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ABSTRACT. Some first principles that, we believe, could serve as
foundation for quantum theory of extended particles are formulated.
It is also shown that in the point-like particles limit the non-relativistic
quantum mechanics can be restored. Bohm problem of nonlinear res-
onance has been considered and its possible solution has been given.
Within the frame-work of the Einstein-de Broglie soliton model a hy-
drogen atom has been simulated.

RÉSUMÉ. Nous formulons quelques principes fondamentaux qui pour-
raient, à notre avis, servir de base de la théorie quantique des par-
ticules étendues. Nous montrons aussi que dans la limite des par-
ticules ponctuelles la mécanique quantique non relativiste se rétablit.
Nous considérons le problème posé par D. Bohm, de la résonance non
linéaire, dont nous proposons la solution. Dans les cadres du schéma
non linéaire d’Einstein - de Broglie nous simulons le modèle solitonien
de l’atome à type hydrogène.

Preface

“The questions of causal interpretation of Quantum Mechanics had al-
ways been among the fields of interests of Professor Georges Lochak who
actively popularized de Broglie’s views on Quantum Mechanics as a lin-
ear limit of some essentially nonlinear field theory. Dedicating present
work to Professor Georges Lochak, we express the hope that the ideas of
the soliton interpretation of Quantum Mechanics lay also in the field of
his interests.”
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1 Introduction

The de Broglie-Bohm causal interpretation of quantum mechanics
[1, 2, 3, 4, 5] represents a consistent counterexample to the historically
dominant view that in quantum mechanics observational events cannot
be causally connected by a continuous sequence of unique and well de-
fined intermediate events. As early as 1927 in the framework of his
”theory of double solution” Louis de Broglie made an attempt to repre-
sent the electron as a source of waves obeying the Schrödinger equation
[6]. Later he modified his model showing that the electron should be de-
scribed by regular solutions to some nonlinear equation coinciding with
the Schrödinger one in the linear approximation. This scheme became
famous as a causal nonlinear interpretation of quantum mechanics [1].
Developing this concept, de Broglie remarked that it had much in com-
mon with Einstein’s ideas about unified field theory according to which
particles were to be considered as clots of some material fields obeying
the nonlinear field equations [7]. In recent years, these types of field con-
figurations, known as soliton or particle-like solutions, came into active
use to model extended elementary particles [8].

2 Basic Principles and Bohm Problem of Nonlinear Reso-
nance

To begin with let us formulate the first principles for possible quantum
theory of extended particles:

• Following A. Einstein and L. de Broglie we describe the extended
particles by the stable soliton-like solutions to non-linear field equa-
tions.

• Along the line of D. Bohm’s thought we accept that the wave
properties of particles have the origin in non-linear resonance effect.

• We assume that the statistical properties of particles can be de-
duced in the point-like limit from an analog of the wave function de-
scribing the Blokhintsev quantum statistical ensemble of extended
particles.

To illustrate these principles we consider the simplest scalar field
model given by the Lagrangian in the Minkowski space-time

L0 = ∂iφ
∗∂jφη

ij − (mc/~)2φ∗φ+ F (S), S = φ∗φ, (1)
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with F (S) behaving as Sn, n > 1, for S → 0. This model admits, for
many choices of F , e.g., F = kSn, k > 0, 1 < n < 5/3, stable soliton-
like solution of stationary type

φ0 = u(r)e−iω0t, r = |r|, u? = u, (2)

with the energy

E =
∫

d3xT 00(φ0), T 00 = u′2 + u2 [(mc/~)2 + ω2
0 ]− F (u2), (3)

and the electric charge

Q = eω0

∫
d3xu2. (4)

D. Bohm in his book ”Causality and Chance in Modern Physics”
discussed the following problem. Let φ = φ0 + ξ(t, r) describes the
perturbed soliton-like solution. D. Bohm [9] put the following question:
“Does there exist any nonlinear model for which the spatial asymptote
of ξ(r →∞) represents oscillations with characteristic frequency

ω = E/~?′′ (5)

As is clear from the structure of the Lagrangian (1), at spatial infinity
the field equation reduces to the linear Klein-Gordon one

[ −(mc/~)2]φ = 0, (6)

and therefore the principle of non-linear resonance by Bohm (5) holds
only for solitons with the energy E = mc2. It shows that the universality
of the Planck-de Broglie relation (5) fails. To reinstate the universality
of the relation (5) we modify the model (1) including gravity:

L = c4R/16πG+ ∂iφ
∗∂jφη

ij − I(gij)φ∗φ+ F (φ∗φ). (7)

The crucial point of the model is to choose the invariant I(gij) with the
asymptotic property

lim
r→∞

I(gij) = (mc/~)2, (8)

where m stands for the Schwarzschild mass of the soliton. It can be
verified that the relation (8) holds if one chooses

I = (I4
1/I

3
2 )c6~−2G−2, (9)
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where I1 = RijklR
ijkl/48, I2 = −Rijkl;nRijkl;n/432. Estimating Rijkl

at large distance one finds I1 = G2m2/(c4r6), I2 = G2m2/(c4r8). Thus
we conclude that the principle of wave-particle duality has gravitational
origin in our model [10, 12].

3 Fundamental Equations and their Solutions

Let us now construct the analog of the wave function. Suppose that the
field φ describes n particles and has the form

φ(t, r) =
n∑
k=1

φ(k)(t, r), (10)

where
suppφ(k) ∩ suppφ(k′) = 0, k 6= k′,

and the same for the conjugate momenta

π(t, r) = ∂L/∂φt =
n∑
k=1

π(k)(t, r), φt = ∂φ/∂t.

Let us define the auxiliary functions

ϕ(k)(t, r) =
1√
2
(νkφ(k) + iπ(k)/νk) (11)

with the constants νk satisfying the normalization condition

~ =
∫

d3x|ϕ(k)|2. (12)

Now we define the analog of the wave function in the configurational
space {r1, · · · rn} ∈ <3n as

ΨN (t, r1, · · · rn) = (~nN)−1/2
N∑
i=1

n∏
k=1

ϕ
(k)
i (t, rk), (13)

where N À 1 stands for the number of trials (observations) and ϕ(k)
i is

the one-particle function (11) for the i -th trial. It can be shown [1] that
the quantity

ρN =
1

(4∨)n

∫
(4∨)n⊂<3n

d3nx|ΨN |2,
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where4∨ is the elementary volume which is supposed to be much greater
than the proper volume of the particle ∨0 ¿ 4∨, plays the role of
coordinate probability density. If we choose the classical observable A
with the generator M̂A, one can represent it in the form

Aj =
∫

d3xπjiM̂Aφj =
n∑
k=1

∫
d3xϕ

∗(k)
j M̂

(k)
A ϕ

(k)
j ,

for the j - th trial. The corresponding mean value is

< A >=
1
N

N∑
j=1

Aj =
1
N

N∑
j=1

n∑
k=1

∫
d3xϕ

∗(k)
j M̂

(k)
A ϕ

(k)
j

=
∫

d3xΨ∗N ÂΨN +O(
∨0

4∨ ) (14)

where the hermitian operator Â reads

Â =
n∑
k=1

~M̂ (k)
A . (15)

Thus, up to the terms of the order ∨0/4∨ ¿ 1, we obtain the standard
quantum mechanical rule for the calculation of mean values [12]. It
is interesting to underline that the solitonian scheme contains also the
well-known spin - statistic correlation [10]. Namely, if ϕ(k)

i is transformed
under the group rotation by irreducible representation D(J) of SO(3),
then the transposition of two identical extended particles is equivalent
to the relative 2π rotation of ϕ(k)

i that gives the multiplication factor
(−1)2J in ΨN . It can be also proved that ΨN upto the terms of order
∨0/4∨ satisfies the standard Schrödinger equation [11].

Now we apply the solitonian scheme to the hydrogen atom [13, 14].
Let us introduce the nucleus Coulomb field Aext

i = δ0
iZe/r and consider

the scalar field Lagrangian density

L = − 1
16π

(Fik)2 + |[∂k − iε(Ak +Aext
k )]φ|2 − (mc/~)2φ∗φ+ F (φ∗φ),

(16)

where ε = e/~c. Suppose that for Aext
k = 0 the field equations admit

stable stationary soliton-like solution of type (2) describing configura-
tions with mass m and electric charge e. For simplicity we omit the
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gravitational field supposing that it has been taken into account due
to the non-linear resonance condition (5). Then, in the non-relativistic
approximation we may put

φ = ψ exp (−imc2t/~). (17)

Therefore, the corresponding field equations read

i~ ∂tψ + (~2/2m)4ψ + (Ze2/r)ψ = −(~2/2m)f̂(A, A0, ψ
∗ψ)ψ

≡ −(~2/2m)
[
2iε(A∇)ψ + 2(εmc/~)A0ψ

+iεψ divA + F ′(ψ∗ψ)ψ
]
, (18)

A0 = (8πme/~2)|ψ|2 ≡ −4π%, (19)
A = 4π[2ε2A|ψ|2 − iε(ψ∗∇ψ − ψ∇ψ∗)] ≡ −(4π/c) j, (20)

∂tA0 + cdivA = 0 (21)

We will seek for the solutions to these equations describing a station-
ary state of an atom when the electron - soliton center moves along a
circular orbit of radius a0 with some angular velocity Ω. We have two
characteristic lengths in this problem: the size of the soliton `0 = ~/mc
and the Bohr radius a = ~2/mZe2 À `0. Near the soliton center, where
r − a0 ≤ `0, we get in non-relativistic approximation

ψ=u(R)eiS/~ = ψ−, A0 = A0(R), A =
1
c
ζ̇(t)A0(R)

with

S≈mζ̇ ·R + C0t+ χ(t), mζ̈ = −Ze2ζ/ζ3,

where

χ(t)=

t∫
0

(m
2
ζ̇

2
+
Ze2

ζ

)
dt

is the Hamiltonian action.
The function u(R), where R = r−ζ(t) satisfies the following soliton-

like equation ~2(f̂+4u/u) = 2mC0. For ψ we have the integral equation

ψ(t, r)=Cnψn(r) exp (−iωnt) (22)

+
1
2π

∫
dω

∫
dt′
∫
d3x′ exp [−iω(t− t′)]G(r, r′;ω + i0)f̂ψ(t′, r′),
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with G being the Coulomb resolvent, En = ~ωn is the eigenvalue of the
Coulomb Hamiltonian. For RÀ `0 we may put in (22)

f̂ ψ(t, r) = g exp (−iωnt) δ(r− ζ(t)), g = const.

Calculating the integral (22) by stationary phase method we get

ψ = ψ+ ≈ Cnψn(r) e−iωnt −
g|ωn|ma

8π2~
√
a0cos2(ϑ/2)

e−iωntR−3/2e−R
√

2m|ωn|/~,

where cosϑ = sinθcos(α−Ωt). Now to find the constants C0, Cn, a0,Ω, g
we must match the functions ψ+ and ψ− at R = `0. That gives the
following results

a0=an, Ω2 = Ze2/ma3
0, C0 = −mΩ2a2

0,

Cnψn(a0)=
g|ωn|ma
8π2~√a0

`
−3/2
0 e−`0

√
2m|ωn|/~ + u(`0), (23)

g=
∫
∨0

d3xf̂u, ∨0 =
4
3
π`30.

Note that, the system (23) is close and sufficient to determine the con-
stants mentioned previously. This system gives first approximation for
the solution of the problem since it does not take into account the smooth
matching of the functions ψ+ and ψ−, i.e., the equality of their normal
derivatives.

The last step is the calculation of the electromagnetic field for RÀ `0
and for large time t À 1/|ωn|, that gives the semi-sum of the retarded
and advanced potentials: Aµ = 1

2

(
Aadv
µ +Aret

µ

)
. It is interesting to write

down the components of the Poynting vector S:

Sr=
e2 a2

0 Ω4

16πc3 r2
sin2ϑ sin2(α− Ωt) sin(2Ωr/c),

Sϑ=
e2 a0 Ω2

4πc r3
cosϑ sin(α− Ωt) sin(Ωr/c),

Sα=
e2 a0 Ω2

4πc r3
cos(α− Ωt) sin(Ωr/c).

Thus we conclude that the radiation is absent. The various aspects of
the solitonian scheme were discussed in details in [10, 11, 12, 13, 14, 15].
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