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Bianchi type-I cosmology with scalar and spinor fields
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We consider a self-consistent system of interacting spinor and scalar fields within the framework of a
Bianchi type-I ~BI! cosmological model filled with perfect fluid. The interacting term in the Lagrangian is
chosen in the form of derivative coupling, i.e.,Lint5(l/2)w ,aw ,aF. Here F is a power or trigonometric

function of the invariantsI and/or J constructed from bilinear spinor formsS5c̄c and P5 i c̄g5c. Self-
consistent solutions to the spinor, scalar, and BI gravitational field equations are obtained. The problems of an
initial singularity and the asymptotically isotropization process of the initially anisotropic space-time are
studied. The role of the cosmological constant (L term! in the evolution of a BI Universe is studied. It is
shown that a positiveL generates an oscillatory mode of expansion of the BI model, whereas ifF in Lint is
chosen to be a trigonometric function of its arguments, there exists a nonexponential mode of evolution even
with a negativeL. It is shown also that for a suitable choice of problem parameters the present model allows
regular solutions without a broken dominant energy condition.

DOI: 10.1103/PhysRevD.69.124010 PACS number~s!: 04.20.Ha, 03.65.Pm, 04.20.Jb, 98.80.Cq
re
tie
at
a

bl
th

a
tim
. A

.
p-
pi

o
el
f
gi
b
le

1/
ed
us
a

ie
th

ir
w
b
p

crip-
ni-
large
ely
ibit
ions
In

l
that
dels
he
gi-
tum

ss,
ian-
ons
de-
ral

of
st
t a
an-
s.
o-
its

ded
ent
ly
rly-
self-
ita-

ud-
I. INTRODUCTION

The nonlinear generalization of classical field theory
mains one of the possible ways to overcome the difficul
of a theory which considers elementary particles as m
ematical points. The gravitational field equation is nonline
by nature and the field itself is universal and unscreena
These properties lead to a definite physical interest in
gravitational field that goes with these matter fields.

Nonlinear self-couplings of the spinor fields may arise
a consequence of the geometrical structure of the space-
and, more precisely, because of the existence of torsion
early as 1938, Ivanenko@1–3# showed that a relativistic
theory imposes in some cases a fourth-order self-coupling
1950, Weyl@4# proved that, if the affine and the metric pro
erties of the space-time are taken as independent, the s
field obeys either a linear equation in a space with torsion
a nonlinear one in a Riemannian space. As the s
interaction is of spin-spin type, it allows the assignment o
dynamical role to the spin and offers a clue about the ori
of the nonlinearities. A nonlinear spinor field, suggested
the symmetric coupling between nucleons, muons, and
tons, has been investigated by Finkelsteinet al. @5# in the
classical approximation. Although the existence of a spin-
fermion is both theoretically and experimentally undisput
these are described by quantum spinor fields. Possible j
fications for the existence of classical spinors has been
dressed in Ref.@6#.

The present-day cosmology is based largely on the Fr
mann solutions of Einstein equations, which describe
completely uniform and isotropic Universe~‘‘closed’’ and
‘‘open’’ models!. The main feature of these solutions is the
nonstationarity. The idea of an expanding Universe, follo
ing from this property, is confirmed by the astronomical o
servations and it is now safe to assume that the isotro

*Electronic address: saha@thsun1.jinr.ru
†Electronic address: todorlb@jinr.ru
0556-2821/2004/69~12!/124010~12!/$22.50 69 1240
-
s
h-
r
e.
e

s
e
s

In

nor
r

f-
a
n
y
p-

2
,
ti-
d-

d-
e

-
-
ic

model provides, in its general features, an adequate des
tion of the present state of the Universe. Although the U
verse seems homogeneous and isotropic at present, the
scale matter distribution in the observable Universe, larg
manifested in the form of discrete structures, does not exh
a high degree of homogeneity. Recent space investigat
detect anisotropy in the cosmic microwave background.
fact, the theoretical arguments@7# and recent experimenta
data, which support the existence of an anisotropic phase
approaches an isotropic one, lead us to consider the mo
of Universe with anisotropic background. Zel’dovich was t
first to assume that the early isotropization of the cosmolo
cal expanding process can take place as a result of quan
effect of particle creation near singularity@8#. This assump-
tion was further justified by several authors@9–11#.

The simplest of anistropic models, which, neverthele
rather completely describe the anisotropic effects, are B
chi type-I ~BI! homogeneous models whose spatial secti
are flat but the expansion or contraction rate is direction
pendent. Moreover, a BI Universe falls within the gene
analysis of the singularity given by Belinskiiet al. @12# and
evolves into a Friedmann-Robertson-Walker~FRW! Uni-
verse@13# in the presence of a matter obeying the equation
statep5z«, z,1. Since the modern-day Universe is almo
isotropic at large, this feature of the BI Universe makes i
prime candidate for studying the possible effects of an
isotropy in the early Universe on present-day observation

It should be noted that an important property of the is
tropic model is the presence of a singular point in time in
space-time metric which means that the time is boun
from below. Is the presence of a singular point an inher
property of the relativistic cosmological models or is it on
a consequence of specific simplifying assumptions unde
ing these models? To answer this question we studied a
consistent system of the nonlinear spinor and BI grav
tional fields in a series of papers@14–17#. It should be
mentioned that a spinor field in a BI Universe was also st
ied by Belinskii and Khalatnikov@18#. Using Hamiltonian
©2004 The American Physical Society10-1
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techniques, Henneaux studied class-A Bianchi Univer
generated by a spinor source@19,20#.

In this paper we consider a self-consistent system of
spinor, scalar, and Bianchi type-I gravitation fields in t
presence of a perfect fluid and cosmological constantL. It
should be noted that the inclusion of theL term adds a new
dimension in the evolution of the Universe. Assuming th
the L term may be both positive and negative, it open
much wider range of possibilities in the search for
singularity-free solution of the field equations. Extending o
previous studies@14–17#, where the nonlinear term wa
taken to be a power law ofI 5S25(c̄c)2 and/or J5P2

5( i c̄g5c)2, in the present paper we consider the nonlin
term to be a trigonometric function ofI (J), as well. In
addition, a numerical analysis of the corresponding nonlin
differential equations has been performed.

II. DERIVATION OF BASIC EQUATIONS

Using the variational principle, in this section we deri
the basic equations for the corresponding spinor, scalar,
gravitational fields from the action~2.1! and express corre
sponding spinor, scalar, and metric functions in terms of
volume scalet ~2.27! of the BI universe. From the gravita
tional field equations we also deduce the second-order m
tiparametric ordinary differential equation fort. This last
equation will be thoroughly studied both analytically a
numerically in the following section.

We consider a system of the nonlinear spinor, scalar,
BI gravitational fields in the presence of a perfect fluid giv
by the action

S~g;c,c̄,w!5E LA2gdV ~2.1!

with

L5Lg1Lsp1Lsc1Lint1Lpf . ~2.2!

The gravitational part of the Lagrangian~2.2! Lg is given by
a Bianchi type-I~BI hereafter! space-time, whereas the term
Lsp, Lsc, and Lint describe the spinor and scalar field L
grangian and an interaction between them, respectively.
termLpf describes the Lagrangian density of the perfect fl
which minimally couples to the spinor and scalar fiel
through gravitational one.

A. Matter field Lagrangian

For a spinor fieldc, the symmetry betweenc and c̄
appears to demand that one should choose the symmet
Lagrangian@21#. Keeping this in mind we choose the spin
field Lagrangian as

Lsp5
i

2
@c̄gm¹mc2¹mc̄gmc#2mc̄c, ~2.3!

with m being the spinor mass.
The massless scalar field Lagrangian is chosen to be
12401
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Lsc5
1

2
w ,aw ,a. ~2.4!

The interaction between the spinor and scalar fields
given by the Lagrangian@16#

Lint5
l

2
w ,aw ,aF. ~2.5!

Herel is the coupling constant andF is an arbitrary function
of invariants generated from the real bilinear forms of t
spinor field ~a comprehensive description of the invarian
can be found, e.g., in Ref.@15#!. We chooseF5F(I ,J) with
I 5S25(c̄c)2 and J5P25( i c̄g5c)2. By virtue of the
Pauli-Fierz theorem@22# we claim that it describes the non
linearity in the most general of its form@15#. Note that set-
ting l50 in Eq. ~2.5! we come to the case with minima
coupling between the spinor and scalar fields.

The contribution of the perfect fluid to the system is pe
formed by means of its energy-momentum tensor, which a
as one of the sources of the corresponding gravitational fi
equations. So here we do not need to write the Lagrang
densityLpf explicitly. The reason for writingLpf in Eqs.~2.1!
and ~2.2! is to underline that we are dealing with a se
consistent system. An interesting discussion on the ac
and Lagrangian for a perfect fluid can be found in Re
@23–25#.

B. Gravitational field

As a gravitational field we consider the Bianchi type
~BI! cosmological model. It is the simplest model of anis
tropic Universe that describes a homogeneous and spat
flat space-time and if filled with perfect fluid with the equ
tion of statep5z«, z,1, it eventually evolves into a FRW
Universe @13#. The isotropy of the present-day Univers
makes the BI model a prime candidate for studying the p
sible effects of an anisotropy in the early Universe
modern-day data observations. In view of what has b
mentioned above we choose the gravitational part of the
grangian~2.2! in the form

Lg5
R

2k
, ~2.6!

where R is the scalar curvature,k58pG being the Ein-
stein’s gravitational constant. The gravitational field in o
case is given by a Bianchi type-I~BI! metric,

ds25dt22a2dx22b2dy22c2dz2, ~2.7!

with a, b, c being the functions of timet only. Here the
speed of light is taken to be unity.

The metric~2.7! has the following nontrivial Christoffel
symbols:
0-2
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G10
1 5

ȧ

a
, G20

2 5
ḃ

b
, G30

3 5
ċ

c
,

G11
0 5aȧ, G22

0 5bḃ, G33
0 5cċ. ~2.8!

The nontrivial components of the Ricci tensors are

R0
052S ä

a
1

b̈

b
1

c̈

c
D , ~2.9a!

R1
152F ä

a
1

ȧ

a
S ḃ

b
1

c̈

c
D G , ~2.9b!

R2
252F b̈

b
1

ḃ

b
S ċ

c
1

ä

a
D G , ~2.9c!

R3
352F c̈

c
1

ċ

c
S ȧ

a
1

b̈

b
D G . ~2.9d!

From Eq.~2.9! one finds the following Ricci scalar for the B
Universe:

R522S ä

a
1

b̈

b
1

c̈

c
1

ȧ

a

ḃ

b
1

ḃ

b

ċ

c
1

ċ

c

ȧ

a
D . ~2.10!

The nontrivial components of Riemann tensors in this c
read

R 01
01 5

ä

a
, R 02

02 5
b̈

b
, R 03

03 5
c̈

c
,

R 12
12 52

ȧ

a

ḃ

b
, R 23

23 52
ḃ

b

ċ

c
,

R 31
31 52

ċ

c

ȧ

a
. ~2.11!

Now having all the nontrivial components of Ricci and Ri
mann tensors, one can easily write the invariants of grav
tional field which we need to study the space-time singu
ity. We return to this study at the end of this section.

C. Field equations

Let us now write the field equations corresponding to
action ~2.1!.

Variation of Eq. ~2.1! with respect to the spinor field
c (c̄) gives the following spinor field equations:

igm¹mc2mc1Dc1Gig5c50, ~2.12a!

i¹mc̄gm1mc̄2Dc̄2Gi c̄g550, ~2.12b!

where we use the notation

D5lSw ,aw ,a
]F

]I
, G5lPw ,aw ,a

]F

]J
.
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e
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Since the nonlinearity in the foregoing equations is genera
by the interacting scalar field, Eqs.~2.12! can be viewed as
the spinor field equations with induced nonlinearity.

Variation of Eq.~2.1! with respect to the scalar field yield
the following scalar field equation:

1

A2g

]

]xn
~A2ggnm~11lF !w ,m!50. ~2.13!

Finally, varying Eq.~2.1! with respect to metric tenso
gmn one finds the Einstein’s field equations. On account
the L term they have the form

Rm
n 2

1

2
dm

n R5kTm
n 2dm

n L. ~2.14!

In view of Eqs.~2.9! and ~2.10! for the BI space-time~2.7!
we rewrite Eq.~2.14! as

b̈

b
1

c̈

c
1

ḃ

b

ċ

c
5kT1

12L, ~2.15a!

c̈

c
1

ä

a
1

ċ

c

ȧ

a
5kT2

22L, ~2.15b!

ä

a
1

b̈

b
1

ȧ

a

ḃ

b
5kT3

32L, ~2.15c!

ȧ

a

ḃ

b
1

ḃ

b

ċ

c
1

ċ

c

ȧ

a
5kT0

02L. ~2.15d!

Here the overdot refers to a time derivative andTn
m is the

energy-momentum tensor of the matter field given by

Tm
n 5Tm(sp)

n 1Tm(sc)
n 1Tm(int)

n 1Tm(pf)
n . ~2.16!

Here Tm(sp)
n is the energy-momentum tensor of the spin

field defined by

Tm(sp)
r 5

i

4
grn~ c̄gm¹nc1c̄gn¹mc2¹mc̄gnc2¹nc̄gmc!

2dm
r Lsp. ~2.17!

The termLsp in view of Eq. ~2.12! takes the form

Lsp52~DS1GP!. ~2.18!

The energy-momentum tensor of the scalar field is given

Tm(sc)
n 5w ,mw ,n2dm

n Lsc. ~2.19!

For the interaction field we find

Tm(int)
n 5lFw ,mw ,n2dm

n Lint . ~2.20!

Tm(pf)
n is the energy-momentum tensor of a perfect fluid. F

a Universe filled with a perfect fluid, in a comoving syste
of reference such thatum5(1, 0, 0, 0) we have
0-3
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Tm(pf)
n 5~p1«!umun2dm

n p5~«, 2p, 2p, 2p!.
~2.21!

The energy« and the pressurep of the perfect fluid obey the
following equation of state:

p5z«, ~2.22!

wherez is a constant and lies in the intervalzP@0, 1#. De-
pending on its numerical value,z describes the following
types of Universes@13#:

z50, ~dust Universe!, ~2.23a!

z51/3, ~radiation Universe!, ~2.23b!

zP~1/3, 1!, ~hard Universes!, ~2.23c!

z51, ~Zel’dovich Universe or stiff matter!.
~2.23d!

Here once again we note that the perfect fluid is minima
coupled to the system. Being one of its sources the per
fluid leaves its trace on the gravitational field which in tu
influences the behavior of the spinor and scalar fields.

In Eqs. ~2.12! and ~2.17! ¹m is the covariant derivatives
acting on a spinor field as@26,27#

¹mc5
]c

]xm
2Gmc, ¹mc̄5

]c̄

]xm
1c̄Gm , ~2.24!

where Gm are the Fock-Ivanenko spinor connection coe
cients defined by

Gm5
1

4
gs~Gms

n gn2]mgs!. ~2.25!

For the metric~2.7! one has the following components of th
spinor connection coefficients:

G050, G15
1

2
ȧ~ t !ḡ1ḡ0, G25

1

2
ḃ~ t !ḡ2ḡ0,

G35
1

2
ċ~ t !ḡ3ḡ0. ~2.26!

The Dirac matricesgm(x) of the curved space-time are co
nected with those of Minkowski as follows:

g05ḡ0, g15ḡ1/a, g25ḡ2/b, g35ḡ3/c.

Here

ḡ05S I 0

0 2I D , ḡ i5S 0 s i

2s i 0 D ,

g55ḡ55S 0 2I

2I 0 D ,

wheres i are the Pauli matrices:
12401
y
ct

-

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D .

Note that theḡ and thes matrices obey the following prop
erties:

ḡ i ḡ j1ḡ j ḡ i52h i j , i , j 50,1,2,3,

ḡ i ḡ51ḡ5ḡ i50, ~ ḡ5!25I , i 50,1,2,3,

s jsk5d jk1 i« jkls
l , j ,k,l 51,2,3,

whereh i j 5$1,21,21,21% is the diagonal matrix,d jk is the
Kronecker symbol, and« jkl is the totally antisymmetric ten
sor with «123511.

We study the space-independent solutions to the sp
and scalar field equations~2.12! and ~2.13!, so that c
5c(t) andw5w(t). Defining

t5abc5A2g ~2.27!

from Eq. ~2.13! for the scalar field we have

w5CE dt

t~11lF !
, C5const. ~2.28!

The spinor field equation~2.12a! on account of Eqs.
~2.24! and ~2.26! takes the form

i ḡ0S ]

]t
1

ṫ

2t
Dc2mc1Dc1Gig5c50. ~2.29!

SettingVj (t)5Atc j (t), j 51,2,3,4, from Eq.~2.29! one de-
duces the following system of equations:

V̇11 i ~m2D!V12GV350, ~2.30a!

V̇21 i ~m2D!V22GV450, ~2.30b!

V̇32 i ~m2D!V31GV150, ~2.30c!

V̇42 i ~m2D!V41GV250. ~2.30d!

From Eq. ~2.12! we write also the equations for the in
variantsS, P, andA5c̄ḡ5ḡ0c,

Ṡ022GA050, ~2.31a!

Ṗ022~m2D!A050, ~2.31b!

Ȧ012~m2D!P012GS050, ~2.31c!

where we use the notationsS05tS, P05tP, andA05tA.
From Eq.~2.31! we find the following relation between th
invariants:

S21P21A25C2/t2, C25const. ~2.32!
0-4
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Given the concrete form ofF the system~2.30! can be
solved explicitly and using the solutions obtained one c
write the components of spinor current:

j m5c̄gmc. ~2.33!

The componentj 0

j 05
1

t
@V1* V11V2* V21V3* V31V4* V4#, ~2.34!

defines the charge density of the spinor field that has
following chronometric-invariant form:

r5~ j 0• j 0!1/2. ~2.35!

The total charge of the spinor field is defined as

Q5E
2`

`

rA2 3gdxdydz5rtV, ~2.36!

whereV is the volume. From the spin tensor

Smn,e5
1

4
c̄$gesmn1smnge%c ~2.37!

one finds the chronometric invariant spin tensor

Sch
i j ,05~Si j ,0S

i j ,0!1/2, ~2.38!

and the projection of the spin vector on thek axis

Sk5E
2`

`

Sch
i j ,0A2 3gdxdydz5Sch

i j ,0tV. ~2.39!

Let us now solve the Einstein equations. In doing so
first write the expression for the components of the ener
momentum tensor explicitly:

T0
05mS1

C2

2t2~11lF !
1«,

T1
15T2

25T3
35DS1GP2

C2

2t2~11lF !
2p.

~2.40!

On account of Eq.~2.40!, subtracting Eq.~2.15a! from Eq.
~2.15b!, one finds the following relation betweena andb:

a

b
5D1expS X1E dt

t D . ~2.41!

Analogously,

a

c
5D2expS X2E dt

t D ,
b

c
5D3expS X3E dt

t D .

~2.42!

The integration constantsD1 , D2 , D3 , X1 , X2 , X3 obey
the following relations:
12401
n

e

e
-

D1D2D351, X11X21X350. ~2.43!

In view of Eq. ~2.43!, from Eqs. ~2.41! and ~2.42! we
write the metric functions explicitly@15#,

a~ t !5~D1
2D3!1/3t1/3expF2X11X3

3 E dt

t~ t !G , ~2.44a!

b~ t !5~D1
21D3!1/3t1/3expF2

X12X3

3 E dt

t~ t !G ,
~2.44b!

c~ t !5~D1D3
2!21/3t1/3expF2

X112X3

3 E dt

t~ t !G .
~2.44c!

As one sees from Eqs.~2.44a!–~2.44c!, for t5tn with n
.1, the exponent tends to unity at larget, and the anisotropic
model evolves into an isotropic one.

Further, we will investigate the existence of singular
~singular point! of the gravitational case, which can be do
by investigating the invariant characteristics of the spa
time. In general relativity these invariants are composed
the curvature tensor and the metric one. In a 4D Riem
space-time there are 14 independent invariants@15,28#. In-
stead of analyzing all 14 invariants, one can confine t
study only in 3, namely the scalar curvatureI 15R, I 2
5RmnRmn, and the Kretschmann scalarI 35RabmnRabmn

@29,30#. At any regular space-time point, these three inva
ants I 1 , I 2 , I 3 should be finite. Let us rewrite these invar
ants in detail.

For the BI metric one finds the scalar curvature

I 15R522S ä

a
1

b̈

b
1

c̈

c
1

ȧ

a

ḃ

b
1

ḃ

b

ċ

c
1

ċ

c

ȧ

a
D . ~2.45!

Since the Ricci tensor for the BI metric is diagonal, the
variant I 25RmnRmn[Rm

n Rn
m is a sum of squares of diagona

components of Ricci tensor, i.e.,

I 25@~R0
0!21~R1

1!21~R2
2!21~R3

3!2#, ~2.46!

with the components of the Ricci tensor being given by E
~2.9!.

Analogously, for the Kretschmann scalar in this case
have I 35R ab

mn R mn
ab , a sum of squared components of a

nontrivial R mn
mn , which in view of Eq.~2.11! can be written

as

I 354@~R 01
01 !21~R 02

02 !21~R 03
03 !21~R 12

12 !21~R 23
23 !2

1~R 31
31 !2#

54F S ä

a
D 2

1S b̈

b
D 2

1S c̈

c
D 2

1S ȧ

a

ḃ

b
D 2

1S ḃ

b

ċ

c
D 2

1S ċ

c

ȧ

a
D 2G .

~2.47!

Let us now express the foregoing invariants in terms oft.
From Eqs.~2.44a!–~2.44c! we have
0-5
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ai5Ait
1/3expS ~Yi /3!E t21dtD , ~2.48a!

ȧi

ai
5

Yi1 ṫ

3

1

t
, ~2.48b!

äi

ai
5

3tẗ22ṫ22Yi ṫ1Yi
2

9

1

t2
, ~2.48c!

where i 51,2,3 anda1 ,a2 , and a3 stand fora, b, and c,
respectively. From Eqs.~2.48a!–~2.48c! one can easily verify
that

I 1}
1

t2
, I 2}

1

t4
, I 3}

1

t4
.

Thus we see that at any space-time point, wheret50, the
invariantsI 1 , I 2 , I 3 as well as the scalar and spinor fiel
become infinity, hence the space-time becomes singula
this point.

In what follows, we write the equation fort and study it
in detail.

Summation of the Einstein equations~2.15a!, ~2.15b!,
~2.15c!, and~2.15d! multiplied by 3 gives

ẗ

t
5

3

2
k~mS1DS1GP1«2p!23L. ~2.49!

For the right-hand-side of Eq.~2.49! to be a function oft
only, the solution of this equation is well known@31#.

Let us demand the energy momentum to be conser
i.e.,

Tm;n
n 5Tm,n

n 1Grn
n Tm

r 2Gmn
r Tr

n50, ~2.50!

which in our case has the form

1

t
~tT0

0!•2
ȧ

a
T1

12
ḃ

b
T2

22
ċ

c
T3

350. ~2.51!

On account of the equation of statep5z« and

~m2D!Ṡ02GṖ050,

which follows from Eq. ~2.31!, after a little manipulation
from Eq. ~2.51! we obtain

«5«0 /t11z, p5z«0 /t11z, ~2.52!

with «0 being the constant of integration. In view of E
~2.52!, Eq. ~2.49! can be written as

ẗ

t
5

3

2
k@mS1DS1GP1~12z!«0 /t11z#23L.

~2.53!

As it was mentioned earlier, we considerF to be a function
of I, J, or I 6J. In the section to follow we study Eq.~2.53!
in detail.
12401
at

d,

III. EXACT SOLUTIONS AND NUMERICAL ANALYSIS

In the preceding section we solved the spinor, scalar,
gravitational field equations and wrote the solutions in ter
of volume scalet. It was also mentioned that if the right
hand side of Eq.~2.53! is a function oft, then its solution
can be written in quadrature. In what follows, we show th
Eq. ~2.53! is indeed an autonomous equation and explic
write the corresponding solutions for a concrete choice oF.

A. Exact solutions

Here we consider the cases with minimal coupling a
with F being the function of eitherI or J ~with zero mass!. In
this subsection we simply write the solutions to the spin
field equations explicitly and present the solution fort in
quadrature.

1. Minimally coupled scalar and spinor fields

Let us first consider the case with minimal coupling wh
the scalar and spinor fields interact through gravitational o
In this case from Eq.~2.31! one findsS5C0 /t. The scalar
field and the components of the spinor field in this case h
the following explicit form:

w5CE dt

t
, ~3.1!

c1~ t !5
C1

At
e2 imt, c2~ t !5

C2

At
e2 imt,

c3~ t !5
C3

At
eimt, c4~ t !5

C4

At
eimt, ~3.2!

with the integration constantsCj satisfying C05C1
21C2

2

2C3
22C4

2.
Equation~2.53! in this case takes the form

ẗ5
3

2
k~mC01«0~12z!/tz!23Lt, ~3.3!

with the solution

E dt

Ak~mC0t1«0t12z!2Lt21E
5A3t. ~3.4!

HereE is the constant of integration. Let us note that bei
the volume scalet cannot be negative. On the other han
the radical in Eq.~3.4! should be positive. This leads to th
fact that for a positiveL the value oft should be bound
from above giving rise to an oscillatory mode of expansi
of the BI space-time.

2. Case with FÄF „I …

Here we consider the interacting system of the scalar
spinor fields with the interaction given byLint
5(l/2)wmwmF(I ). As in the case with minimal coupling
from Eq. ~2.31a! one finds
0-6
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S5
C0

t
, C05const. ~3.5!

For components of the spinor field we find@15#

c1~ t !5
C1

At
e2 ib, c2~ t !5

C2

At
e2 ib,

c3~ t !5
C3

At
eib, c4~ t !5

C4

At
eib, ~3.6!

with Ci being the integration constants and related toC0 as
C05C1

21C2
22C3

22C4
2. Here we use the notationb5*(m

2D)dt.
For the components of the spin current from Eq.~2.33! we

find

j 05
1

t
@C1

21C2
21C3

21C4
2#,

j 15
2

at
@C1C41C2C3#cos~2b!,

j 25
2

bt
@C1C42C2C3#sin~2b!,

j 35
2

ct
@C1C32C2C4#cos~2b!,

whereas for the projection of spin vectors on theX, Y, andZ
axis we find

S23,05
C1C21C3C4

bct
, S31,050,

S12,05
C1

22C2
21C3

22C4
2

2abt
.

The total charge of the system in a volumeV in this case is

Q5@C1
21C2

21C3
21C4

2#V. ~3.7!

Thus for tÞ0 the components of spin current and the p
jection of spin vectors are singularity free and the to
charge of the system in a finite volume is always finite.

The equation for determiningt in this case has the form

ẗ5
3

2
k@mC01DC01«0~12z!/tz#23Lt. ~3.8!

Recalling thatD5lC0C2FI /t3@11lF(I )#2 the solution to
Eq. ~3.8! can be written in quadrature,

E dt

Ak@mC0t1C2/2~11lF !1«0t12z#2Lt21E
5A3t,

~3.9!
12401
-
l

with E being the integration constant. Given the expli
form of F(I ) we find various modes of expansion dependi
on the sign ofL. Later we numerically study this case i
detail.

3. Case with FÄF „J…

Here we consider the interacting system of the scalar
spinor fields with the interaction given byLint
5(l/2)wmwmF(J). In the case considered we assume
spinor field to be massless. Note that, in the unified nonlin
spinor theory of Heisenberg, the massive term remains
sent, and according to Heisenberg, the particle mass sh
be obtained as a result of quantization of spinor prema
@32#. In the nonlinear generalization of classical field equ
tions, the massive term does not possess the significance
it possesses in the linear one, as it by no means defines
energy~or mass! of the nonlinear field system. Thus withou
losing the generality we can consider the massless sp
field puttingm50. Then from Eq.~2.31b! one gets

P5D0 /t, D05const. ~3.10!

In this case the spinor field components take the form

c15
1

At
~D1eis1 iD 3e2 is!, c25

1

At
~D2eis1 iD 4e2 is!,

c35
1

At
~ iD 1eis1D3e2 is!, c45

1

At
~ iD 2eis1D4e2 is!.

~3.11!

The integration constantsDi are connected toD0 by D0

52 (D1
21D2

22D3
22D4

2). Here we sets5*Gdt.
For the components of the spin current from Eq.~2.33! we

find

j 05
2

t
@D1

21D2
21D3

21D4
2#,

j 15
4

at
@D2D31D1D4#cos~2s!,

j 25
4

bt
@D2D32D1D4#sin~2s!,

j 35
4

ct
@D1D32D2D4#cos~2s!,

whereas, for the projection of spin vectors on theX, Y, andZ
axis we find

S23,05
2~D1D21D3D4!

bct
, S31,050,

S12,05
D1

22D2
21D3

22D4
2

2abt
.

For t in this case we have
0-7
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ẗ5
3

2
k@GC01«0~12z!/tz#23Lt. ~3.12!

In view of Eq.~3.10!, G in this case takes the form analogo
to that taken byD in the previous case withFI replaced by
FJ . Then the solution of Eq.~3.12! we write in quadrature as

E dt

Ak@C2/2~11lF !1«0t12z#2Lt21E
5A3t.

~3.13!

Depending on the form ofF andL we have a different mode
of expansion of the BI Universe as in the previous case
what follows we numerically study the aforemention
cases.

B. Numerical experiments

In this subsection we study Eq.~3.8! for different choices
of F. As it was mentioned earlier, settingl50 in Eq. ~3.8!
we come to the case with minimal coupling given by E
~3.3!, whereas, assumingm50 we get Eq.~3.12!. Let us first
rewrite Eq.~3.8!:

ẗ5F~t,p!, ~3.14!

where we use the notation

F[
3

2
k@mC01DC01«0~12z!/tz#23Lt, ~3.15!

andp[$k,l,m,C0 ,C,«0 ,z,L% is the set of the parameter
Since in the examples we considerF5F(S), let us rewriteD
in terms ofS. On account ofS5C0 /t for D we have

D5lC2FS/2t2@11lF~S!#2.

From a mechanical point of view Eq.~3.14! can be inter-
preted as an equation of motion of a single particle with u
mass under the forceF(t,p). Then the following first inte-
gral exists@35#:

ṫ5A2@E2U~t,p!#. ~3.16!

HereE is the integration constant and

U[2
3

2
$k@mC0t1C2/2~11lF !1«0t2z#2Lt2%

is the potential of the forceF. We note that the radical ex
pression must be non-negative. The zeros of this expres
which depend on all the problem parametersp, define the
boundaries of the possible rates of changes oft(t). In what
follows we analyze Eqs.~3.14! and ~3.15! for different a
choice ofF(I ) as well as for different problem parametersp.

1. FÄSn

Let us first chooseF to be a power law ofS~or I ), setting
F5Sn. In this case settingC051 andC51 we rewriteF as
12401
n

.

it

n,

F5
3k

2 S m1
lntn21

2~l1tn!2
1«0

~12z!

tz D 23Lt,

~3.17!

with the potential

U52
3

2 H kFmt2
l

2~l1tn!
1«0t12zG2Lt2J .

~3.18!

Note that the nonnegativity of the radical in Eq.~3.16! in
view of Eq. ~3.18! imposes a restriction ont from above in
the case ofL.0. It means that in the case ofL.0 the value
of t runs between 0 and sometmax, wheretmax is the maxi-
mum value oft for the givenp. This equation has bee
studied for different values of parametersp. Here we dem-
onstrate the evolution oft for different choices oft0 for
fixed ‘‘energy’’ E and vice versa.

As the first example, we consider a massive spinor fi
with m51. Other parameters are chosen in the followi

FIG. 1. View of the potentialU(t) @Eq. ~3.18!# with BI space-
time being filled with perfect fluid describing a hard Universe.

FIG. 2. Evolution of the BI space-time corresponding to t
potential given in Fig. 1 for a different choice ofE.
0-8
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BIANCHI TYPE-I COSMOLOGY WITH SCALAR AND . . . PHYSICAL REVIEW D69, 124010 ~2004!
way: coupling constantl50.1, power of nonlinearityn
54, and cosmological constantL51/3. We also choosez
50.5 describing a hard Universe.

In Fig. 1 we plot corresponding potentialU(t) multiplied
by the factor 2/3. As is seen from Figs. 1 and 2, choosing
integration constantE we may obtain two different types o
solutions. ForE.0.5 solutions are nonperiodic, whereas f
Emin,E<0.5 the evolution of the Universe is oscillatory.

As a second example we consider the massless sp
field. Other parameters of the problem are left unaltered w
the exception ofz. Here we choosez51 describing stiff
matter. It should be noted that this particular choice oz
gives rise to a local maximum. This results in two types
solutions for a single choice ofE.

As one sees from Fig. 3, ifE is taken to be above the leve
M there exists only nonperiodic solutions, whereas forEmin
,E,U(t50)520.5 the solutions are always oscillator
For EP(20.5,M ) there exits two types of solutions depen
ing on the choice oft0 . In Fig. 4 we plot the evolution oft
for EP(20.5,M ). As is seen, fort0P(0,A) ~heret050.1)
we have mathematical solutions that are oscillatory andt in
this case becomes negative in some interval of time. Sinc

FIG. 3. View of the potentialU(t) @Eq. ~3.18!# with BI space-
time being filled with a stiff matter.

FIG. 4. Evolution of the BI space-time corresponding to t
potential given in Fig. 3 in the case of a massless spinor field
different choices oft0 with EP(20.5,M ).
12401
e

or
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by

definition t is non-negative, we plot only the part of th
solution wheret>0 ~cf. Fig. 4, dashed curve!. Note that
only that part oft defined in the interval of timetP(0,Tf) is
physically relevant. Fort0P(B,C) we again have the oscil
latory mode of the evolution oft. These two regions are
separated by the no-solution zone (A,B).

Let us also consider the case withL,0. For a negative
L, as well as in the absence of theL term, the evolution of
t is always exponential as it is seen in Fig. 5. In this case
initial anisotropy of the BI space-time quickly dies away a
the Universe becomes an isotropic one.

Let us analyze the dominant energy condition in t
Hawking-Penrose theorem@33,34#. For a BI Universe the
dominant energy condition can be written in the form@15#

T0
0>T1

1a21T2
2b21T3

3c2, ~3.19a!

T0
0>T1

1a2, ~3.19b!

T0
0>T2

2b2, ~3.19c!

T0
0>T3

3c2. ~3.19d!

Let us note that in Ref.@15# we considered a self-consiste
system of nonlinear spinor and BI gravitational fields in t
presence of a perfect fluid and aL term. It was shown that in
this case the regular solutions can be obtained by virtue
the spinor field nonlinearity and/or a positiveL term. It was
shown also that the absence of initial singularity in the co
sidered cosmological solution is consistent with the violat
of the dominant energy condition in the Hawking-Penro
theorem. Note that regular solutions obtained for a lin
spinor field by means of a positiveL term do not violate this
condition. Let us now analyze the dominant energy condit
for the system in hand. To analyze this condition for t
system of the interacting spinor and scalar fields we rew
the components of the energy-momentum tensor. For en
density in this case we have
r

FIG. 5. Evolution of the BI Universe for a negativeL. As one
sees, the evolution of the Universe in this case takes expone
character and the initial anisotropy of the BI space-time quic
dies away.
0-9
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T0
05

mC0

t
1

C2tn22

2~tn1lC0
n!

1
«0

t11z
. ~3.20!

As one sees from Eq.~3.20! for any positive value oft
energy density is always positive definite. Ast→0, T0

0

→`, whereasT0
0 decreases ast increases. For the pressu

components in this case we have

T1
15T2

25T3
35

C2tn22

2~tn1lC0
n!2

@lC0
n~n21!2tn#2

z«0

t11z
.

~3.21!

The second term in Eq.~3.21! is always positive, it means
that T1

1 has a greater value when the BI Universe is fill
with dust, i.e., whenz50. To investigate the dominant en
ergy condition we study the pressure term~since T1

15T2
2

5T3
3, hereafter we mention it asT1

1) at length. For simplicity
we setC51 andC051. It is clear from Eq.~3.21! that if

tn.l~n21!, ~3.22!

we haveT1
1,0. In this case the dominant energy conditi

remains unbroken. From Eq.~3.22! we see forl50 that the
foregoing inequality holds for anyt.0. It means that like
the linear spinor field@15#, the system with minimally
coupled scalar and spinor fields possesses regular solu
without broken dominant energy condition. For an intera
ing system this condition holds for any negativen with a
positive l and vice versa. Let us now see what happe
when bothn and l are positive~negative!. Note that the
coupling constantl may take any value. The magnitude ofl
defines the strength of interaction.

Let us go back to Eq.~3.22!. As one sees, for any reaso
able value ofl the inequality~3.22! holds at larget. On the
other hand, ast→0, the corresponding energy densityT0

0

tends to infinity. So the conditions~3.19! hold for smallt as
well. Finally, let us analyze the situation in the neighborho
of t51. The energy densityT0

0 at this point is reasonably
small, whereas, as it is shown in Fig. 7, violation of t
dominant energy condition, i.e., the situation whenT1

1 domi-

FIG. 6. ComparingT0
0 andT1

1 for a positiven, one sees that for
a small value ofn it is possible to construct a regular solutio
without violating the dominant energy condition.
12401
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natesT0
0, may occur only for a relatively large value ofn.

Thus we conclude that in case of interacting spinor and s
lar fields it is possible to construct regular solutions witho
violating dominant energy condition of Hawking-Penro
theorem~see Fig. 6!.

2. FÄsin S

Let us now consider the case withF being a trigonometric
function of S, namely,F5sinS. In this case forF we have

F5
3k

2 S m1
l cosS

2t2~l1sinS!2
1«0

~12z!

tz D 23Lt, S5
1

t
,

~3.23!

with the potential

U52
3

2 H kFmt1
1

2~11l sinS!
1«0t12zG2Lt2J .

~3.24!

It should be noted that unlike the case withF being a power
law of S51/t, where the nonlinearity appears in the regi
with a large value oft, in the case under consideration,
number of interesting properties emerge in the region wh
0,t,1, namely, in the vicinity of the singular pointt50. A

FIG. 7. For a largen there exists some value oft where the
pressure component prevails energy. In this case the dominan
ergy condition breaks down.

FIG. 8. The potentialU(t) @Eq. ~3.24!# with BI space-time be-
ing filled perfect fluid describing a hard Universe.
0-10
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graphical view of the potentialU(t) @Eq. ~3.24!# is given in
Figs. 8 and 9. Here we choose the problem parameter
follows: k52/3, spinor massm51, coupling constantl
50.01, cosmological constantL52/3, «051 and z52/3.
Since S51/t and U(t)}1/sin(S), a large number of smal
oscillations occurs ast→0 @cf. Fig. 9#.

It is clear from Figs. 8 and 9 that depending on the cho
of integration constantE we have two types of solution
demonstrated in Fig. 2. Moreover, for some values ofE there
exists more than one periodic solution.

Let us now study the system for a negativeL. Contrary to
the case withF5Sn, where all the solutions for a negativeL
grow exponentially, in this case an interesting situation
curs for some special choice of parameters.

As one sees from Fig. 10, depending on the integra
constant and the initial value oft, the mode of evolution can
be both finite and exponential. For the integration const
being at the levelAB in Fig. 10 ~here it is 23), with t0
P(0,tA) the evolution oft is finite and similar to the one
illustrated in Fig. 2 corresponding toE51, whereas, fort0
.tB we have an exponentially expandingt. Thus we con-
clude that for the interacting term being a trigonomet
function of its arguments, the system even with a negativL
admits a nonexponential mode of evolution.

FIG. 9. Fragment of the potential~3.24! in the vicinity of the
point t50 that occurs due to the nonlinear termF.

FIG. 10. View of the potentialU(t) @Eq. ~3.24!# with a negative
L.
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To investigate the dominant energy condition let us wr
the components of the energy-momentum tensor. For s
plicity we setC051 and in terms ofS for the energy density
we write

T0
05mS1

S2

2~11l sinS!
1«0S11z. ~3.25!

Sincet is a positive quantity,S is positive as well. As one
sees from Eq.~3.25! for any positive value ofS and l,1
energy density is always positive definite and proportiona
S2. SinceS51/t, it means thatT0

0 has its maximum ast
→0 and tends to zero ast→`.

For the pressure components we have

T1
15T2

25T3
35

lS3cosS

2~11l sinS!2
2

S2

2~11l sinS!
2«0zS11z.

~3.26!

As one sees, for al,1, the pressureT1
1 may be both positive

and negative depending on the sign of cosS. Moreover, its
maximum value is proportional toS3. Thus, in the case o
F5sinS, for any z defined as in Eq.~2.23! and any non-
trivial l, there exist intervals (Si ,Si 11) such that forS
P(Si ,Si 11) the inequalityT0

0,T1
1 takes place as it is show

in Fig. 11. Therefore we conclude that the regular solutio
obtained in this case result in the broken dominant ene
condition.

IV. CONCLUSION

Within the framework of the simplest model of interactin
spinor and scalar fields it is shown that theL term plays a
very important role in the evolution of the BI cosmology.
particular, it invokes oscillations in the model. For a nonpo
tive L with F being the power law of its arguments we fin
a Universe expanding exponentially, hence the initial anis
ropy of the model quickly dies away. In the case ofF being
the trigonometric function of its arguments, a negativeL
beside the exponential ones allows a nonexponential mod

FIG. 11. Relative behavior ofT0
0 and T1

1 with F5sin(S). This
picture clearly shows the violation of the dominant energy condit
that takes place in the case considered.
0-11
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evolution. For a positiveL with a suitable choice of integra
tion constantE one finds the oscillatory mode of expansio
of the Universe. In this case it is possible to construct so
tions that are regular at all space-time points. It should
emphasized that if the spinor field nonlinearity is genera
by self-interaction as in Ref.@15#, the regularity of the solu-
tions obtained results in the violation of the dominant ene
condition of the Penrose-Hawking theorem@15#, whereas in
the case considered here, when the spinor field nonlinea
is induced by the scalar one, regular solutions can be
tained even without breaking the aforementioned conditi
It should be noted that the dominant energy condition ho
for F being the power law ofI or J, whereas it is not the cas
whenF is chosen to be a trigonometric function of its arg
ments. Note that in the presence of theL term the role of
it.

.

t,

12401
-
e
d

y

ity
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s

other parameters such as order of nonlinearityn, perfect fluid
parameterz, and spinor mass in the evolution process a
rather local. The global process is totally determined by
L term. For example, ifL.0, we have physically allowable
solutions that are either oscillatory or defined on some fin
interval of time. In the case ofL,0 solutions are generally
inflationlike though for some special choices of problem p
rameters the oscillatory mode of evolution can be attaine
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