically isotropic. As it has been noted earlier,
absence of initial singularity in the considered cosmologi
model results in the violation of the dominant energy con
tion.

Case (ii). L.0 andl.0. For n.2, Eq. ~4.18! admits
only nonsingular oscillating solutions, sincet.0 and is
bound from above. Consider the case withn54 and for sim-
plicity set m50. Then from Eq.~4.18! one gets

t~ t !5
1

A2L
@kC0t01Ak2C0

2t0
214LlC0

4 sin 2A3Lt#1/2.

~4.34!

For a massive spinor field withL.0 and l.0 and n
510, a perspective view oft is shown in Fig. 4. The period
for the massive field is greater than that for the massless
As it occurs, the order of nonlinearity~n! has a direct effect
on the period~the more inn the less is the period!.

Case (iii). L,0 and l,0. The solution is singular a
initial moment, that is,

FIG. 4. Perspective view oft showing the initially nonsingular
and oscillating behavior of the solutions. The continuous and d
lines correspond to the massive and massless spinor field, re
tively.
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lim
t→0

t'@A23ln2C0
n/4t#2/n ~4.35!

and att→` asymptotic isotropization takes place since

lim
t→`

t'eA3Lt. ~4.36!

Case (iv). L.0 andl,0. The solution is initially singu-
lar as

lim
t→0

t'@A23ln2C0
n/4t#2/n ~4.37!

and is bound from the above, i.e., oscillating, since

lim
t→`

t'sinA3Lt. ~4.38!

~ii ! We study the system whenLN5F(J), which means in
the case consideredD50. Let us note that, in the unified
nonlinear spinor theory of Heisenberg, the massive term
mains absent, and according to Heisenberg, the particle m
should be obtained as a result of quantization of spinor p
matter@51#. In the nonlinear generalization of classical fie
equations, the massive term does not possess the signific
that it possesses in the linear one, as it by no means de
total energy~or mass! of the nonlinear field system. Thu
without losing the generality we can consider the mass
spinor field puttingm50. Then from Eqs.~3.35! one gets

P~ t !5
D0

t
, D05const. ~4.39!

The system of spinor field equations in this case reads

V̇12GV350, ~4.40a!

V̇22GV450, ~4.40b!

V̇31GV150, ~4.40c!

V̇41GV250. ~4.40d!

Defining U(s)5V(t), where s5*G dt, we rewrite Eqs.
~4.40! as

U182U350, ~4.41a!

U282U450, ~4.41b!

U381U150, ~4.41c!

U481U250, ~4.41d!

where the primes denote differentiation with respect tos.
Differentiating the first equation of system~4.41! and taking
into account the third one, we get

h
ec-
1-12
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U191U150, ~4.42!

which leads to the solution

U15D1eis1 iD 3e2 is,

U35 iD 1eis1D3e2 is.

Analogically for U2 andU4 one gets

U25D2eis1 iD 4e2 is,

U45 iD 2eis1D4e2 is,

where Di are the constants of integration. Finally, we c
write

c15
1

At
~D1eis1 iD 3e2 is!, ~4.43a!

c25
1

At
~D2eis1 iD 4e2 is!, ~4.43b!

c35
1

At
~ iD 1eis1D3e2 is!, ~4.43c!

c45
1

At
~ iD 2eis1D4e2 is!. ~4.43d!

Putting Eqs.~4.43! into the expressions~4.39!, one comes to

D052 ~D1
21D2

22D3
22D4

2!.

For the components of the spin current from Eqs.~3.27! we
find

j 05
2

t
@D1

21D2
21D3

21D4
2#, ~4.44a!

j 15
4

at
@D2D31D1D4#cosS 2E G dtD , ~4.44b!

j 25
4

bt
@D2D32D1D4#sinS 2E G dtD , ~4.44c!

j 35
4

ct
@D1D32D2D4#cosS 2E GDdt), ~4.44d!

whereas, for the projection of spin vectors on theX, Y, andZ
axis, we find

S23,05
2

bct
@D1D21D3D4#, ~4.45a!

S31,050, ~4.45b!

S12,05
1

2abt
@D1

22D2
21D3

22D4
2#. ~4.45c!
12350
Let us now estimatet using the equation

ẗ/t53kl~n21!P2n, ~4.46!

where we choseLN5lP2n. Putting the value ofP into Eq.
~4.46! and integrating, one gets

ṫ2523k lD0
2nt222n1y2, ~4.47!

where y2 is the integration constant having the formy2

5(X1
21X1X31X3

2)/3.0. The solution to Eq.~4.47! in
quadrature reads

E dt

A23klD0
2nt222n1y2

5t. ~4.48!

Let us now analyze the solution obtained here. As one
see, the casen51 is the linear one. In the case ofl,0 for
n.1, i.e., 222n,0, we get

t~ t !u t→0'@~A3kuluD0
nn!t#1/n

and

tu t→`'A3ky2 t.

This means that for the termLN considered withl,0 and
n.1, the solution is initially singular and the space-time
anisotropic att→`. Let us now study it forn,1. In this
case we obtain

tu t→0'A3ky2 t

and

tu t→`'@~A3kuluD0
nn!t#1/n.

The solution is initially singular as in the previous case, b
as far as 1/n.1, it provides an asymptotically isotropic ex
pansion of BI space-time. The analysis forLÞ0 completely
coincides with those forF5lSn with m50.

~iii ! In this case we studyLN5F(I ,J). Choosing

LN 5 F~K6!, K15I 1J5I v52I A , K25I 2J5I T ,

~4.49!

in the case of a massless NLSF we find

D52SFK6
, G562PFK6

, FK6
5dF/dK6 .

Putting them into Eqs.~3.35!, we find

S0
26P0

25D6 . ~4.50!

ChoosingF5lK6
n from Eq. ~3.38! we get

ẗ53kl~n21! D6
n t122n, ~4.51!

with the solution
1-13
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E tn21 dt

Ag2t2n2223klD6
n

5t, ~4.52!

where g25(X1
21X1X31X3

2)/3. Let us study the case wit
l,0. Forn,1 from Eq.~3.33! one gets

t~ t !u t→0'gt→0, ~4.53!

i.e., the solutions are initially singular, and

t~ t !u t→`'@A~3kuluD6
n !t#1/n, ~4.54!

which means that the anisotropy disappears as the Univ
expands. In the case ofn.1 we get

t~ t !u t→0't1/n→0

and

t~ t !u t→`'gt,

i.e., the solutions are initially singular and the metric fun
tions a(t), b(t), and c(t) are different att→`, i.e., the
isotropization process remains absent. Forl.0 we get that
the solutions are initially regular, but it violates the domina
energy condition in the Hawking-Penrose theorem@49#. Note
that one comes to the analogical conclusion choosingLN
5lS2nP2n.

C. Analysis of the results obtained when the BI universe is
filled with perfect fluid

Let us now analyze the system filled with perfect fluid.
the absence of other matter, i.e., spinor field, in this c
from Eq. ~3.38! we find

ẗ5
3k

2

~12z!«0

tz
, ~4.55!

with the first integral

ṫ5A3k«0t (12z)1C, ~4.56!

whereC is an integration constant. From Eq.~4.56! one es-
timates

t}t2 for z50 ~dust!, ~4.57a!

t}t3/2 for z5 1
3 ~radiation!, ~4.57b!

t}t6/5 for z5 2
3 ~hard universe!, ~4.57c!

t}t for z51 ~stiff matter!. ~4.57d!
s
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A perspective view of these solutions is given in Fig. 5.
Let us now consider the system as a whole with the n

linear term beingLN5lSn. In this case we get

E dt

AmC0t2lC0
n/t (n22)1«0t (12j)1g2

56A3kt.

~4.58!

As one can see in the case of dust (j50), the fluid term can
be combined with the massive one, whereas in the cas
stiff matter (j51), it mixes up with the constant. Analyzin
Eq. ~4.58! one concludes that in the presence of a spi
field, perfect fluid plays a secondary role in the evolution
a BI universe.

V. CONCLUSION

Within the framework of the simplest nonlinear model
a spinor field it has been shown that theL term plays a very
important role in Bianchi-I cosmology. In particular, it in
vokes oscillations in the model, which is not the case wh
theL term remains absent. It should be noted that regula
of the solutions obtained by virtue of theL term, especially
for the linear spinor field, does not violate the dominant e
ergy condition, while this is not the case when regular so
tions are attained by means of a nonlinear term. The grow
interest in studying the role of theL term by present-day
physicists of various disciplines indicates its fundamen
value. For details on the time-dependentL term, one may
consult@36# and references therein.

FIG. 5. Perspective view oft when the BI universe is filled with
perfect fluid only. The lines from left to right at the upper corn
correspond to dust (z50), radiation (z5

1
3 ), hard universe (z

5
2
3 ), and stiff matter (z51), respectively.
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