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A self-consistent system of interacting nonlinear spinor and scalar fields within the scope of a Bianchi
type-I cosmological model filled with perfect fluid is considered. Exact self-consistent solutions to the
corresponding field equations are obtained. A role of the spinor field in the evolution of the Universe is
studied. It is shown that the spinor field gives rise to an accelerated mode of expansion of the Universe.
Early in the evolution, the spinor field nonlinearity generates an accelerated mode of expansion. The rapid
growth of the Universe in this case results in the earlier isotropization. At the later evolution the
acceleration of the Universe is provided with a spinor mass.
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I. INTRODUCTION

Some recent observations suggest that the universe is
spatially flat and undergoing a period of accelerated ex-
pansion. In order to explain this accelerated mode of
expansion of the present-day Universe, cosmologists intro-
duced different kinds of source fields:

(i) Quintessence [1–4] with w � pDE="DE. A special
member of this case is the cosmological constant
w � �1 [5–7].

(ii) Chaplygin gas [8,9] with the equation of state pDE �
A="DE with A being some positive constant.

(iii) Phantom dark energy (DE) with w<�1.
(iv) Oscillating DE.
(v) models with interaction between DE and dark matter.

(vi) Scalar-tensor DE models, etc.
Recently cosmological models with spinor field have

been extensively studied by a number of authors in a series
of papers [10–15]. A principal goal of the papers [10–14]
was to find out the regular solutions of the corresponding
field equations. In some special cases, namely, with a
cosmological constant (� term) that plays the role of an
additional gravitation field, we indeed find singularity-free
solutions. It was also found that the introduction of non-
linear spinor field results in a rapid growth of the Universe.
This allows us to consider the spinor field as a possible
candidate to explain the accelerated mode of expansion.
Note that similar attempt is made in a recent paper by
Kremer et al. [16].

The simplest models of expanding Universe are those
which are spatially homogeneous and isotropic. These
models were first studied by Friedmann [17], Robertson
[18,19] and Walker [20]. Though spatially homogeneous
and isotropic Friedmann-Robertson-Walker (FRW) models
are widely considered as good approximation of the
present and early stages of the universe, the large scale
matter distribution in the observable universe, largely man-

ifested in the form of discrete structures, does not exhibit
homogeneity of a higher order. In contrast, the cosmic
background radiation, which is significant in the micro-
wave region, is extremely homogeneous, however, recent
space investigations detect anisotropy in the cosmic mi-
crowave background. The observations from Cosmic
Background Explorer’s differential radiometer have de-
tected and measured cosmic microwave background an-
isotropies in different angular scales. These anisotropies
are supposed to hide in their fold the entire history of
cosmic evolution dating back to the recombination era
and are being considered as indicative of the geometry
and the content of the universe. More about cosmic micro-
wave background anisotropy is expected to be uncovered
by the investigations of microwave anisotropy probe.
There is widespread consensus among the cosmologists
that cosmic microwave background anisotropies in small
angular scales have the key to the formation of discrete
structure. The theoretical arguments [21] and recent ex-
perimental data that support the existence of an anisotropic
phase that approaches an isotropic one leads to consider the
models of universe with anisotropic background. The ear-
liest use of anisotropic cosmological models to study a real
cosmological problem was the investigation by Lemaitre
[22]. The purpose of that study was to verify whether the
big-bang singularity which occurs in FRW model was just
a consequence of the assumed symmetry. In the late 60’s
three different facets of astrophysical research directed
interest to homogeneous but anisotropic cosmological
models [23]: in discussing the possibility of a primordial
magnetic field Zel’dovich [24] and Thorne [25] considered
anisotropic cosmologies; in studying factors which might
affect the amount of primordial helium production in a big-
bang cosmology Hawking and Tayler [26] considered an-
isotropic models; Kristian and Sachs [27] as well as
Kantowski and Sachs [28], in studying the degree to which
our universe is actually isotropic, considered anisotropic
cosmologies. Zel’dovich was first to assume that the early
isotropization of cosmological expanding process can take
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place as a result of quantum effect of particle creation near
singularity [29]. This assumption was further justified by
several authors [30–32]. Interest in studying Klein-Gordon
and Dirac equations in anisotropic models has increased
since Hu and Parker [32] have shown that the creation of
scalar particles in anisotropic backgrounds can dissipate
the anisotropy as the Universe expands. Investigation simi-
lar to that of Lamaitre was carried out in the 60’s. The
purpose was to see if the helium abundance could be fitted
better by anisotropic cosmologies than by the FRW one. It
might happen because anisotropy speeds up the evolution
between the time when deuterium can first form and time
when neutrons and photons no longer find each other to
combine. Pioneering work in this effort was done by
Hawking and Tayler [26].

A Bianchi type-I (BI) universe, being a straightforward
generalization of the flat Friedmann-Robertson-Walker
(FRW) Universe, is one of the simplest models of an
anisotropic Universe that describes a homogenous and
spatially flat Universe. Unlike the FRW Universe which
has the same scale factor for each of the three spatial
directions, the BI universe has a different scale factor in
each direction, thereby introducing an anisotropy to the
system. It moreover has an agreeable property that near the
singularity it behaves like a Kasner Universe, even in the
presence of matter, and consequently falls within the gen-
eral analysis of the singularity given by Belinskii et al.
[33]. Also in a Universe filled with matter for p � �", � <
1, it has been shown that any initial anisotropy in the BI
universe quickly dies away and a BI universe eventually
evolves into a FRW Universe [34]. Since the present-day
Universe is surprisingly isotropic, this feature of the BI
universe makes it a prime candidate for studying the pos-
sible effects of an anisotropy in the early Universe on
present-day observations. In light of its importance several
authors have studied BI universe from different aspects.

In this paper we study the role of a spinor field in
generating an accelerated mode of expansion of the
Universe. Note that we consider the late time acceleration
as well as the initial inflation, i.e., a period when the
Universe might be significantly anisotropic. Taking this
into mind as well as the importance and generality of
anisotropic models, we consider the gravitational field be
given by a BI universe. Beside the accelerated mode of
expansion, we also examine the possibilities for
singularity-free solutions and isotropization of the initially
anisotropic unverse.

II. BASIC EQUATIONS

We consider a system of the nonlinear spinor, scalar, and
BI gravitational fields given by the action

 S �g; ; � ;’� �
Z

L
�������
�g
p

d� (2.1)

with

 L � Lg �Lm �Lpf : (2.2)

The gravitational part of the Lagrangian (2.2) Lg is
given by a Bianchi type-I metric, whereas the term Lm

describe the interacting system of the spinor and the scalar
fields. Finally, Lpf describes the perfect fluid.

The interacting system the spinor and the scalar fields is
given by the Lagrangian
 

Lm �
i
2
� � ��r� �r� � �� � �m �  � F

�
1

2
�1� �1F1�’;�’;�: (2.3)

The term F describes the self-action of a spinor field and
�1F1 ascribes the interaction between the spinor and the
scalar fields with �1 being the coupling constant. F and F1

can be chosen as some arbitrary functions of invariants
generated from the real bilinear forms of a spinor field.
Thanks to Pauli-Fierz theorem, one may assume F �
F�I; J� and F1 � F1�I; J� with I � S2, S � �  , J � P2

and P � i � �5 , since the three remaining invariants are
the functions of these two. In our previous studies [cf. e.g.,
[13,14]] when F � F�J� and/or F1 � F1�J� we considered
a massless spinor field since in the nonlinear generalization
of the classical field equations, the massive term does not
possess the significance that it possesses in the linear one,
as it by no means defines the total energy (or mass) of the
nonlinear field system. As the spinor mass plays a signifi-
cant role in the late time acceleration of the Universe, in
this paper we consider the case when F and F1 are the
functions of I (or S) only.

The gravitational field is chosen in the form

 ds2 � dt2 � a2
1dx

2
1 � a

2
2dx

2
2 � a

2
3dx

2
3; (2.4)

where ai are the functions of t only and the speed of light is
taken to be unity. We also define

 � � a1a2a3: (2.5)

Using the variation principle we find the equations for
the spinor, scalar and gravitational fields. The nonlinear
spinor field equation takes the form
 

i��r� � �m�D� � 0; (2.6a)

ir� � �� � �m�D� � � 0; (2.6b)

with r� denoting the covariant derivative of the spinor
field and D � dF=dS� ��1=2�’;�’

;�dF1=dS. The equa-
tion for the massless scalar field reads

 

1�������
�g
p

@
@x�
�
�������
�g
p

g���1� �1F1�’;�� � 0: (2.7)

Einstein’s gravitational field equation corresponding to the
BI spacetime can be written in the form:
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Here T�� is the energy-momentum tensor of the spinor and
scalar fields and the perfect fluid.

We consider the spinor and scalar field to be space
independent.

From the spinor field equation we find

 S � C0=�; (2.9)

with C0 being an integration constant. The components of
the spinor field in this case read

  1;2�t� � �C1;2=
���
�
p
�e�i

R
�m�D�dt;

 3;4�t� � �C3;4=
���
�
p
�ei
R
�m�D�dt;

(2.10)

with the integration constants obeying C0 � C2
1 � C

2
2 �

C2
3 � C

2
4.

For the scalar field we find

 ’ � C
Z dt
��1� �1F1�

� C1; (2.11)

where C and C1 are integration constants.
Before solving the equation for �, we have to write the

components of the energy-momentum tensor of the source
fields in details:

 T0
0 � mS� F�

1

2
�1� �1F1� _’2 � "pf;

T1
1 � T2

2 � T3
3 �DS� F�

1

2
�1� �1F1� _’2 � ppf:

(2.12)

In (2.12) "pf and ppf are the energy density and pressure of
the perfect fluid, respectively, and related by the equation
of state

 ppf � �"pf; � 2 �0; 1�: (2.13)

In this case the Bianchi identity T��;� � 0 gives

 _"�
_�
�
�"� p� � 0: (2.14)

In view of (2.13) from (2.14) for the energy density and
pressure of the perfect fluid one finds

 "pf �
"0

�1�� ; ppf �
�"0

�1�� : (2.15)

In account of T1
1 � T2

2 � T3
3 from Eqs. (2.8a)–(2.8c) we

find

 ai�t� � Ai���t��
1=3 exp

�
Xi
Z
���t0���1dt0

�
; (2.16)

with the integration constants Ai and Xi obeying the fol-
lowing conditions
 

A1A2A3 � 1; (2.17a)

X1 � X2 � X3 � 0: (2.17b)

As it was mentioned above, in order to give a more
realistic description of the early day Universe we need to
consider the anisotropic cosmological models such as
Bianchi type-I (BI). On the other hand the modern day
Universe is wonderfully isotropic. So we have to find out
how and when the initially anisotropic spacetime evolves
into an isotropic one. There exists a number of isotropiza-
tion criteria in literature. In [34] Jacobs used anisotropy
parameter in order to find the time when anisotropies
ceased to be large one. Two common criteria for isotrop-
ization are
 

A �
1

3

X3

i�1

H2
i

H2 � 1! 0; (2.18a)

�2 �
1

2
AH2 ! 0: (2.18b)

Here A and �2 are the mean anisotropy parameter and
shear parameter, respectively. Hi � _ai=ai are the direc-
tional Hubble parameters and H � _a=a is the mean
Hubble parameter, with a�t� � �1=3 being the mean scale
factor. In this paper we use the isotropization condition
introduced by Bronnikov et al. [35]. Isotropization means
that at large physical times, when the volume scale � tends
to infinity, the three scale factors ai�t� grow at the same
rate. Therefore, we will say that a model is isotropizing if

 ai=a! const> 0 as �! 1: (2.19)

As is seen from (2.16) in our case ai=a! Ai � const as
�! 1. Recall that the isotropic FRW model has same
scale factor in all three directions, i.e., a1�t� � a2�t� �
a3�t� � a�t�. So for the BI universe to evolve into a FRW
one the constants Ai’s are likely to be identical, i.e., A1 �
A2 � A3 � 1. Note that by rescaling some coordinates we
can come to ai=a! 1 and the metric will become mani-
festly isotropic at large t. Moreover, the isotropic nature of
the present Universe leads to the fact that the three other
constants Xi should be close to zero as well, i.e., jXij � 1,
(i � 1, 2, 3), so that Xi

R
���t���1dt! 0 for t <1 (for

��t� � tn with n > 1 the integral tends to zero as t! 1
for any Xi). The rapid growth of the Universe due to the
introduction of the nonlinear spinor field to the system
results in the earlier isotropization.

From (2.10), (2.11), and (2.16) one finds that the spinor,
scalar and metric functions are in some functional depen-
dence of �. It could be shown that the other physical

NONLINEAR SPINOR FIELD IN BIANCHI TYPE-I . . . PHYSICAL REVIEW D 74, 124030 (2006)

124030-3



quantities such as spin-current, charge etc. and invariant of
spacetime are too expressed via � [13,14]. In fact all these
quantities are inverse proportional to �n. Thus we see that
at any spacetime points where � � 0 the spinor, scalar and
gravitational fields become infinity, hence the spacetime
becomes singular at this point [14]. So it is very important
to study the equation for � (which can be viewed as master
equation) in details, exactly what we shall do in the section
to follow. In doing so, we analyze the role of spinor field in
the character of evolution of the Universe.

III. EVOLUTION OF BI UNIVERSE AND ROLE OF
SPINOR FIELD

In this section we study the role of spinor field in the
evolution of the Universe. But first of all let me qualita-
tively show the differences that occur at the later stage of
expansion depending on how the sources of the gravita-
tional field were introduced in the system. After a little
manipulation from (2.8) one finds the equation for � which
is indeed the acceleration equation and has the following
general form:

 

��
�
�

3

2
��T1

1 � T
0
0�: (3.1)

On the other hand, from the Bianchi identity G�
�;� � 0 we

have

 

_T 0
0 � �

_�
�
�T0

0 � T
1
1�: (3.2)

After a little manipulation from (3.1) and (3.2) one finds the
following expression for T0

0 :

 �T0
0 � 3H2 � C00=�

2; (3.3)

where in analogy with FRW model we define the general-
ized Hubble constant:

 3H �
_�
�
�

_a1

a1
�

_a2

a2
�

_a3

a3
� H1 �H2 �H3: (3.4)

Taking into account that even in case of H � 0 the energy
density should be nonnegative, the integration constant C00

in (3.3) should be nonpositive.
Note that the Einstein equations for the FRW model read

 

2
�a
a
�

�
_a
a

�
2
� �T1

1 ; (3.5a)

3
�

_a
a

�
2
� �T0

0 : (3.5b)

From (3.5) one finds

 

�a
a
� �

�
6
�T0

0 � 3T1
1�: (3.6)

The Eq. (3.6) is known as the acceleration equation. On the
other hand, for the BI Universe from (2.8) we obtain

 

�a1

a1
�

�a2

a2
�

�a3

a3
� �

�
2
�T0

0 � 3T1
1�: (3.7)

As is seen, setting a1 � a2 � a3 we come to Eq. (3.6),
hence one may argue to define (3.7) as acceleration equa-
tion for BI model. Nevertheless, as acceleration equation
for BI universe we consider Eq. (3.1), since when we talk
about the expansion of the Universe, we mean the growth
rate of the volume as a whole, not a particular scale factor.

Keeping this in mind let us now define the deceleration
parameter for the BI universe. Recall that in FRW cosmol-
ogy the deceleration parameter has the form

 dfrw � �
a �a

_a2 � �

�
1�

_Hfrw

Hfrw

�
�
d
dt

�
1

Hfrw

�
� 1; (3.8)

where Hfrw � _a=a is the Hubble parameter for FRW
model. In analogy we can define a deceleration parameter
as well. If we define the generalized deceleration parameter
as:

 d � �
�

1�
_H1 � _H2 � _H3

H2
1 �H

2
2 �H

2
3

�
; (3.9)

where Hi � _ai=ai, then the standard deceleration parame-
ter is recovered at a1 � a2 � a3. But in this case the
definition for acceleration adopted here is no longer valid.
So we switch to the second choice and following Belinchon
and Harko et al. [36,37] define the generalized deceleration
parameter as

 d �
d
dt

�
1

3H

�
� 1 � �

� ��

_�2 : (3.10)

Thus we have defined all the basic quantities needed to
verify the character of evolution. Let us now study the
master Eq. (3.1) in detail. In doing so we first choose the
nonlinear spinor terms explicitly. Assume that F � �Sq

and F1 � Sr where � is the self-coupling constant. Further
for simplicity we set "0 � 1 and C0 � 1. Then on account
of (2.9) and (2.15) for the energy density and the pressure
from (2.12) we find

 T0
0 �

m
�
�
�
�q
�

�r�2

2��1 � �r�
�

1

�1�� 	 "

T1
1 �
�q� 1��

�q
�
��1� r��1 � �

r��r�2

2��1 � �
r�2

�
�

�1�� 	 p:

(3.11)

Taking into account that T0
0 and T1

1 are the functions of �
only, the Eq. (3.1) can now be presented as

 �� � F �q1; ��; (3.12)

where we define
 

F �q1; �� � �3=2���m� ��q� 2��1�q

� �1r�r�1=2��1 � �r�2 � �1� ��=�� �; (3.13)
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where q1 � f�;m; �; �1; q; r; �g is the set of problem pa-
rameters. Equation (3.12) allows the following first inte-
gral:

 _� �
����������������������������������
2�E�U�q1; ���

q
(3.14)

where we denote
 

U�q1; �� � �
3

2
���m�� �=�q�2

� �1=2��1 � �
r� � �1�� ��: (3.15)

From a mechanical point of view Eq. (3.12) can be inter-
preted as an equation of motion of a single particle with
unit mass under the force F �q1; ��. In (3.14) E is the
integration constant which can be treated as energy level,
and U�q1; �� is the potential of the force F �q1; ��. We
solve Eq. (3.12) numerically using Runge-Kutta method.
The initial value of � is taken to be a reasonably small one,
while the corresponding first derivative _� is evaluated from
(3.14) for a given E.

Before presenting numerical results let us first study
Eqs. (3.12), (3.13), (3.14), and (3.15) qualitatively. In
view of (3.13) from (3.12) one finds ��! �3=2��m> 0 as
�! 1, i.e., if �� is considered to be the acceleration of the
BI Universe, then the massive spinor field essentially can
be viewed as a source for everlasting acceleration. As far as
initial stage of expansion is concerned (here we are ex-
clusively dealing with an expanding Universe), the posi-
tivity of the radical imposes some restriction on the value
of �, namely, in case of � > 0 and q 
 2 the value of �
cannot be too close to zero at any spacetime point. In this
case there exists an infinitely high potential wall as �! 0
making it impossible for any classical system to reach the
point where � � 0 [cf. Figure 1]. Thus we conclude that for

some special choice of problem parameters the introduc-
tion of nonlinear spinor field given by a self-action pro-
vides singularity-free solutions. As it was shown in [13] the
regular solution is obtained only at the expense of broken
dominant-energy condition in the Hawking-Penrose theo-
rem [38] which in case of BI unverse can be written in the
form:
 

T0
0 
 T1

1a
2
1 � T

2
2a

2
2 � T

3
3a

2
3; (3.16a)

T0
0 
 T1

1a
2
1; (3.16b)

T0
0 
 T2

2a
2
2; (3.16c)

T0
0 
 T3

3a
2
3: (3.16d)

Let us now consider the case when � is negative. From
(3.15) one sees, in the vicinity of � � 0 there exists a
bottomless potential hole [cf Fig. 2]. If the initial value
of � is too close to zero and the constant E is less than Umax

(the maximum value of the potential in presence of a self-
action), the Universe will never come out of the hole.

Let us now solve the (3.12) numerically. In doing this we
choose the problem parameters as follows: Einstein’s
gravitational constant � � 1, spinor mass m � 1, the
power of nonlinearity q � 4, r � 4 and � � 1=3 that
corresponds to a radiation. We also set C00 � �0:001
and E � 10. The initial value of � is taken to be �0 �
0:4. The coupling constant is chosen to be �1 � 0:5, while
the self-coupling constant is taken to be either � � 0:5 or
� � �0:5. Here, in the figures we use the following nota-
tions:

(1) corresponds to the case with self-action and
interaction;

 

FIG. 1 (color online). View of the potential U��� for � > 0.

 

FIG. 2 (color online). View of the potential U��� for a nega-
tive �.
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(2) corresponds to the case with self-action only;
(3) corresponds to the case with interaction only.
As one sees from Fig. 1, in presence of a self-action of

the spinor field with a positive �, there occurs an infinitely
high barrier as �! 0, it means that in the case considered
here � cannot be trivial [if treated classically, the Universe
cannot approach to a point unless it stays at an infinitely
high energy level]. Thus, the nonlinearity of the spinor field
provided by the self-action generates singularity-free evo-
lution of the Universe. But this regularity can be achieved
only at the expense of dominant-energy condition in
Hawking-Penrose theorem. It is also clear that if the non-
linearity is induced by a scalar field, � may be trivial as
well, thus giving rise to spacetime singularity [14]. We
would like to note that the singularity-free evolution of the
Universe can be achieved by introducing a � term into the
system. The system in question is thoroughly studied in
[13,14]. It was shown that introduction of a positive � that
corresponds to a repulsive force and can be viewed as a
form of dark energy accelerates the speed of expansion,
whereas, a negative � corresponding to an additional
gravitational force, depending of the choice of E, generates
oscillatory or nonperiodic mode of evolution. Note also
that the regular solution obtained by means of a negative �
in case of interaction does not result in broken dominant-
energy condition [14].

In Figs. 3 and 4 we plot the corresponding energy
density and pressure. In case of a positive � the energy
density is initially negative while the pressure is positive.
In this case though the solution is singularity-free, the
violation of dominant energy takes place. In case of nega-
tive � the pressure is always negative.

The purpose of plotting the energy density and pressure
is to show that the energy density of the source field indeed
decreases with the increase of the Universe. This also
shows that there exists an interval where the energy density
of the system with spinor field nonlinearity generated by
the self-action is negative. Moreover, we see the pressure
of the source field gets negative in course of evolution (in
case of self-action with a positive � pressure is initially

 

FIG. 3 (color online). Energy density and pressure correspond-
ing to a positive �.

 

FIG. 4 (color online). Energy density and pressure in case of a
negative �.

 

FIG. 5 (color online). Acceleration of the Universe corre-
sponding to a positive �.
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positive, but with the expansion of the Universe it gets
negative, whereas, in case of of negative � as well as in
case of interacting fields the pressure is always negative).
Recall that the dark energy (e.g. quintessence, Chaplygin
gas), modeled to explain the late time acceleration of the
Universe, has a negative pressure. So we argue that the
models with nonlinear spinor field and interacting spinor
and scalar fields to some extent can be considered as an
alternative to dark energy which is able to explain the late
time acceleration of the Universe.

In Figs. 5 and 6 we illustrate the acceleration of the
Universe for positive and negative �, respectively. As one
sees, in both cases we have the decreasing acceleration that
tends to �3=2��m as �! 1.

To cement our claim that the nonlinear spinor field can
give rise to a late time acceleration, we also plot decelera-
tion parameters for both positive and negative �
[cf. Figures 7 and 8].

The Figs. 5–8 show the accelerated mode of the expan-
sion of the Universe. As one sees, the acceleration de-
creases with time. Depending of the choice of
nonlinearity it undergoes an initial deceleration phase. It
is also seen that the nonlinear term plays proactive role at
the initial stage while at the later stage spinor mass is
crucial for the accelerated mode of expansion.

IV. CONCLUSION

We considered a system of interacting nonlinear spinor
and scalar fields within the scope of a BI cosmological
model filled with perfect fluid. It has been shown that for
some suitable choice of problem parameters the spinor
field nonlinearity gives rise to an effective negative pres-
sure in the course of evolution. Comparing the effective
pressure of the nonlinear spinor field with that of a dark
energy given by a quintessence or Chaplygin gas we con-
clude that the spinor field can be seen as an alternative to
the dark energy able to explain the acceleration of the
Universe. It has been shown that the nonlinear spinor
term is proactive at the early stage of the evolution and
essentially accelerates the process of evolution, while at
the later stage of evolution the spinor mass holds the key.
Given the fact that neutrino is described by the spinor field

 

FIG. 8 (color online). Deceleration parameter in case of a
negative �.

 

FIG. 7 (color online). Deceleration parameter corresponding
to a positive �.

 

FIG. 6 (color online). Acceleration of the Universe in case of a
negative �.
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equation and it too possesses mass (though too small but
nonzero), the presence of huge number of neutrino in the
Universe can be seen as one of the possible factor of the
late time acceleration of the Universe. It was also shown
that for some specific choice of parameters it is possible to
construct singularity-free model of the Universe, but this
regularity results in the broken dominant-energy condition
of the Hawking-Penrose theorem. It should be noted that to

get the inflation or late time acceleration introduction of
anisotropy is not a must condition. For example, acceler-
ated regimes in the evolution of the Universe by means of a
spinor field can be obtained starting with a FRW model as
well, exactly which was done in [16]. The problem of the
stability of the solutions obtained is not considered here. I
plan to turn to this problem sometimes in near future.
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