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Abstract
The study of a self-consistent system of nonlinear spinor and Bianchi type I
gravitational fields in the presence of a viscous fluid and a � term, with the
spinor field nonlinearity being some arbitrary functions of the invariants I and
J constructed from bilinear spinor forms S and P, generates a multi-parametric
system of ordinary differential equations (Saha 2005 Rom. Rep. Phys. 57 7, Saha
2007 Preprint gr-qc/0703085 (Astrophys. Space Sci. at press)). A qualitative
analysis of the system in question has been thoroughly carried out. A complete
qualitative classification of the mode of the evolution of the universe given by
the corresponding dynamic system has been illustrated.

PACS numbers: 03.65.Pm, 04.20.Ha

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Though the investigation of relativistic cosmological models usually has the energy–
momentum tensor of matter generated by a perfect fluid, to consider more realistic models one
must take into account the viscosity mechanisms [3–7]. On the other hand, in the recent years
anisotropic cosmological models with nonlinear spinor field have been extensively studied due
to the facts that (i) the introduction of the nonlinear spinor field into the system leads to the
isotropization of initially anisotropic universe [8–10]; (ii) the spinor field nonlinearity in some
cases can give rise to singularity-free solutions [10, 11]; (iii) the spinor field can be considered
as one of the possible candidates to explain the late time acceleration of the universe [12, 13].

Given the importance of the viscous fluid and spinor field to model a realistic universe,
recently we have considered a self-consistent system of the nonlinear spinor field and a
gravitational field described by a Bianchi type I (BI) cosmological model filled with the
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viscous fluid [1, 2]. In [1, 2], we have thoroughly studied the corresponding field equations.
Exact solutions of the field equations were given in terms of the volume scale of the BI
spacetime τ . Multi-parametric system of equations for the volume scale τ , the energy density
of the viscous fluid ε were solved for some special choice of bulk and shear viscosities. Given
the richness of the system mentioned above in this paper we study it qualitatively for more
general cases. In the absence of the viscosity the system allows integrals of motion, whereas
it is either impossible to obtain, or there is no first integral at all in general when the viscosity
is taken into account. As a result, the study of the possible modes of the evolution becomes
very difficult. Undoubtedly, the result of the investigation should be presented in the form of
numerical values and at the same time cannot be reduced to a representation of some causally
found examples of numerical solutions. Clearly, it should be a classification of modes of the
evolution in the parametric space. Actually, it is the task of the qualitative analysis.

2. Basic equations

We consider a self-consistent system of nonlinear spinor and BI gravitational fields filled
with a viscous fluid in the presence of a cosmological term. As it was shown in [1, 2], the
components of the spinor field and metric functions can be expressed in terms of the volume
scale τ of the BI spacetime. So one needs to find the function τ explicitly. The corresponding
equation can be derived from Einstein equations and Bianchi identity (a detailed description
of this procedure can be found in [1, 2]). For convenience, we also define the generalized
Hubble constant. The system then reads

τ̇ = 3Hτ, (2.1a)

Ḣ = 1

2
(3ξH − ω) − (3H 2 − κε − �) +

κ

2

(
m

τ
+

λ(n − 2)

τ n

)
, (2.1b)

ε̇ = 3H(3ξH − ω) + 4η(3H 2 − κε − �) − 4ηκ

[
m

τ
− λ

τn

]
, (2.1c)

where

ω = ε + p (2.2)

is the thermal function. Here κ is the Einstein’s gravitational constant, � is the cosmological
constant, λ is the self-coupling constant, m is the spinor mass and n is the power of nonlinearity
of the spinor field (here we consider only power-law nonlinearity). In (2.1), η and ξ are the
bulk and shear viscosities, respectively, and they are both positively definite, i.e.,

η > 0, ξ > 0. (2.3)

They may be either constant or function of time or energy. We consider the case when

η = Aεα, ξ = Bεβ, (2.4)

with A and B being some positive quantities. For p we set as in perfect fluid,

p = ζε, ζ ∈ (0, 1]. (2.5)

Note that in this case ζ �= 0, since for dust pressure, hence, temperature is zero, that results in
vanishing viscosity. Note that a system in the absence of the spinor field has been studied in
[14, 15]. In that case, the corresponding system is analogical to that given in (2.1) without the
third terms in (2.1b) and (2.1c).
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3. Qualitative analysis

Research on the behavior of the dynamic system given by a system of ordinary differential
equations implies the survey of all possible scenarios of development for different values of
the problem parameters. It is necessary to understand at least how the process of the evolution
comes to an end if it does so at infinitively large time for a given set of initial conditions which
can be given anywhere.

So, under the specific behavior of the system we understand the phase portrait of the
system, i.e., the family of integral curves, covering the total phase space. It is easy to imagine
as far as any point of the space can be declared as the initial one and at least one integral curve
will pass through it (or it will be fixed point).

Certainly, it is difficult to imagine such a set of curves. In many cases, close (and not only)
curves transform into each other at some diffeomorphism of space. These curves are known as
topologically equivalent. The differences between them are not very important for our study.
They all behave in the same manner. This relation—‘the relation of equivalence’—divides
the family of curves into the classes of equivalence. For graphical demonstration it will be
convenient to present at least one representative of each class.

The change of the value of problem parameters not always results in a significant change of
the phase portrait. Repeating this method, we say that one family of integral curves (covering
the total space) for the given set of parameters is equivalent to the other for another set of
parameters, if there exists a diffeomorphism of space transforming the first family into the
second. It is clear that there occurs the division into the classes of equivalence, and we are not
very interested in differences between equivalent families. We argue that the corresponding
changes in parameters do not alter anything on principle. So it is sufficient to demonstrate
only one phase portrait for a given set of parameters underlining the features of the given class.

However, for some critical relations between the parameters there occur significant
changes. These are the boundary relations of parameters, dividing, as usual, the parameter
space into regions of similar behavior. Thus accomplishing the qualitative classification of the
mode of the evolution of the dynamic system. Now, giving the concrete value of parameters, we
can define which region of parameters they correspond to, thus defining the type of behavior.
Moreover, given the specific initial conditions, we can answer the question to which region of
the phase space the evolution of the system leads in time.

In our cosmological model, numerical parameters A, α,B, β are related to the viscosity,
while λ and � are the (self)-coupling and cosmological constants.

Initially, we consider the system of Einstein and Dirac equations. Solving these equations,
we find the components of the spinor field and metric functions a, b, c in terms of the volume
scale τ = abc of the BI universe. Finally, in order to find τ from Einstein equations and Bianchi
identity, we deduce three first-order ordinary differential equations. Further for convenience
we introduce a new function ν inverse to τ , i.e., ν = 1/τ .

The fact that the system has the dimension greater than 2 strongly complicates qualitative
analysis. Note that the well-known Lorenz system of three ordinary differential equations
with polynomial on the right-hand side with degree less or equal to 2 possesses in some region
of the parameter space chaotic behavior known as a strange attractor and in that region there
do not exist first integrals (i.e., globally defined invariants). Though the set of singularities
is very simple, there exist only three singular (fixed) points: two focus and one saddle. The
presence of such an example does not allow us to make an optimistic conclusion on the basis of
simple construction of our system (with polynomials on the right-hand side and in the absence
of singular points in the region of space we are interested in, which is even dynamically
closed).
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Nevertheless, on the boundary of the space ε = 0, as well as ν = 0 (τ = +∞), which
are dynamically closed themselves, the complete classification has been done. The dynamical
closeness of these planes is an obstacle for penetration from positive octant ε > 0 ∧ ν > 0 to
the region with negative values. But, there are no singularities, fixed points (there are fixed
points on the boundary) in the positive octant, we were not able to prove the simplicity of its
behavior, e.g., the presence of first integrals, as well as their absence.

Thus let us go back to the system (2.1) in detail. As it was already mentioned, it is
convenient to define a new function ν = 1/τ . In this case, the obvious singularity that occurs
at τ = 0 vanishes and ν = 0 corresponds to τ = ∞ while ν = ∞ to τ = 0. The system (2.1)
on account of (2.4) takes the form

ν̇ = −3Hν, (3.1a)

Ḣ = 1
2 (3BεβH − (1 + ζ )ε) − (3H 2 − ε − �) + 1

2 (mν + λ(n − 2)νn−1), (3.1b)

ε̇ = 3H(3BεβH − (1 + ζ )ε) + 4Aεα(3H 2 − ε − �) − 4Aεα[mν − λνn]. (3.1c)

Let us now study the foregoing system of equations in detail.

3.1. Behavior of the solutions on the ν = 0 plane

Let us first study the behavior of the functions H and τ on the ν = 0 plane. The plane ν = 0
is dynamically invariant, since ν̇|ν=0 = 0. It should be emphasized that the system in this
case coincides with that in the absence of the spinor field and was thoroughly studied in [15].
Nevertheless, we write the results obtained in detail. In doing so we rewrite equations (3.1b)
and (3.1c) in the matrix form(

Ḣ

ε̇

)
=

(
κ/2 −1
3H 4η

)(
3BεβH − (1 + ζ )ε

3H 2 − κε − �

)
. (3.2)

(a) By virtue of linear independence of the columns of the matrix of equation (3.2) the critical
points are the solutions of the equations

3BεβH − (1 + ζ )ε = 0, (3.3a)

3H 2 − κε − � = 0, (3.3b)

i.e., they necessarily lie on the parabola (3.3b). In view of

H = 1 + ζ

3B
ε1−β,

which follows from (3.3a), equation (3.3b) can be written as

3κB2ε1+2β − (1 + ζ )2ε2 + 3�B2ε2β = 0. (3.4)

The solutions to the system (3.3) will be the roots of equation (3.4). The quantity of the positive
roots of equation (3.4) according to the Cartesian law is equal to the number of changes of
sign of the coefficients of equations or less than that by an even number. So, for � > 0 and
1/2 < β < 1 or � < 0 and β < 1/2 the number of roots is either 2 or 0. For the remaining
cases, i.e., � > 0 and β > 1 or � > 0 and β < 1/2 or � < 0 and β > 1/2, there exists only
one root.

In table 1, the classification of qualitatively different types of evolution (phase portrait)
depending on the parameters β,� and (1+ζ )/B is illustrated. Figure (a) in table 1 corresponds
to the two types, namely β < 1/2 or β = 1/2 and (1 + ζ )/B <

√
3κ , as well as figure (i)
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Table 1. Classification of qualitatively different types of evolution (phase portrait) depending on
the parameters β, � and (1 + ζ )/B.

� > 0 � = 0 � < 0
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β < 1/2
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(d)

β = 1/2 1+ζ
B

>
√

3κ
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0
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0
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0.8

1

1.2

1.4
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( f )

1+ζ
B

<
√

3κ
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0
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0.8
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1.4
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(e)
– 0.2

0

0.2

0.4

0.6

0.8
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1.4
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(g)
–0.2
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0.4

0.6

0.8

1

1.2

1.4

0.2 0.4 0.6 0.8 1 1.2 1.4 

(h)

1/2 < β < 1

β = 1 1+ζ
B

> 3�

– 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2 0.4 0.6 0.8 1 1.2 1.4 

(i)

1+ζ
B

< 3�

β > 1

to the cases β > 1 or β = 1 and (1 + ζ )/B <
√

3κ . Figures (g) and (h) of table 1 cover all
the four cases for β > 1/2. Figures (d) and (e) contain pairs of graphics (case with 0 or 2
singular points; case with 1 singular point is also allowable since it possesses the frequency
2, i.e., two singular points merges to one saddle-knot and no other qualitative change takes
place). They cover three cases: (d) corresponds to β � 1/2; (e) corresponds to β = 1/2 and
(1 + ζ )/B <

√
3κ or 1/2 � β � 1 and β = 1/2 and (1 + ζ )/B >

√
3κ .

Since, the equation for ε only contains η, the energy density for nontrivial η undergoes
essential changes, whereas H and τ remain virtually unchanged.
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As far as the critical points saddle and attracting knots lie on the integral curve alternately,
so it is sufficient to consider the case with maximum number of roots. Taking into account
equations (2.1c) and (3.3b) we calculate

lim
ε→+∞

ε̇

3Hε
= lim

ε→+∞

√
3Bεβ

√
κε + � − ε(1 + ζ )

ε

=
√

3B
√

κε(2β−1) + �ε−2 − (1 + ζ ) =
⎧⎨
⎩

−(1 + ζ ) < 0, β < 1/2,

B
√

3κ − (1 + ζ ), β = 1/2,

+∞ > 0, β > 1/2.

(3.5)

So, the latest critical point for β < 1/2 is attracting knot while for β > 1/2 it is a saddle.
In the case of β = 1/2, we have either a saddle or an attracting knot depending on the sign
(positivity to negativity) of B

√
3κ − (1 + ζ ).

(b) In the case of � � 0 the points of intersection of the boundary are the critical points

H = ±
√

�/3, (3.6a)

ε = 0. (3.6b)

(c) For H < 0 there may exist critical points, if the columns of the matrix of (3.2) are linearly
dependent. In that case, the critical points are the roots of the equation

3κ(ζ − 1)ε + 6κ2ABεα+β + 8κ2A2ε2α − 6� = 0 (3.7)

and

H = − 2
3κAεα. (3.8)

In the case of η = 0, the roots of the characteristic equation∣∣∣∣D(Ḣ , ε̇)

D(H, ε)
− µ

∣∣∣∣ = 0 (3.9)

are

µ1,2 = 3κξ ±
√

9κ2ξ 2 + 48�(1 + ζ )

4
. (3.10)

The critical point (H, ε) = (0, 2�/[κ(ζ − 1)]) is of type divergent focus if � >

−9κ2ξ 2/[48(1 + ζ )] or divergent knot if � < −9κ2ξ 2/[48(1 + ζ )].

3.1.1. Integral curves. For � � 0 the solutions starting from the upper half-plane H > 0
cannot enter into the lower one. For � < 0 some of the solutions may enter into the lower
half-plane through the segment H = 0 and � � 0 � ε and never returns back, since
Ḣ |H=0 < 0.

3.2. Behavior of the solutions on the ε = 0 plane

The plane ε = 0 is dynamicly invariant, since ε̇|ε=0 = 0. Depending on the sign of H this
plane is either attractive or repulsive, namely for H > 0 it is attractive and for H < 0 it is
repulsive, since

∂ε̇

∂ε
= −3H(1 + ζ ) < 0.

On the ε = 0 plane the system (3.1) takes the form

ν̇ = −3Hν, (3.11a)
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Table 2. Classification of qualitatively different types of evolution (phase portrait) on the ε = 0
plane for n = 3.

Λ < 0 Λ > 0

(a) (b)

Ḣ = −3H 2 + � + 1
2 (mν + λ(n − 2)νn−1). (3.11b)

The system (3.11) has the following integrals:

3H 2 = Cν2 + mν + � − λ(n − 2)νn−1

n − 3
, n > 3, (3.12a)

3H 2 = Cν2 + mν + � − ν2 ln(ν), n = 3, (3.12b)

3H 2 = Cν2 + mν + �, n = 2, (3.12c)

where C is some arbitrary constant.
The characteristic equation of nontrivial singular points on the ε = 0 plane for the system

(2.1) takes the form

λ(n − 2)νn−1 + mν + 2� = 0. (3.13)

Depending on changes of signs in the sequence of λ,m,� it has one, two or no solutions.
In table 2 we illustrated the phase portrait on the ε = 0 plane for a positive and a negative

�, respectively, for n = 3.
In table 3, we have graphically illustrated the H–ν phase portrait on the ε = 0 plane

for different �. As it was mentioned earlier, here we deal with the multi-parametric system
of ordinary nonlinear differential equation. In doing so we consider all possible variants
independent of their physical validity. Therefore, we demonstrate the results obtained for a
negative spinor mass (m < 0).

If the right-hand side of (3.12) possesses two positive roots with H being positive between
them, then on the plane ε = 0 there occurs closed cycle. It is obvious that there can be no
more than three roots, hence there cannot be non-concentric cycles. As a result, near the plane
ε = 0 there might be cyclic oscillations.

The singular point around which the oscillation takes place has H = 0 and, therefore, the
trajectory of oscillation partially passes in the region which is attractive to the plane ε = 0 and
partially in the region that is repulsive. In the long run in the repulsive region at some moment
the growth of ε becomes dominant. It results in the fact that ε becomes infinity within a finite
range of time.
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Table 3. Classification of qualitatively different types of evolution (phase portrait) on the ε = 0
plane for n = 2.

Λ < 0 Λ = 0 Λ > 0

m < 0

m = 0

m > 0

(a) (b) (c)

(d ) (e) (f )

(g) (h) (i)

3.2.1. Invariants of evolution. The system (3.1) in the absence of the viscosity, i.e., under
η = 0 and ξ = 0, possesses the following first integrals:

F1 = ε

ν1+ζ
, (3.14a)

F2 = (H 2 − ε − � − mν)

ν2
+ λ

n − 2

n − 3
νn−3. (3.14b)

The first of them (3.14a) remains to be the first integral even after the introduction of the
bulk viscosity ξ . The second one, i.e., equation (3.14b) under ξ �= 0, ceases to be the integral
of motion. Nevertheless, the introduction of the bulk viscosity during the course of time
generates definite displacement of the surface given by formula (3.14b), which allows one
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.

. .

Figure 1. Evolution of the volume scale τ = 1/ν.

qualitatively, i.e., based only on the continuity, compile the representation about the possible
ways of evolution.

3.3. Qualitative analysis of the complete system

Harnessing tables 2, 3 as well as 1 helps one to understand the 3D phase portrait leaning on
the continuous dependence of the velocity fields of the coordinates ν,H, ε of the phase space.

In order to cover the infinite phase space completely, it is mapped on coordinate
parallelepiped with its axes being the arc-tangent of the corresponding coordinates. The
lower horizontal plane always represents the ε = 0 plane.

It should be noted that the introduction of the spinor field notably complicates the evolution
of the system. Contrary to the system in the absence of the spinor field, the initial condition
with H < 0 already does not prevent in many cases thanks to the evolution of the volume
scale entering the half-space H > 0 and thereupon, from the greater value of H repeats the
evolution, approaching to the ν = 0 plane and displaying the classification from table 1. In the
vicinity of the borders ε = 0 and ν = 0 the integral curves closely repeat the integral curves
on the sides, each time at least to some extent.

The general property of all the cases is the fact that in the half-space H > 0 the velocity
vectors are directed to the ε = 0 plane, while in the other half opposite to it. As a result all
the invariant curves fall on ε = 0, though not necessarily reach it.

In figures 1–18, we have illustrated the volume scale τ(t) (figures 1, 4, 7, 10, 13 and
16), the energy density ε(t) (figures 2, 5, 8, 11, 14 and 17) and the phase portrait in the
ν,H, ε space (figures 3, 6, 9, 12, 15 and 18). Figures 1–12 correspond to the positions
c, g, h and i of table 3. In doing so we used the following values of the parameters:
α = 4, β = 1, ζ = 0.5, A = 1, B = 1 and n = 4. The positions h and i correspond to the
geometrically cyclic regime, but the case h possesses fixed point on the cyclic integral curve,
hence corresponds to the intermediate stage between periodic and non-periodic. The positions
c and g correspond to the non-periodic evolution.

The bold black line in the 3D figures (figures 3, 6, 9, 12, 15 and 18) corresponds to the
functions τ(t) and ε(t) presented in the preceding figures (figures 1, 2, 4, 5, 7, 8, 10, 11, 13,
14, 16, 17). Figures 1–3 and 10–12 correspond to the case k of table 1, figure 4–6 to i and
figure 7–9 to h, respectively.
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Figure 2. Evolution of the energy density.
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Figure 3. 3D view in the ν,H, ε space.
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Figure 4. Evolution of the volume scale τ = 1/ν.
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Figure 5. Evolution of the energy density.
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Figure 6. 3D view in the ν,H, ε space.
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Figure 7. Evolution of the volume scale τ = 1/ν.
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Figure 8. Evolution of the energy density.
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Figure 9. 3D view in the ν,H, ε space.

.

.

Figure 10. Evolution of the volume scale τ = 1/ν.

In figures 1–3, we have plotted τ, ε and phase portrait in the ε,H, ν space for a negative m
(m = −0.1), a positive � (� = 0.1) and a negative self-coupling constant λ (λ = −1). Both
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Figure 11. Evolution of the energy density.
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Figure 12. 3D view in the ν, H, ε space.
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Figure 13. Evolution of the volume scale τ = 1/ν.

τ and ε initially increase and after reaching some maximum begin to decrease and ultimately
halt at some finite value with H tending to −∞.
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Figure 14. Evolution of the energy density.
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Figure 15. 3D view in the ν, H, ε space.

Figures 4–6 correspond to the case with m = 0.1,� = −0.1 and λ = 0.1. In this case,
we have the oscillatory mode of expansion at the initial stage (as it may be expected for a
negative �), but ultimately ending with a big crunch.

Figures 7–9 correspond to the parameters m = 0.1,� = 0 and λ = 0.1, i.e., case without
cosmological constant. As one sees, in this case both τ and ε increase with time. H in this
case is positive, increases rapidly at the initial stage, but after sometime tends to some finite
value. In this case, we have future singularity similar to a big rip. It should be noted that in
the case of a perfect fluid the big rip occurs with phantom dark energy whereas we come to
this stage thanks to the viscous fluid and spinor field.

In figures 10–12, we have illustrated the corresponding functions and their phase portrait
for m = 0.1, � = 0.1 and λ = 0.1. As was expected, the positive � leads to an expanding
mode of evolution with the energy density tending to zero.
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Figure 16. Evolution of the volume scale τ = 1/ν.

.

.

.

.

...

Figure 17. Evolution of the energy density.

For m = 4,� = −1 and λ = −1 we have a non-periodic mode of evolution (cf figure 13).
But unlike the big crunch when at the point of spacetime singularity (τ = 0) the energy density
tends to ∞, in the case considered we have a maximum but finite value of ε (cf figure 14).
The corresponding phase portrait is illustrated in figure 15. As one sees, independent of initial
condition the universe shrinks into a point (τ → 0) in the course of evolution.

Finally, in figures 16–18 we have plotted the volume scale, energy density and phase
portrait in the ε,H, ν space for m = 1,� = −10 and λ = 1. Depending on the initial
conditions in this case, we have either the non-periodic or the oscillatory mode of evolution.
The case of non-periodic evolution corresponds to a big crunch as was expected. For the
oscillatory mode of evolution with τ being finite and nontrivial and H being finite, ε tends to
∞ within finite time.
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Figure 18. 3D view in the ν, H, ε space.

4. Conclusion

Recently, a self-consistent system of nonlinear spinor and gravitational fields in the framework
of Bianchi type I cosmological model filled with the viscous fluid was considered by one of
the authors [1, 2]. The spinor field nonlinearity is taken to be some power law of the invariants
of bilinear spinor forms, namely I = S2 = (ψ̄ψ)2 and J = P 2 = (iψ̄γ 5ψ)2. Solutions to
the corresponding equations are given in terms of the volume scale of the BI spacetime, i.e.,
in terms of τ = abc, with a, b, c being the metric functions. This study generates a multi-
parametric system of ordinary differential equations [1, 2]. Given the richness of the system
of equations in this paper a qualitative analysis of the system in question has been thoroughly
carried out. A complete qualitative classification of the mode of evolution of the universe given
by the corresponding dynamic system has been illustrated. In doing so, we have considered all
possible values of the problem parameters and graphically presented the most distinguishable
in our view results. Here we would like to stop on a few points. First of all the choice of a
negative � term. It is well known that after the discovery of acceleration in the evolution of the
universe in 1998, cosmologists all over the world rushed to explain the new phenomena. One
of the simplest ways was to introduce a positive � term into the system. Further, many other
models such as quintessence, k-essence, chaplygin gas, phantom, etc have been proposed.
Unfortunately, the discovery of the positive acceleration of the universe posed a number of
problems. Among them one of the most puzzling is the eternal acceleration. It was shown
in [17] that a positive � indeed results in an eternal acceleration. Several possible solutions
of this problem are based on cycles in the evolution of the universe [16] or the introduction
of a negative potentials for the scalar field [18]. It can be obtained as well with a negative
cosmological constant [19]. In a number of papers by one of the authors [10, 11] it was shown
that the introduction of a negative �, which is equivalent to an additional gravitational force,
into the system gives rise to an oscillatory or non-periodic mode of expansion.

Here during the qualitative analysis we have used a negative mass. Indeed, it does not
really mean the spinor field possesses a negative mass. By introducing a negative mass we
just put a negative sign before the mass term in the Lagrangian [1]. It should be noted that
unlike the scalar field Lagrangian, where the sign before the mass term in the Lagrangian is
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crucial one, in the case of spinor field things are totally different. In order to obtain the Dirac
equation we must require that the wavefunction ψ obeys the Klein–Gordon equation

(� − m2)ψ = 0, (4.1)

if it is to describe a free particle of mass m since this equation implies that the energy–
momentum relation for a free particle p2 = m2c2 is satisfied. In order that the function ψ

obeys equation (4.1), we can as well demand that it also satisfies one of the following equations
[20]:

(iγ µ∂µ + m)ψ = 0 or (iγ µ∂µ − m)ψ = 0. (4.2)

Both the equations can be obtained from the Lagrangian

L = i

2
[ψ̄γ µ∂µψ − ∂µψ̄γ µψ] ± mψ̄ψ. (4.3)

Thus we see that the sign before the mass term in the Lagrangian (4.3) gives just other set of
Dirac equation, in particular, equations for ψ and ψ̄ interchanges. Here we would like to note
that in the case of curve spacetime the partial derivative should be replaced by a covariant one.
So from physical point of view the case with m < 0 in this paper is not really an exotic one.
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