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Abstract. Self-consistent system of spinor, scalar and BI gravitational fields in presence of magneto-
fluid and � term is considered. Assuming that the expansion of the BI universe is proportional to
the σ 1

1 component of the shear tensor, exact solutions for the metric functions, as well as for scalar
and spinor fields are obtained. For a non-positive �, the initially anisotropic space–time becomes
isotropic one in the process of expansion; whereas for � > 0, an oscillatory mode of expansion of
the BI model occurs.
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1. Introduction

The discovery of the cosmic microwave radiation has stimulated a growing interest
in anisotropic, general-relativistic cosmological models of the universe. The choice
of anisotropic cosmological models in the system of Einstein field equations enable
us to study the early day universe, which had an anisotropic phase that approaches
an isotropic one (Misner, 1968). Bianchi type I (BI) cosmological models that
are anisotropic homogeneous universes play an important role in understanding
essential features of the universe, such as formation of galaxies during its early
stage of evolution. An LRS BI model containing a magnetic field directed along
one axis with a barotropic fluid was investigated by Thorne (1967). Jacobs (1968,
1969) investigated BI models with magnetic field satisfying a barotropic equation
of state. Bali (1986) studied the behavior of the magnetic field in a BI universe for
perfect fluid distribution.

In this paper, I study the self-consistent system of spinor, scalar and BI gravi-
tational fields in presence of magneto-fluid and cosmological constant. Solutions
of Einstein equations coupled to a spinor and a scalar fields in BI space-time
have been extensively studied by Saha and Shikin (1997a,b; Bijan, 2001a,b; Bijan
and Boyadjiev, 2004). In the aforementioned papers, we considered spinor field
in BI universe where nonlinearity occurred either due self-coupling or induced
by an interacting massless scalar field. Here, considering the BI universe filled
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with magneto-fluid I make an attempt to study a system, where all the four fields,
i.e. scalar, spinor, electro-magnetic and gravitational ones, play active part in the
evolution process.

2. Fundamental Equations and General Solutions

I choose the action of the self-consistent system of spinor, scalar and gravitational
fields in the form

�(g; ψ, ψ̄, ϕ) =
∫

(R + �)
√−gd�, (2.1)

where R is the Ricci scalar and L the spinor and scalar field Lagrangian density
chosen in the form (Saha and Shikin, 1997a)

� = i

2
[ψ̄γ µ∇µψ − ∇µψ̄γ µψ] − mψ̄ψ + 1

2
ϕ,αϕ

,α(1 + λF). (2.2)

Here λ is the coupling constant and F is some arbitrary function of invariants
generated from the real bilinear forms of a spinor field. I choose F to be the function
of I = S2 = (ψ̄ψ)2 and J = P2 = (iψ̄γ 5ψ)2, i.e. F = F(I, J ), that describes the
nonlinearity in the most general of its form (Bijan, 2001a). As one sees, for λ = 0
the system corresponds to the one with minimal coupling.

The gravitational field in this case is given by a BI metric in the form

ds2 = a2
0(dx0)2 − a2

1(dx1)2 − a2
2(dx2)2 − a2

3(dx3)2, (2.3)

with a0 = 1, x0 = ct and c = 1. The metric functions ai (i = 1, 2, 3) are the
functions of time t only.

Variation of (2.1) with respect to spinor field ψ(ψ̄) gives nonlinear spinor field
equations

iγ µ∇µψ − mψ + �ψ + � iγ 5ψ = 0, (2.4a)

i∇µψ̄γ µ + mψ̄ − �ψ̄ − � iψ̄γ 5 = 0, (2.4b)

where I use the notation

� = λSϕ,αϕ
,α ∂ F

∂ I
, � = λPϕ,αϕ

,α ∂ F

∂ J
,

whereas variation of (2.1) with respect to scalar field yields the following scalar
field equation

1√−g

∂

∂xν
(
√−ggνµ(1 + λF)ϕ,µ) = 0. (2.5)
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Varying (2.1) with respect to metric tensor gµν , one finds the gravitational field
equation which in account of cosmological constant � has the form

ä2

a2
+ ä3

a3
+ ȧ2

a2

ȧ3

a3
= κT 1

1 − �, (2.6a)

ä3

a3
+ ä1

a1
+ ȧ3

a3

ȧ1

a1
= κT 2

2 − �, (2.6b)

ä1

a1
+ ä2

a2
+ ȧ1

a1

ȧ2

a2
= κT 3

3 − �, (2.6c)

ȧ1

a1

ȧ2

a2
+ ȧ2

a2

ȧ3

a3
+ ȧ3

a3

ȧ1

a1
= κT 0

0 − �, (2.6d)

Here κ is the Einstein gravitational constant and over-dot means differentiation
with respect to t. The energy–momentum tensor of the system is given by

T ρ
µ = i

4
gρν(ψ̄γµ∇νψ + ψ̄γν∇µψ − ∇µψ̄γνψ − ∇νψ̄γµψ)

+ (1 − λF)ϕ,µϕ,ρ − δρ
µ� + T ν

mµ. (2.7)

The energy–momentum tensor of the magneto-fluid is chosen to be

T ν
µ(m) = (ε + p)uµuν − pδν

µ + Eν
µ, (2.8)

where Eµν is the electro-magnetic field given by Lichnerowich (undated)

Eν
µ = µ̄

[
|h|2

(
uµuν − 1

2
δν
µ

)
− hµhν

]
. (2.9)

Here uµ is the flow vector satisfying

gµνuµuν = 1, (2.10)

µ̄ is the magnetic permeability and hµ is the magnetic flux vector defined by

hµ = 1

µ̄
∗ Fνµuν, (2.11)

where ∗Fµν is the dual electro-magnetic field tensor defined as

∗Fµν =
√−g

2
εµναβ Fαβ. (2.12)

Here Fαβ is the electro-magnetic field tensor and εµναβ is the totally anti-symmetric
Levi-Civita tensor with ε0123 = +1. Here the comoving coordinates are taken to
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be u0 = 1, u1 = u2 = u3 = 0. I choose the incident magnetic field to be in
the direction of x-axis so that the magnetic flux vector has only one non-trivial
component, namely h1 �= 0. In view of the aforementioned assumption, from
(2.11), one obtains F12 = F13 = 0. I also assume that the conductivity of the fluid
is infinite. This leads to F01 = F02 = F03 = 0. Thus, I have only one non-vanishing
component of Fµν which is F23. Then from the first set of Maxwell equation

Fµν;β + Fνβ;µ + Fβµ;ν = 0, (2.13)

where the semicolon stands for covariant derivative, one finds

F23 = I, I = constant. (2.14)

Then from (2.11) in account of (2.12) one finds

h1
a1 I

µ̄a2a3
. (2.15)

Finally, for Eν
µ one finds the following non-trivial components

E0
0 = E1

1 = −E2
2 = −E3

3 = I2

2µ̄a2
2a2

3

. (2.16)

In (2.8), ε and p are the energy and pressure of the fluid, respectively. In this
report, the equation of state

p = ζε (2.17)

is assumed to be held. Here ζ varies between the interval 0 ≤ ζ ≤ 1, whereas ζ = 0
describes the dust universe, ζ = 1

3 presents radiation universe, 1
3 < ζ < 1 ascribes

hard universe and ζ = 1 corresponds to the stiff matter. The Dirac matrices γµ(x)
of curve space–time are connected with those of Mincowski space as

γ µ = γ̄ µ

aµ

, γµ = γ̄ aµ, µ = 0, 1, 2, 3. (2.18)

In the Eqs. (2.4) and (2.7), ∇µ is the covariant derivatives acting on a spinor
field as (Brill and Wheeler, 1957)

∇µψ = ∂ψ

∂xµ
− �µψ, ∇µψ̄ = ∂ψ̄

∂xµ
+ ψ̄�µ, (2.19)

where �µ(x) are the Fock–Ivanenko spinor connection coefficients, also known as
spinor affine connection matrices. The spinor affine connection matrices �µ(x) are



INTERACTING SCALAR AND SPINOR FIELDS IN BIANCHI TYPE I UNIVERSE 153

uniquely determined up to an additive multiple of the unit matrix by the equation
(Brill and Wheeler, 1957)

∇µγν = ∂γν

∂γµ

− �ρ
νµγρ − �µγν + γν�µ = 0, (2.20)

with the solution

�µ(x) = 1

4
gρσ (x)

(
∂µeb

δ eρ

b − �
ρ
µδ

)
γ σγ δ. (2.21)

For a diagonal metric �µ’s can be simply defined by

�µ = 1

4
γ σ

(
�ν

µσγν − ∂µγσ

)
. (2.22)

For the metric (2.3) one has the following components of the spinor connection
coefficients

�0 = 0, �1 = 1

2
ȧ1(t)γ̄ 1γ̄ 0, �2 = 1

2
ȧ2(t)γ̄ 2γ̄ 0,

�3 = 1

2
ȧ3(t)γ̄ 3γ̄ 0. (2.23)

I study the space-independent solutions to the spinor and scalar field equations (2.4)
and (2.5) so that ψ = ψ(t) and ϕ = ϕ(t), defining

τ = a0a1a2a3 = √−g (2.24)

from (2.5) for the scalar field one obtains

ϕ = C
∫

[τ (1 + λF)]−1 dt. (2.25)

Setting Vj (t) = √
τψ(t), j = 1, 2, 3, 4, in view of (2.19) and (2.23) from (2.4a)

one deduces the following system of equations:

V̇ 1 + i(m − �)V1 − � V3 = 0, (2.26a)

V̇ 2 + i(m − �)V2 − � V4 = 0, (2.26b)

V̇ 3 − i(m − �)V3 + � V1 = 0, (2.26c)

V̇ 4 − i(m − �)V4 + � V2 = 0, (2.26d)
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From (2.4a) I also write the equations for the bilinear spinor forms S, P and
A0 = ψ̄γ̄ 5γ̄ 0ψ

Ṡ0 = 2� A0
0 = 0, (2.27a)

Ṗ0 − 2(m − �)A0
0 = 0, (2.27b)

A0
0 + 2(m − �)P0 + 2� S0 = 0, (2.27c)

where the definitions S0 = τ Q, P0 = τ P and A0
0 = τ A0 are used. The system

(2.27) leads to the following relation between the invariants

S2 + P2 + (A0)2 = C2/τ 2, C2 = constant.

For the nonlinear spinor term to be function of I only, i.e., for F = F(I ) from
(2.27a) follows

S = C0/τ, C0 = constant. (2.28)

In view of it for the components of spinor field one now obtains (Bijan, 2001a)

ψ1(t) = C1τ
−1/2e−iβ, ψ2(t) = C2τ

−1/2e−iβ,

ψ3(t) = C3τ
−1/2eiβ, ψ4(t) = C4τ

−1/2eiβ,
(2.29)

with Ci being the integration constants and are related to C0 as

C0 = C2
1 + C2

2 − C2
3 − C2

4 .

Here β is defined as β = ∫
(m − �) dt .

In case of a massless spinor field with the nonlinear term being a function of J
only, i.e., F = F(J ) from (2.27b) one gets

P = D0/τ, D0 = constant. (2.30)

The components of the spinor field now takes the form

ψ1 = τ−1/2(D1eiσ + i D3e−iσ ), ψ2 = τ−1/2(D2eiσ + i D4e−iσ ),

ψ3 = τ−1/2(i D1eiσ + D3e−iσ ), ψ4 = τ−1/2(i D2eiσ + D4e−iσ ),
(2.31)

where σ = ∫
� dt . The integration constants Di in this case obey the relation

D0 = 2
(
D2

1 + D2
2 − D2

3 − D2
4

)
.
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Once the spinor functions are known explicitly, one can write the components of
spinor current jµ = ψ̄γ µψ , the charge density of spinor field ρ = ( j0 · j0)1/2, the
total charge of spinor Q = ∫ ∞

−∞ ρ
√

−3g dx dy dx , the components of spin tensor

Sµν,ε = 1

4
ψ̄{γ εσµν + σµνγ ε}ψ,

the projection of spin vector on k axis

Si j,0 = 1

4
ψ̄{γ 0σ i j + σ i jγ 0}ψ = 1

2
ψ̄γ 0σ i jψ,

the chronometric invariant spin tensor Si j,0
ch = (Si j,0Si j,0)1/2, and the projection

of the spin vector on k axis Sk = ∫ ∞
−∞ Si j,0

ch

√
−3g dx dy dz. Note that with the

integrand being the function of time t only, for the charge Q and Sk to make any
sense one should integrate the corresponding expressions for any finite range by x ,
y and z and then normalize it to unity.

Let us now solve the Einstein equations. In doing so, I first write the expressions
for the components of the energy–momentum tensor explicitly:

T 0
0 = mS + C2/2τ 2(1 + λF) + ε + I2

2µ̄a2
2a2

3

, (2.32a)

T 1
1 = �S + �P − C2/2τ 2(1 + λF) − p + I2

2µ̄a2
2a2

3

, (2.32b)

T 2
2 = �S + �P − C2/2τ 2(1 + λF) − p − I2

2µ̄a2
2a2

3

, (2.32c)

T 3
3 = �S + �P − C2/2τ 2(1 + λF) − p − I2

2µ̄a2
2a2

3

, (2.32d)

In view of T 2
2 = T 3

3 from (2.6b), (2.6c) one finds

a2 = a3 D exp

(
X

∫
dt

τ

)
, (2.33)

with the constants of integration D and X being integration constants.
Following Bali (1986) let us assume that the expansion (θ ) in the model is

proportional to the eigenvalue σ 1
1 of the shear tensor σ ν

µ. Since for the BI space–
time

θ = ȧ1

a1
+ ȧ2

a2
+ ȧ3

a3
, (2.34)

σ 1
1 = −1

3

(
4

ȧ1

a1
+ ȧ2

a2
+ ȧ3

a3

)
, (2.35)
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the aforementioned condition leads to

a1 = (a2a3)N , (2.36)

with N being the proportionality constant.
In account of (2.24) from (2.33) and (2.36) after some manipulation for the

metric functions, one finds

a1 = τ N/(N+1), (2.37a)

a2 =
√

Dτ 1/2(N+1)exp

[
X

2

∫
dt

τ

]
, (2.37b)

a3 = 1√
D

τ 1/2(N+1)exp

[
− X

2

∫
dt

τ

]
. (2.37c)

As one sees from (2.37) for τ∼tn with n > 1 the exponent tends to unity at large t .
In this case, the anisotropic model becomes isotropic one iff D = 1 and N = 1/2.
Let us also write the invariants of gravitational field. They are the Ricci scalar
I1 = R ≈ 1/τ 2, I2 = Rµν Rµν ≡ Rν

µ Rµ
ν ≈ 1/τ 4 and the Kretschmann scalar

I3 = Rαβµν Rαβµν ≈ 1/τ 4. As it is seen, the space–time becomes singular at a
point where τ = 0, as well as the scalar and spinor fields. Thus, all the functions in
question are expressed via τ . In what follows, I write the equation for τ and study
it in detail.

Summation of Einstein equations (2.6a)–(2.6d) multiplied by 3 gives

τ̈

τ
= 3

2
κ

(
mS + �S + �P + ε − P + 2I2

3µ̄(a2a3)2

)
− 3�. (2.38)

For the right-hand side of Eq. (2.38) to be a function of τ only, the solution to this
equation is well known (Kamke, 1957). In what follows, I study this equation for
some concrete form of F . In doing so, let us demand the energy–momentum to be
conserved, i.e., T ν

µν = 0, which in our case takes the form

1

τ

(
τ Ṫ 0

0

) − ȧ1

a1
T 1

1 − ȧ2

a2
T 2

2 − ȧ3

a3
T 3

3 = 0. (2.39)

In account of the equation of state (2.17) and

(m − �)Ṡ0 − �Ṗ0 = 0

which follows from (2.27), after a little manipulation from (2.39) one obtains

ε = ε0/τ
1+ζ , p = ζε0/τ

1+ζ . (2.40)
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Let us recall that F is considered to be a function of I , J or I ± J . Choosing F =
F(I ) and then setting m = 0 one comes to the analogical equation corresponding to
the massless spinor case with F = F(J ) or F = F(I ± J ), whereas setting λ = 0
one has the system with minimal coupling. Under this assumption from (2.27), one
finds

S = C0

τ
. (2.41)

In view of (2.41), (2.40) and the fact that a2a3 = τ 1/(N+1), Eq. (2.38) can be
rewritten as

τ̈ = 3

2
κ

(
mC0 + �C0 + ε0(1 − ζ )/τ ζ + 2I2

3µ̄
τ (N−1)/(N+1)

)
− 3�. (2.42)

Recalling the definition of �, the solution to Eq. (2.42) can be written in quadrature
∫

dτ√
κ(mC0τ + C2/2(1 + λF) + ε0τ 1−ζ + ((N + 1)I 2/3µ̄N )τ 2N/(N+1)) − �τ 2 + E

=
√

3t, (2.42)

with E being some integration constant. It should be mentioned that being the
volume-scale τ is non-negative. At the points where τ = 0 there occurs space–
time singularity. On the other hand, the radical in (2.43) should be positive. This
fact leads to the conclusion that for � > 0 the value of τ is bound from above
as well, giving rise to an oscillatory mode of expansion of the BI universe. For a
non-positive �, I have picture with fast expanding τ with time.

3. Conclusions

A self-consistent system of spinor, scalar and gravitation fields has been studied
in presence of magneto-fluid and cosmological term �. With the presence of F23

component of electro-magnetic field tensor, the system can be viewed as one where
all the four fields, i.e., scalar, electro-magnetic, spinor and gravitational, are taken
into consideration. Assuming that the expansion of the BI space–time is proportional
to the σ 1

1 component of the shear tensor, solutions for the metric functions ai (t) are
obtained explicitly in terms of volume-scale τ . Expressions for the scalar and spinor
fields are also obtained in terms of τ . For the non-positive �, I obtain exponentially
expanding BI universe, which means the initially anisotropic space–time becomes
isotropic in the process of expansion. For a positive �, an oscillatory mode of
expansion takes place. Choosing the integration constant E and initial value of τ it
is possible to obtain solutions those are regular everywhere. A detailed numerical
study of the Eq. (2.42) I plan to perform in short.
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