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Nonlinear spinor field in cosmology
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Within the scope of the Bianchi type VI models, the self-consistent system of nonlinear spinor field and
gravitational fields is considered. Exact self-consistent solutions to the spinor and gravitational field equations
are obtained for a special choice of spatial inhomogeneity and nonlinear spinor term. The role of inhomoge-
neity in the evolution of spinor and gravitational field is studied. Some solutions allow an oscillating behavior
of the Universe’s volume. It should be emphasized that for a suitable choice of spinor field nonlinearity some
of these solutions are nonsingular at all space-time points.
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I. INTRODUCTION

The problem of an initial singularity still remains at th
center of modern day cosmology. Though the Big Ba
theory is deeply rooted among the scientists dealing with
cosmology of the early Universe, it is natural to reconsid
models of a universe free from initial singularities. In doin
so, we previously considered a self-consistent system of n
linear spinor and gravitational fields in the presence o
perfect fluid@1–5#. The nonlinear term in the correspondin
Lagrangian mainly described the self-interaction of a spi
field @1–4#, whereas in Ref.@5# we studied the case when th
spinor field nonlinearity is induced by an interacting sca
field. As a gravitational field we chose a Bianchi type-I~BI!
anisotropic cosmological model. We studied also the role
the cosmological constantL in the formation of oscillatory
modes of evolution of the BI universe.

Why study a nonlinear spinor field? It is well known th
the nonlinear generalization of classical field theory rema
one possible way to overcome the difficulties of a theory t
considers elementary particles as mathematical points. In
approach elementary particles are modeled by regular~soli-
tonlike! solutions of the corresponding nonlinear equatio
The gravitational field equation is nonlinear by nature a
the field itself is universal and unscreenable. These pro
ties lead to a definite physical interest in the gravitatio
field that goes with these matter fields. We prefer a spi
field to scalar or electromagnetic fields, as the spinor fiel
the most sensitive to the gravitational field.

Why study an anisotropic universe? Though spatially
mogeneous and isotropic, Friedmann-Robertson-Wa
~FRW! models are widely considered as a good approxim
tion of the present and early stages of the Universe. H
ever, the large scale matter distribution in the observa
Universe, largely manifested in the form of discrete stru
tures, does not exhibit a high degree of homogeneity. Re
space investigations detect anisotropy in the cosmic mi
wave background. The Cosmic Background Explorer’s d
ferential radiometer has detected and measured cosmic
crowave background anisotropies at different angular sca

These anisotropies are supposed to contain in their
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the entire history of cosmic evolution dating back to t
recombination era and are being considered as indicativ
the geometry and the content of the Universe. More inform
tion about cosmic microwave background anisotropy is
pected to be uncovered by the investigations of the mic
wave anisotropy probe. There is widespread consen
among cosmologists that cosmic microwave backgrou
anisotropies at small angular scales are the key to the for
tion of discrete structures. The theoretical arguments@6# and
recent experimental data that support the existence of an
isotropic phase that approaches an isotropic phase leads
to consider universe models with an anisotropic backgrou
Its simplicity, the Kasner-universe-like behavior near the s
gularity @7# and evolution into a FRW universe when fille
with matter obeying the equation of statep5z«, z,1 @8#
make the Bianchi type I~BI! model a prime candidate fo
studying the possible effects of an anisotropy in the ea
Universe on present-day observations. But there are a
other models, which describe an anisotropic space-time
generate particular interest among physicists@9–16#. In Ref.
@10# methods of dynamical systems analysis were used
show that the presence of a magnetic field orthogonal to
two commuting Killing vector fields in any spatially homo
geneous Bianchi type VI0 vacuum solution to Einstein’s
equation changes the evolution towards the singularity fr
collapse to bounce. The authors in Ref.@11# studied the prob-
lem of isotropization of scalar field Bianchi models with a
exponential potential~s!. Other papers mentioned above a
devoted to tilted perfect fluid solutions, chaotic singularitie
and conditional symmetries.

In this paper we study the self-consistent system of
nonlinear spinor field and an anisotropic inhomogene
gravitational field in order to clarify the role of the spino
field nonlinearity and the space-time inhomogeneity in
formation of a singularity-free universe. As an anisotrop
space-time we choose a Bianchi type-VI~BVI ! model, since
a suitable choice of its parameters yields a few other Bian
models including BI and FRW universes. It can be noted t
unlike the BI universe, the BVI space-time is inhomog
neous. Inclusion of inhomogeneity in the gravitational fie
significantly complicates the search for an exact solution
the system. In Sec. II, we write the equations for nonline
spinor fields and the system of Einstein equations. In t
section we also give their solutions in some general fo
more precisely, we write the solutions in terms of a tim
©2004 The American Physical Society06-1
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BIJAN SAHA PHYSICAL REVIEW D 69, 124006 ~2004!
dependent function that can be defined only when the c
crete form of the spinor field nonlinearity is given. In Se
III, we give exact solutions to the equations for some spe
choices of spinor field nonlinearity and space-time inhom
geneity. Beside this, we also present some numerical s
tions in graphical form.

II. FUNDAMENTAL EQUATIONS
AND GENERAL SOLUTIONS

We shall investigate a self-consistent system of nonlin
spinor and Einstein gravitational fields. These two fields
to be codetermined by the following action:

S~g;c,c̄ !5E LA2g dV ~2.1!

with

L5Lgrav1Lspinor. ~2.2!

The gravitational part of the Lagrangian~2.2! is given by a
BVI space-time, while the spinor part is a usual spinor fie
Lagrangian with an arbitrary nonlinear term.

A. Spinor field Lagrangian

For a spinor fieldc, symmetry betweenc andc̄ appears
to demand that one should choose a symmetrized Lagran
@17#. Accordingly we choose the spinor field Lagrangi
with a nonlinear term in~2.3! as follows:

Lspinor5
i

2
@c̄gm¹mc2¹mc̄gmc#2M c̄c1F. ~2.3!

Here M is the spinor mass.The nonlinear termF describes
the self-interaction of the spinor field and can be presente
some arbitrary functions of invariants generated from the
bilinear forms of a spinor field having the form

S5c̄c ~scalar!, ~2.4a!

P5 i c̄g5c ~pseudoscalar!, ~2.4b!

vm5~ c̄gmc! ~vector!, ~2.4c!

Am5~ c̄g5gmc! ~pseudovector!, ~2.4d!

Qmn5~ c̄smnc! ~antisymmetric tensor!, ~2.4e!

wheresmn5( i /2)@gmgn2gngm#. Invariants, corresponding
to the bilinear forms, are

I 5S2, ~2.5a!

J5P2, ~2.5b!

I v5vmvm5~ c̄gmc!gmn~c̄gnc!, ~2.5c!
12400
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I A5AmAm5~ c̄g5gmc!gmn~c̄g5gnc!, ~2.5d!

I Q5QmnQmn

5~ c̄smnc!gmagnb~c̄sabc!. ~2.5e!

According to the Pauli-Fierz theorem@18# among the five
invariants onlyI andJ are independent as all others can
expressed by them:I V52I A5I 1J and I Q5I 2J. There-
fore, we choose the nonlinear termF as a function of the
invariantsI andJ, i.e., F5F(I ,J), thus claiming that it de-
scribes the nonlinearity in the most general form.

B. The gravitational field

The gravitational part of the Lagrangian in~2.2! has the
form:

Lgrav5
R

2k
, ~2.6!

Here R is the scalar curvature andk is Einstein’s gravita-
tional constant. The gravitational field in our case is given
a BVI metric:

ds25dt22a2e22mzdx22b2e2nzdy22c2dz2, ~2.7!

with a,b,c being functions of time only. Herem,n are some
arbitrary constants and the velocity of light is taken to
unity. It should be emphasized that the BVI metric model
universe that is anisotropic and inhomogeneous. A suita
choice ofm,n as well as the metric functionsa,b,c in the
BVI metric given by~2.7! generates Bianchi-type universe
discussed in the following:

~1! For m5n the BVI metric transforms into a Bianchi-typ
V ~BV! universe, i.e.,m5n, BVI⇒BVP open FRW
with the line element~s!

ds25dt22a2e22mzdx22b2e2mzdy22c2dz2. ~2.8!

~2! For n50 the BVI metric transforms into a Bianchi-typ
III ~BIII ! universe, i.e.,n50, BVI⇒BIII with the line
element~s!

ds25dt22a2e22mzdx22b2dy22c2dz2. ~2.9!

~3! For m5n50 the BVI metric transforms into a Bianchi
type I ~BI! universe, i.e.,m5n50, BVI⇒BI with the
line element~s!

ds25dt22a2dx22b2dy22c2dz2. ~2.10!

~4! For m5n50 and an equal scale factor in all three dire
tions the BVI metric transforms into a FRW univers
i.e., m5n50 and a5b5c, BVI⇒FRW with the line
element~s!

ds25dt22a2~dx21dy21dz2!. ~2.11!
6-2
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Let us write the nontrivial components of Ricci and Ri
mann tensors as well as Christoffel symbols of the BVI m
ric. The nontrivial Christoffel symbols of the BVI metri
read

G01
1 5ȧ/a, G02

2 5ḃ/b, G03
3 5 ċ/c,

G11
0 5aȧe22mz, G22

0 5bḃe2nz, G33
0 5cċ,

G31
1 52m, G32

2 5n, G11
3 5

ma2

c2
e22mz,

G22
3 52

nb2

c2
e2mz.

The nontrivial components of Riemann tensor are

R 01
01 52

ä

a
52

äbc

t
, R 02

02 52
b̈

b
52

ab̈c

t
,

R 03
03 52

c̈

c
52

abc̈

t
,

R 12
12 52

mn

c2
2

ȧ

a

ḃ

b
52

mn

c2
2

ȧḃc

t
,

R 13
13 5

m2

c2
2

ċ

c

ȧ

a
5

m2

c2
2

bċȧ

t
,

R 23
23 5

n2

c2
2

ḃ

b

ċ

c
5

n2

c2
2

ḃċa

t
.

The nontrivial components of the Ricci tensor are

R3
05S m

ȧ

a
2n

ḃ

b
2~m2n!

ċ

c
D

5
1

t
@mȧbc2nḃca2~m2n!ċab#,

R0
052S ä

a2
1

b̈

b2
1

c̈

c2D
52

1

t
@ äbc1b̈ca1 c̈ab#,

R1
152S ä

a
1

ȧ

a

ḃ

b
1

ȧ

a

ċ

c
2

m22mn

c2 D
52

1

t
@ äbc1ȧḃc1 ċȧb#1

m22mn

c2
,

12400
- R2
252S b̈

b
1

ȧ

a

ḃ

b
1

ḃ

b

ċ

c
2

n22mn

c2 D
52

1

t
@ab̈c1ȧḃc1ḃċa#1

n22mn

c2
,

R3
352S c̈

c
1

ȧ

a

ċ

c
1

ḃ

b

ċ

c
2

m21n2

c2 D
52

1

t
@ c̈ab1 ċȧb1ḃċa#1

m21n2

c2
,

where we define

t5abc. ~2.12!

To investigate the existence of a singularity~singular
point!, one has to study the invariant characteristics of spa
time. As we know, in general relativity, these invariants a
composed of the curvature tensor and the metric one.
though in 4D Riemann space there are 14 independen
variants@4,19#, it is sufficient to study only three of them
namely the scalar curvatureI 15R, I 25RmnRmn and the
Kretschmann scalarI 35RabmnRabmn @20,21#.

From the Riemann and Ricci tensors written above o
finds

I 15R52
2

t F ẗ2ȧḃc2aḃċ2ȧbċ2
ab

c
~m22mn1n2!G ,

~2.13a!

I 25~R0
0!21~R1

1!21~R2
2!21~R3

3!21R3
0R0

3 , ~2.13b!

I 354@~R01
01!21~R02

02!21~R03
03!21~R12

12!21~R31
31!21~R23

23!2#.

~2.13c!

From ~2.13! it follows that I 1}1/t, I 2}1/t2, and I 3}1/t2.
Note that the remaining 11 invariants are composed of two
more Ricci and/or Riemann tensors and hence are inver
proportional to (t)p, wherep is the number of tensors in th
corresponding invariant. Thus we see that at any space-
point wheret50, the invariantsI 1 ,I 2 ,I 3 become infinity;
hence the space-time becomes singular at this point.

C. Field equations

The field equations for the spinor and gravitational fie
can be obtained from the variational principle. Variation
the Lagrangian~2.3! with respect to the field functionsc(c̄)
gives the nonlinear spinor field equations:

igm¹mc2Mc1Dc1 iGg5c50, ~2.14a!

i¹mc̄gm1M c̄2Dc̄2 iGc̄g550,
~2.14b!

whereD52SFI andG52PFJ .
6-3
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Varying ~2.2! with respect to metric function (gmn), we
find Einstein’s field equation

Rn
m2

1

2
dn

mR5kTn
m , ~2.15!

whereRn
m is the Ricci tensor,R is the Ricci scalar, andTn

m is
the energy-momentum tensor of the spinor field. In our ca
where space-time is given by a BVI metric~2.7!, the equa-
tions for the metric functionsa,b,c read

b̈

b
1

c̈

c
1

ḃ

b

ċ

c
2

n2

c2
5kT1

1 , ~2.16a!

c̈

c
1

ä

a
1

ċ

c

ȧ

a
2

m2

c2
5kT2

2 ,

~2.16b!

ä

a
1

b̈

b
1

ȧ

a

ḃ

b
1

mn

c2
5kT3

3 ,

~2.16c!

ȧ

a

ḃ

b
1

ḃ

b

ċ

c
1

ċ

c

ȧ

a
2

m22mn1n2

c2
5kT0

0 , ~2.16d!

m
ȧ

a
2n

ḃ

b
2~m2n!

ċ

c
5kT3

0 .

~2.16e!

Here over dots denote differentiation with respect to ti
(t). The energy-momentum tensor of the material fieldTm

n

has the form:

Tm
r 5

i

4
grn~ c̄gm¹nc1c̄gn¹mc2¹mc̄gnc2¹nc̄gmc!

2dm
r Lspinor. ~2.17!

HereLspinor is the spinor field Lagrangian, which on accou
of the spinor field equations~2.14! takes the form:

Lspinor52DS2GP1F. ~2.18!

In the expressions above¹m denotes the covariant derivativ
on spinors, having the form@22#

¹mc5]mc2Gmc, ~2.19!

whereGm is the spin connection. The spin affine connecti
matricesGm(x) are uniquely determined up to an additiv
multiple of the unit matrix by the following equation@23#,

]mgn2Gnm
a ga2Gmgn1gnGm50, ~2.20!

with the solution

Gm~x!5
1

4
grs~x!~]med

beb
r2Gmd

r !gsgd. ~2.21!
12400
e,

e

t

Hereem
a is a set of tetrad four-vectors defined as

gmn5em
a en

bhab , hab5diag~1, 21, 21, 21!.
~2.22!

For the metric element~2.7! this gives

G050,

G15
1

2 F ȧḡ1ḡ02m
a

c
ḡ1ḡ3Ge2mz

G25
1

2 F ḃḡ2ḡ01n
b

c
ḡ2ḡ3Genz,

G35
1

2
ċḡ3ḡ0

It is easy to show that

gmGm52
1

2

ṫ

t
ḡ01

m2n

2c
ḡ3.

The Dirac matricesgm(x) of curved space-time are con
nected with those of Minkowski space-time as follows:

g05ḡ0, g15ḡ1emz/a, g25ḡ2/benz, g35ḡ3/c,

with

ḡ05S I 0

0 2I D , ḡ i5S 0 s i

2s i 0 D ,

g55ḡ55S 0 2I

2I 0 D ,

wheres i are the Pauli matrices:

s15S 0 1

1 0D , s 25S 0 2 i

i 0 D , s 35S 1 0

0 21D .

Note that theḡ and thes matrices obey the following rela
tions:

ḡ i ḡ j1ḡ j ḡ i52h i j , i , j 50,1,2,3

ḡ i ḡ51ḡ5ḡ i50, ~ ḡ5!25I , i 50,1,2,3

s js k5d jk1 i« jkls
l , j ,k,l 51,2,3

whereh i j 5$1,21,21,21% is the diagonal matrix,d jk is the
Kronecker symbol, and« jkl is the totally antisymmetric ten
sor with «123511.

Let us consider the spinors to be functions oft andz only,
such that

c~ t,z!5v~ t !eikz, c̄~ t,z!5 v̄~ t !e2 ikz. ~2.23!

Inserting~2.23! into ~2.14! for the nonlinear spinor field,
we find
6-4
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ḡ0S v̇1
ṫ

2t
v D 2S m2n

2c
2 i

k

cD ḡ3v1 iFv1Gḡ5v50,

~2.24a!

S v̇̄1
ṫ

2t
v̄ D ḡ02S m2n

2c
1 i

k

cD v̄ḡ32 iF v̄2Gv̄ḡ550.

~2.24b!

Here we defineF5M2D. Let us introduce a new function

uj~ t !5Atv j~ t !.

Then for the components of the nonlinear spinor field fro
~2.24!, one obtains

u̇11 iFu12Fm2n

2c
2 i

k

c
1GGu350, ~2.25a!

u̇21 iFu21Fm2n

2c
2 i

k

c
2GGu450,

~2.25b!

u̇32 iFu32Fm2n

2c
2 i

k

c
2GGu150,

~2.25c!

u̇42 iFu41Fm2n

2c
2 i

k

c
1GGu250.

~2.25d!

Using the spinor field equations~2.14! and ~2.24!, it can
be shown that the bilinear spinor forms, defined by~2.4!, i.e.,

S5c̄c5 v̄v, P5 i c̄ḡ5c5 i v̄ḡ5v,

A05c̄ḡ5ḡ0c5 v̄ḡ5ḡ0v,

A35c̄ḡ5ḡ3c5 v̄ḡ5ḡ3v, V05c̄ḡ0c5 v̄ḡ0v,

V35c̄ḡ3c5 v̄ḡ3v, Q305 i c̄ḡ3ḡ0c5 i v̄ḡ3ḡ0v,

Q215c̄ḡ0ḡ3ḡ5c5 i c̄ḡ2ḡ1c5 i v̄ḡ2ḡ1v,

obey the following system of equations:

Ṡ022
k

c
Q0

3022GA0
050, ~2.26a!

Ṗ022
k

c
Q0

2122FA0
050, ~2.26b!

Ȧ0
02

m2n

c
A0

312FP012GS050, ~2.26c!

Ȧ0
32

m2n

c
A0

050, ~2.26d!
12400
V̇0
02

m2n

c
V0

350, ~2.26e!

V̇0
32

m2n

c
V0

012FQ0
3022GQ0

2150, ~2.26f!

Q̇0
3012

k

c
S022FV0

350, ~2.26g!

Q̇0
2112

k

c
P012GV0

350, ~2.26h!

where we use the notationF05tF. Combining these equa
tions and taking the first integral one gets

~S0!21~P0!21~A0
0!22~A0

3!22~V0
0!21~V0

3!21~Q0
30!2

1~Q0
21!25C5const. ~2.27!

Before dealing with the Einstein equations~2.16! let us go
back to~2.25!. From the first and the third equations of th
system~2.25! one finds

u̇135~G2Q!u13
2 22iFu131~G1Q!, ~2.28!

where we denoteu135u1 /u3 and Q5@m2n22ik#/2c.
Equation~2.28! is of the Riccati type@24# with variable co-
efficients. A transformation@25#

v135expS 2E ~G2Q!u13dtD , ~2.29!

leads from the general Riccati equation~2.28! to a second
order linear one, namely,

~G2Q!v̈131@2iF~G2Q!2Ġ1Q̇#v̇131~G2Q!2~G1Q!v13

50. ~2.30!

Sometimes it is easier to solve a linear second order dif
ential equation than a first order nonlinear equation. Here
give a general solution to~2.28!. For this purpose we rewrite
~2.28! in the form

ẇ135~G2Q!w13
2 e22i *F(t)dt1~G1Q!e2i *F(t)dt,

~2.31!

where we setu135w13 exp@22i *F(t)dt#. This is an inho-
mogeneous nonlinear differential equation forw13. The so-
lution for the homogeneous part of~2.31!, i.e.,

ẇ135~G2Q!w13
2 expS 22i E F~ t !dtD ~2.32!

reads

w1352F E ~G2Q!expS 22i E F~ t !dtDdt1CG21

,

~2.33!
6-5
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whereC is an arbitrary constant. Then the general solution
the inhomogeneous equation~2.31! can be presented as

w1352F E ~G2Q!exp2S 2i E F~ t !dtDdt1C~ t !G21

,

~2.34!

with the time dependent parameterC(t) to be determined
from

Ċ5F E ~G2Q!expS 22i E F~ t !dtDdt1C~ t !G2

3~G1Q!e2i *F(t)dt. ~2.35!

Thus given a concrete nonlinear term in the Lagrangian
the solutions of the Einstein equations, one finds the rela
betweenu1 and u3 (u2 and u4 as well!, hence the compo
nents of the spinor field.

Now we study the Einstein equations~2.16!. In doing so,
we write the components of the energy-momentum ten
which in our case read

T 0
05MS2F1

k

c
V3, ~2.36a!

T1
15T2

25DS1GP2F, ~2.36b!

T3
35DS1GP2F2

k

c
V3, ~2.36c!

T 3
052kV0. ~2.36d!

Let us demand the energy-momentum tensor to be c
served, i.e.,

Tn;m
m 5Tn,m

m 1Gbm
m Tn

b2Gnm
b Tb

m50. ~2.37!

Taking into account thatTm
n is a function of t only, from

~2.37! we find

FṠ02GṖ01
k

c
V̇0

32
k

c

m2n

c
V0

050, ~2.38a!

V̇0
02

m2n

c
V0

350.

~2.38b!

As one can easily verify, Eqs.~2.38! are consistent with
those of~2.26!.

Let us go back to Eqs.~2.16!. In view of ~2.36!, from
~2.16e! one obtains the following relation between the met
functionsa,b,c:

S a

cD m

5S b

cD n

N expS 2kkE V 0dtD , N5const.

~2.39!

Subtracting~2.16a! from ~2.16b! we find
12400
o

d
n

r,

n-

d

dt Ft d

dt H lnS a

bD J G5
m22n2

c2
t ~2.40!

Analogously, subtraction of~2.16a! from ~2.16c! and~2.16b!
from ~2.16c! gives

d

dt Ft d

dt H lnS a

cD J G52
mn1n2

c2
t2

kk

c
V3t ~2.41!

and

d

dt Ft d

dt H lnS b

cD J G52
mn1m2

c2
t2

kk

c
V3t, ~2.42!

respectively. It can be shown that, in view of~2.26! and
~2.39!, Eqs.~2.40!, ~2.41!, and~2.42! are interchangeable.

Taking into account thatt5abc, from ~2.39! we can
write a andb in terms ofc, such that

a5Ftncm22nN expS 2kkE V0dtD G1/(m1n)

, ~2.43!

and

b5 H tmcn22mY FN expS 2kkE V0dtD G J 1/(m1n)

.

~2.44!

In view of ~2.43!, ~2.44!, and~2.26! from ~2.40! one finds

ẗ

t
53

ṫ

t

ċ

c
13S c̈

c
2

ċ2

c2D 22
kk

c
V32

~m1n!2

c2
. ~2.45!

In getting~2.45! we employ only four out of five Einstein
equations, leaving~2.16d! unused. On the other hand, addin
~2.16a!, ~2.16b!, ~2.16c!, and~2.16d!, multiplied by 3 we get
the equation fort, which in view of ~2.36! takes the form

ẗ

t
52

m22mn1n2

c2
1

k

2 F3~MS1DS1GP22F !12
k

c
V3G .
~2.46!

Thus we are left with two equations, namely~2.45! and
~2.46!, for two unknownsc andt. These two equations ca
be combined to get

c̈

c
2

ċ2

c2
1

ṫ

t

ċ

c
5

kk

c
V31

m21n2

c2
1

k

2
@MS1DS1GP22F#.

~2.47!

Thus we have come to Eq.~2.47! where all the equations a
hand, both spinor and gravitational, are employed. Assum
c as a function oft ~or vice versa! and given a concrete form
of the spinor field nonlinearity one finds the solution
~2.47!. This is exactly what we do in the next section.
6-6
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III. ANALYSIS OF THE RESULTS

In the preceding section we derived the fundamen
equations for nonlinear spinor fields and metric functio
Comparing the equation with those in a BI universe~see e.g.,
Ref. @4#! we conclude that introduction of inhomogenei
both in gravitational~throughm andn) and spinor~through
k) fields significantly complicates the whole picture. In wh
follows, we will write the solutions explicitly.

Let us first consider Eq.~2.47!. As one sees, there are tw
unknown functions in this equation, namely,c andt, with t
defined ast5abc. As a first step, we demand an addition
assumption relatingc and t, namely,c5t or c5At. Note
that such an assumption imposes some restrictions on
metric functions, though leaving the space-time anisotro
In what follows, we study Eq.~2.47! under the assumption
made above for different types of nonlinear spinor terms

A. Case I

Let us assume that

c5t. ~3.1!

Under this assumption in view oft5abc, we should have
a51/b. Indeed, from~2.43! and ~2.44! we find

a5Ft m2nN expS 2kkE V0dtD G1/(m1n)

, ~3.2!

and

b5 H t n2mY FN expS 2kkE V0dtD G J 1/(m1n)

. ~3.3!

With regard to~3.1!, from ~2.47! we obtain

ẗ

t
5

kk

t
V31

m21n2

t2
1

k

2
@MS1DS1GP22F#. ~3.4!

Let us now study~3.4! for some special choice of spinor fiel
nonlinearity.

1. Linear spinor field

To begin with we consider the linear case settingF(I ,J)
50. It immediately leads toD50 andG50. Equation~3.4!
now takes the form

ẗ

t
5

kk

t
V31

m21n2

t2
1

k

2
MS. ~3.5!

As one sees, to solve~3.5!, we have to findV3 and S first.
From ~2.26! for the linear spinor field we have

Ṡ022
k

c
Q0

3050, ~3.6a!

Ṗ022
k

c
Q0

2122MA0
050, ~3.6b!
12400
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Ȧ0
02

m2n

c
A0

312M P050, ~3.6c!

Ȧ0
32

m2n

c
A0

050, ~3.6d!

V̇0
02

m2n

c
V0

350, ~3.6e!

V̇0
32

m2n

c
V0

012MQ0
3050, ~3.6f!

Q̇0
3012

k

c
S022MV0

350, ~3.6g!

Q̇0
2112

k

c
P050, ~3.6h!

with the first integrals

~S0!21~V0
3!21~Q0

30!22~V0
0!250, ~3.7a!

~P0!21~A0
0!21~Q0

21!22~A0
3!250.

~3.7b!

Thus we see that even in the case of a linear spinor field w
kÞ0 we cannot writeV3 or S explicitly. In order to express
Sor P, hence the massive term or spinor field nonlinearity,
terms of t, we now consider the spinor field to be spa
independent settingk50.

From ~2.26! in this case one obtains,

S5
C0

t
, ~3.8!

with C0 being the integration constant. Equation~3.4! in this
case takes the form

ẗ5
m21n2

t
1

k

2
MC0 . ~3.9!

The solution of~3.9! can be written in quadrature as

E dt

A2~m21n2!ln t1kMC0t1E
5t, E5const.

~3.10!

For the solution to be meaningful, the integrand in~3.10!
should be positive. This means that fort to have an initial
value close to zero, one has to set small values form andn,
while the constantE should be large enough.

The components of the spinor field can be obtained fr
~2.33!. In the case considered,G50, Q5(m2n)/2t andF
5M .

2. Nonlinear spinor field with kÄ0

Let us now consider the nonlinear spatially independ
spinor field. We first choose the nonlinear term as a funct
6-7
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of I 5S2 only, followed by a massless spinor field with th
nonlinear term being a function ofJ5P2.

If the nonlinear spinor term is given asF5F(I )5lSh,
wherel is the ~self-! coupling constant, then in view ofS
5C0 /t for t, we find

ẗ5
m21n2

t
1

k

2
MC01

kl~h22!C0
h

2th21
, ~3.11!

with the solution in quadrature

E dt

A2~m21n2!ln t1kMC0t2klC0
ht22h1E

5t.

~3.12!

As one sees, the inclusion of the nonlinear term sets an
ditional restriction on the smallness of the initial value oft.
The components of the spinor field, as in linear case, can
obtained from~2.33!. In the case considered,G50 and Q
5(m2n)/2c.

For the massless spinor field, if the nonlinear term is c
sen asF5F(J)5lPh, from ~2.26! for P we find

P5D0 /t. ~3.13!

The equation fort then takes the form

ẗ5
m21n2

t
1

kl~h22!D0
h

2th21
~3.14!

with the solution in quadrature

E dt

A2~m21n2!ln t2klD0
ht 22h1E

5t. ~3.15!

The components of the spinor field can be obtained fr
~2.33!. In the case considered,Q5(m2n)/2c andF50.

B. Case II

Let us now consider the case~setting!

c5At. ~3.16!

This leads to the following expressions fora andb:

a5Ft m/2N expS 2kkE V0dtD G1/(m1n)

~3.17!

and

b5 H t n/2Y FN expS 2kkE V0dtD G J 1/(m1n)

.

~3.18!

Under this assumption from~2.47! we get

ẗ52kkV3At12~m21n2!1k@MS1DS1GP22F#t.
~3.19!
12400
d-

be

-

This equation can be solved exactly as in the previous ca
we setk50 and choose the spinor field nonlinearity asF
5F(I ) or in case of a massless spinor fieldF5F(J) or F
5F(I 6J).

For the reason that will be given afterwards, we consi
the nonlinear spinor field in a BV universe settingm5n in
the corresponding equations. To begin with we write t
equations for bilinear spinor forms. Settingm5n in ~2.26!
one finds

Ṡ022GA0
050, ~3.20a!

Ṗ022FA0
050, ~3.20b!

Ȧ0
012FP012GS050, ~3.20c!

Ȧ0
350, ~3.20d!

V̇0
050, ~3.20e!

V̇0
312FQ0

3022GQ0
2150, ~3.20f!

Q̇0
3022FV0

350, ~3.20g!

Q̇0
2112GV0

350, ~3.20h!

with the following relations between spinor bilinear forms

~S0!21~P0!21~A0
0!25B1 , ~3.21a!

A0
35B2 ,

~3.21b!

V0
05B3 ,

~3.21c!

~V0
3!21~Q0

30!21~Q0
21!25B4 ,

~3.21d!

whereBi are the constants of integration.
Let us now go back to Einstein’s equations. Equati

~2.16e! in this case takes the form

ȧ

a
2

ḃ

b
52

kk

m
V0. ~3.22!

Unlike the BVI universe, where the corresponding equati
i.e., ~2.16e!, connects all the three metric functionsa,b,c,
Eq. ~3.22! relates onlya andb between them:

a5N expF2~kk/m!E V0dtGb. ~3.23!

Recallingt5abc in view of ~3.23! and ~3.16! we can now
expressa andb in terms oft:

a5N 1/2t1/4 expF2~kk/2m!E V0dtG , ~3.24!
6-8
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NONLINEAR SPINOR FIELD IN COSMOLOGY PHYSICAL REVIEW D69, 124006 ~2004!
b5N 21/2t1/4 expF ~kk/2m!E V0dtG .
~3.25!

In view of ~3.24!, ~3.25! and the fact thatV̇0
050, from

d

dt Ft d

dt H lnS b

cD J G52
2m2

c2
t ~3.26!

one obtains

ẗ

t
53

ṫ

t

ċ

c
13S c̈

c
2

ċ2

c2D 24
m2

c2
. ~3.27!

On the other hand,~2.46! in this case has the form

ẗ

t
52

m2

c2
1

k

2
@3~MS1DS1GP22F !#1

kk

c
V3.

~3.28!

Combining~3.27! and ~3.28! we obtain

c̈

c
2

ċ2

c2
1

ṫ

t

ċ

c
5

kk

3c
V312

m2

c2
1

k

2
@MS1DS1GP22F#.

~3.29!

Thus we see that a straightforward insertion ofm5n into
~2.47! does not lead to~3.29!, since Eq.~2.16e! for different
Bianchi type space-times gives different relations betw
the metric functions. Here we simply note that for a B
metric, wheren50, Eq.~2.16e! relatesa andc, whereas for
a BI universe, as well as for a FRW universe, there is no s
equation. Note that, though in a BV space-time wherem
5n, many equations in question become significantly s
pler, it is not enough to write the solutions explicitly, sin
V3, S, andP are still not explicitly defined. As in the previ
ous case, we again consider only a time-dependent sp
field settingk50. It will give us enough ground to solv
both spinor and gravitational field equations explicitly.

Before studying Eq.~3.29! in detail, we go back to the
nonlinear spinor field equations. Withm5n andk50 for the
spinor field we immediately find

u̇11 iFu12Gu350, ~3.30a!

u̇21 iFu22Gu450, ~3.30b!

u̇32 iFu31Gu150, ~3.30c!

u̇42 iFu41Gu250. ~3.30d!

As in BVI space-time we consider the nonlinear term to
F5F(I ), or for a massless spinor fieldF5F(J) or F
5F(I 6J). The spinor field equation~3.30! completely co-
incides with those for a BI metric. So in what follows w
simply write the corresponding results without any details
detailed analysis of these results can be found in Ref.@4#.
12400
n

h

-

or

e

Thus, for the nonlinear term in the Lagrangian given
F5F(I ), the components of the spinor field take the for
@4#

c1~ t !5~C1 /At!expF2 i E ~M2D!dtG , ~3.31a!

c2~ t !5~C2 /At!expF2 i E ~M2D!dtG , ~3.31b!

c3~ t !5~C3 /At!expF i E ~M2D!dtG , ~3.31c!

c4~ t !5~C4 /At!expF i E ~M2D!dtG . ~3.31d!

HereC1,C2,C3,C4 are the integration constants, such tha

C1
21C2

22C3
22C4

25C0 ,

with C05St.
In case, the nonlinear term is given byF5F(J), and the

components of the spinor field have the form

c15
1

At
~D1eis1 iD 3e2 is!, ~3.32a!

c25
1

At
~D2eis1 iD 4e2 is!,

~3.32b!

c35
1

At
~ iD 1eis1D3e2 is!,

~3.32c!

c45
1

At
~ iD 2eis1D4e2 is!.

~3.32d!

Heres5*Gdt, and the integration constantsDi obey

2~D1
21D2

22D3
22D4

2!5D0 ,

with D0 to be determined fromP5D0 /t. Thus we see tha
in the cases considered here the spinor bilinear forms
inversely proportional tot, i.e., S5C0 /t andP5D0 /t.

Let us now go back to~3.29!. As one sees, fork50, the
assumptiont5c makes no sense, since in this case the m
ric functions a and b turn out to be constant. So as wa
mentioned earlier, we consider the case withc5At. Under
this assumption from~3.29! we get

ẗ54m21k@MS1DS1GP22F#t. ~3.33!

Consider the case withF5lSh. Taking into account thatS
5C0 /t andG50, from ~3.33! one derives
6-9
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BIJAN SAHA PHYSICAL REVIEW D 69, 124006 ~2004!
ẗ54m21k@MC01lC0
h~h22!t12h#, ~3.34!

with the solution in quadrature

dt

A~8m212kMC0!t22lkC0
ht22h1E

5t. ~3.35!

Note that, for a linear spinor field and for the massless sp
field with F5lPh one has to putl50 andM50, respec-
tively, into ~3.35!. It should be noted that for a positive con
stantE, in case of a linear spinor fieldt may have even a
trivial initial value.

C. Numerical solutions

Let us now demonstrate some numerical solutions to
Eqs. ~3.11! and ~3.34!. For simplicity we consider the cas
with F5F(I ), since by setting the self-coupling constantl
50 one comes to linear case, while setting the spinor m
M50 we have the case withF5F(J).

1. Case I

Let us first consider the case withF5lSh. In this case
the equation in question has the following form:

ẗ5F~p!, ~3.36!

where we define

F~p!5q1

m21n2

t
1q2m21k@q3M1q4l~h22!t (12h)#.

~3.37!

Here p is the set of problem parameters, namely,p
5$k,m,n,M ,l,h%. Equation ~3.36! admits the following
first integral,

ṫ5A2@E2U~t!#, ~3.38!

with the potential

U~t!52@q1~m21n2!ln~t!1q2m2t

1k~q3Mt2q4lt (22h)!#. ~3.39!

Note that settingq151, q250, q350.5, q450.5 and q1
50, q254, q351, q451, we get Eqs.~3.11! and~3.34! cor-
responding toc5t in a BVI universe andc5At in a BV
universe, respectively.

Here we illustrate some numerical results obtained
cases considered above. The parameters of the equation
taken as follows: for spatial inhomogeneity parameters
set m52 and n51, whereas Einstein’s gravitational con
stantk is taken to be unity. For the nonlinear spinor field w
choosel50.1. As one sees from~3.39! and ~3.38!, for a
negativeh the value oft should be bound from above; o
the other hand, since the metric is positively definedt should
be non-negative as well. In Figs. 1 and 2 we show so
numerical results for some negative value ofh.
12400
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e
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As one sees from Fig. 2, a negativeh gives rise to an
oscillatory mode of evolution. Depending on the value ofE
we have two type of solutions: periodic~corresponding to
E50 and E510) and bounded in a finite interval~corre-
sponding toE525).

Let us now see whether the dominant energy condit
holds here. The dominant energy condition in a BVI unive
has the form

T 0
0>T1

1a2e22mz1T2
2b2e2nz1T3

3c2, ~3.40a!

T 0
0>T1

1a2e22mz, ~3.40b!

T 0
0>T2

2b2e2nz, ~3.40c!

T 0
0>T3

3c2. ~3.40d!

For c5t andk50 with regard to~3.2! and~3.3!, Eqs.~3.40!
in a BVI space-time can be written as

FIG. 1. View of the potentialU(t) ~3.39! for different values of
h, namely h523 and h524 in a BVI model with m52, n
51, andl50.1.

FIG. 2. Evolution oft as a solution of~3.38! with the potential
given in Fig. 1 for different values ofE. Hereh524.
6-10
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NONLINEAR SPINOR FIELD IN COSMOLOGY PHYSICAL REVIEW D69, 124006 ~2004!
T 0
0>T1

1t2(m2n)/(m1n)e22mz1T2
2t22(m2n)/(m1n)e2nz1T3

3t2,
~3.41a!

T 0
0>T1

1t2(m2n)/(m1n)e22mz, ~3.41b!

T 0
0>T2

2t22(m2n)/(m1n)e2nz, ~3.41c!

T 0
0>T3

3t2, ~3.41d!

whereas, forc5At and k50 on account of~3.24! and
~3.25!, Eqs.~3.40! in a BVI space-time take the form

T 0
0>T1

1AtNe22mz1T2
2~At/N !e2nz1T3

3t, ~3.42a!

T 0
0>T1

1AtNe22mz, ~3.42b!

T 0
0>T2

2~At/N!e2nz, ~3.42c!

T 0
0>T3

3t. ~3.42d!

The components of the energy-momentum tensor fok
50 are

T 0
05MS2F, T1

15T2
25T3

35DS2F. ~3.43!

For F5lSh, ~3.43! in account ofS5C0 /t reads

T 0
05

M

t
2

l

th
, T1

15T2
25T3

35
l~h21!

th
, ~3.44!

For simplicity here we setC051. As one sees from~3.44!,
for a negativeh ~say h52h1), the energy density of the
systemT 0

0 becomes negative fort.(M /l)1/(11h1) and de-
creases asth1. On the other hand, all the pressure comp
nents are negative, but the components along thex and y
axes decreases ast [h112(m2n)/(m1n) and t [h122(m2n)/(m1n)

~see Fig. 3!. It means sooner or later one of the press
components becomes dominant. A graphical view of it
given in Fig. 4. It should be noted that the energy density

FIG. 3. View of energyT00 and pressure componentsTii , i
51,2,3 corresponding to~3.44! for h524. Here Pr1, Pr2, and Pr3
denote the pressure components alongx, y, andz axes, respectively
12400
-

e
s
d

the pressure components of the system are independe
the integration constantE, whereas the value oft in case of
a negativeh strongly depends on it. As shown in Fig. 2, fo
some values ofE, t runs between 0 and 3, while the large
pressure component in the case in question becomes d
nant only fort.10. Figure 3 shows the dominance of e
ergy in the regiontP(0,3). This means that for a suitab
choice of integration constantE it is still possible to con-
struct regular solutions without breaking the dominant e
ergy condition.

Let us now illustrate the behavior oft for the casec
5At in a BV space-time~see Figs. 5 and 6!. As one sees
from Fig. 6, a negativeh gives rise to the oscillatory mod
of evolution. Depending on the value ofE we have two types
of solutions. Unlike in the previous case here we have
solution where the process may repeat after some interva
time~s! ~as it is seen forE525 in Figs. 2 and 6!. As in the
previous case the dominant energy conditions holds fo
negativeh.

FIG. 4. View of energyT00 and pressure componentT22 for h
524. It clearly shows the dominance of the pressure compon
beginning at some value oft.

FIG. 5. PotentialU(t) ~3.39! for different values ofh, namely
h523 andh524 for a BV model withm5n52 andl50.1.
6-11
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Finally we compare the models for a positiveh ~see Figs.
7 and 8!. As was expected, in this case the universe expa
monotonically. In case of a BV model the expansion proc
is rather rapid.

2. Case II

We now consider the case whenF5sin(S). In this case we
have

F5q1

m21n2

t
1q2m21k$q3M1q4l@cos~1/t!

22t sin~1/t!#% ~3.45!

with the potential

U52$q1~m21n2!ln~t!1q2m2t

1k@q3Mt2q4lt2 sin~1/t!#%. ~3.46!

FIG. 6. Evolution oft as a solution of~3.38! for different values
of E with h524. The corresponding potential in this case is t
one given in Fig. 5.

FIG. 7. Potential of the system for a positiveh, namelyh54
for both BV (m52, n51) and BVI (m5n52) models forl
50.1. Unlike the case with negativeh, the potential in this case is
not bounded from the right, allowingt expand infinitely.
12400
ds
s

For simplicity we only consider the case in a BVI metr
with c5t. Note that for the case withc5At we come to
~the! similar results.

3. Case III

We now consider the case whenF5exp(S). In this case
we have

F5q1

m21n2

t
1q2m21k$q3M1q4l@122t#exp~1/t!#%

~3.47!

with the potential

U52$q1~m21n2!ln~t!1q2m2t

1k@q3Mt2q4lt2 exp~1/t!#%. ~3.48!

FIG. 8. Evolution oft for a positiveh in both BV and BVI
space-times. As one sees, the evolution in BV is rather rapid.

FIG. 9. View of the potentialU(t) given by ~3.46! ~‘‘psinvi’’ !
and ~3.48! ~‘‘pexpvi’’ !, respectively, in a BVI model withm52,
n51, andl50.1.
6-12
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NONLINEAR SPINOR FIELD IN COSMOLOGY PHYSICAL REVIEW D69, 124006 ~2004!
As in the previous case we consider only the case w
c5t in a BVI metric.

In Fig. 9 the corresponding potentials with the nonline
term being a sinusoidal or exponential function ofS are
shown for the case when we assume thatc5t. It is clear
from these figures that with the nonlinear terms conside
here the process of evolution is similar to that of a power l
nonlinearity with a positiveh. ~See Figs. 8 and 10!.

FIG. 10. Evolution oft for the potentials given in Fig. 9. Her
‘‘tausvi’’ corresponds toF5l sin(S) and ‘‘tauevi’’ corresponds to
F5l exp(S).
o

. D

12400
h
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d

IV. CONCLUSION

A self-consistent system of nonlinear spinor and grav
tional fields, modeled by a BVI space-time, is studied. Ex
solutions of the spinor and gravitational field equations
obtained for a special choice of the spinor field nonlinear
and the space-time inhomogeneity. It is shown that if
nonlinear spinor term is chosen to be a function of the
variantsI 5S2 or J5P2, with a negative power, the mode
provides an oscillatory mode of expansion. For a suita
value of the integration constantE these solutions are
singularity-free at any space-time point. We showed also
though a suitable choice ofm andn in a BVI metric yields
other Bianchi models, namely, BV, BIII and BI, the solution
of Einstein equations in these universes cannot be obta
by simply settingm and n in the corresponding solution
obtained in a BVI universe, since in different models t
metric functions are connected to each other differently.
deed, it follows from Eq.~2.16e!,

m
ȧ

a
2n

ḃ

b
2~m2n!

ċ

c
5kT 3

0 . ~4.1!

that for a BVI model the metric functionsa,b,c are con-
nected with each other by~2.39!, whereas, for a BV universe
~4.1! gives a relation betweena and b by ~3.23! and for a
BIII space-time it connectsa andc. For BI or FRW models
Eq. ~4.1! does not exist.
ys.

.
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