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Abstract We consider a system of nonlinear spinor and a
Bianchi type I gravitational fields in presence of viscous
fluid. The nonlinear term in the spinor field Lagrangian is
chosen to be λF , with λ being a self-coupling constant and
F being a function of the invariants I an J constructed from
bilinear spinor forms S and P . Self-consistent solutions to
the spinor and BI gravitational field equations are obtained
in terms of τ , where τ is the volume scale of BI universe.
System of equations for τ and ε, where ε is the energy of
the viscous fluid, is deduced. This system is solved numeri-
cally for some special cases.

Keywords Spinor field · Bianchi type I (BI) model ·
Cosmological constant
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1 Introduction

The investigation of relativistic cosmological models usu-
ally has the energy momentum tensor of matter generated by
a perfect fluid. To consider more realistic models, one must
take into account the viscosity mechanisms, which have al-
ready attracted attention of many researchers. Misner (1967,
1968) suggested that strong dissipative due to the neutrino
viscosity may considerably reduce the anisotropy of the
black-body radiation. Viscosity mechanism in cosmology
can explain the anomalously high entropy per baryon in
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the present universe (Weinberg 1972a, 1972b). Bulk vis-
cosity associated with the grand-unified-theory phase transi-
tion (Langacker 1981) may lead to an inflationary scenario
(Waga et al. 1986; Pacher et al. 1987; Guth 1981).

A uniform cosmological model filled with fluid which
possesses pressure and second (bulk) viscosity was devel-
oped by Murphy (1973). The solutions that he found ex-
hibit an interesting feature that the big bang type singularity
appears in the infinite past. Exact solutions of the isotropic
homogeneous cosmology for open, closed and flat universe
have been found by Santos et al. (1985), with the bulk vis-
cosity being a power function of energy density.

The nature of cosmological solutions for homogeneous
Bianchi type I (BI) model was investigated by Belinski
and Khalatnikov (1975) by taking into account a dissipative
process due to viscosity. They showed that viscosity cannot
remove the cosmological singularity but results in a qualita-
tively new behavior of the solutions near singularity. They
found the remarkable property that during the time of the
big bang matter is created by the gravitational field. BI solu-
tions in case of stiff matter with a shear viscosity being the
power function of energy density were obtained by Banerjee
(1985), whereas BI models with bulk viscosity (η) that is a
power function of energy density ε and when the universe
is filled with stiff matter were studied by Huang (1990).
The effect of bulk viscosity, with a time varying bulk vis-
cous coefficient, on the evolution of isotropic FRW models
was investigated in the context of open thermodynamics sys-
tem was studied by Desikan (1997). This study was further
developed by Krori and Mukherjee (2000) for anisotropic
Bianchi models. Cosmological solutions with nonlinear bulk
viscosity were obtained in Chimento et al. (1997). Models
with both shear and bulk viscosity were investigated in van
Elst et al. (1995), Gavrilov et al. (1997).
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Though Murphy (1973) claimed that the introduction of
bulk viscosity can avoid the initial singularity at finite past,
results obtained in Barrow (1988) show that, it is, in general,
not valid, since for some cases big bang singularity occurs
in finite past. To eliminate the initial singularities a self-
consistent system of nonlinear spinor and BI gravitational
field was considered by us in a series of papers (Saha and
Shikin 1997a, 1997b; Saha 2001a, 2001b). For some cases
we were able to find field (both matter and gravitational)
configurations those were always regular. In the papers men-
tioned above we considered the system of interacting non-
linear spinor and/or scalar fields in a BI universe filled with
perfect fluid. We also study the above system in presence
of cosmological constant � (both constant and time vary-
ing Saha 2001b). A nonlinear spinor field, suggested by
the symmetric coupling between nucleons, muons, and lep-
tons, has been investigated by Finkelstein et al. (1951) in the
classical approximation. Although the existence of spin-1/2
fermion is both theoretically and experimentally undisputed,
these are described by quantum spinor fields. Possible justi-
fications for the existence of classical spinors has been ad-
dressed in Armendáriz-Picón and Greene (2003). In view of
what has been mentioned above, it would be interesting to
study the influence of viscous fluid to the system of material
(say spinor and/or scalar) and BI gravitational fields in pres-
ence of a �-term as well. In a recent paper we studied the
Bianchi type-I universe filled with viscous fluid in presence
of a � term (Saha 2005a). This study was further developed
in Saha and Rikhvitsky (2006) where we present qualitative
analysis of the corresponding system of equations. Finally in
Saha (2005b) we introduced spinor field into the system and
solved the system for some special choice of viscosity. The
purpose of this paper is to further developed those results
for more general cases and give some numerical results. It
should be noted the in the process there occurs a very rich
system of equations for volume scale, Hubble constant and
energy density. The qualitative analysis of this system is un-
der active study and we plan to present those results soon.

2 Derivation of basic equations

In this section we derive the fundamental equations for the
interacting spinor, scalar and gravitational fields from the
action and write their solutions in term of the volume scale
τ defined bellow (2.16). We also derive the equation for τ

which plays the central role here.
We consider a system of nonlinear spinor, scalar and BI

gravitational field in presence of perfect fluid given by the
action

S (g;ψ, ψ̄) =
∫

L
√−gd� (2.1)

with

L = Lg + Lsp + Lm. (2.2)

The gravitational part of the Lagrangian (2.2) is given by a
Bianchi type I (BI hereafter) space-time, whereas Lsp de-
scribes the spinor field Lagrangian and Lm stands for the
Lagrangian density of viscous fluid.

2.1 Material field Lagrangian

For a spinor field ψ , symmetry between ψ and ψ̄ appears
to demand that one should choose the symmetrized La-
grangian (Kibble 1961). Keep it in mind we choose the
spinor field Lagrangian as

Lsp = i

2
[ψ̄γ μ∇μψ − ∇μψ̄γ μψ] − mψ̄ψ + λF. (2.3)

Here m is the spinor mass, λ is the self-coupling constant
and F = F(I, J ) with I = S2 = (ψ̄ψ)2 and J = P 2 =
(iψ̄γ 5ψ)2. According to the Pauli–Fierz theorem (Berestet-
ski et al. 1989) among the five invariants only I and J

are independent as all other can be expressed by them:
IV = −IA = I + J and IQ = I − J. Therefore, the choice
F = F(I, J ), describes the nonlinearity in the most general
of its form (Saha 2001a). Note that setting λ = 0 in (2.3) we
come to the case with linear spinor field.

2.2 The gravitational field

As a gravitational field we consider the Bianchi type I (BI)
cosmological model. It is the simplest model of anisotropic
universe that describes a homogeneous and spatially flat
space-time. It was first shown in Jacobs (1968) that if filled
with perfect fluid with the equation of state p = ζε, ζ < 1,
a BI universe eventually evolves into a FRW one. Recently
Chimento (2003) investigated a cosmological model with
perfect fluid and obtained general solution to the Einstein’s
field equation. In particular he showed that owing to the spa-
tial isotropy of the stress-energy tensor, the initial anisotropy
of the BI model dissipated as the Universe expands. The
isotropy of present-day universe makes BI model a prime
candidate for studying the possible effects of an anisotropy
in the early universe on modern-day data observations. In
view of what has been mentioned above we choose the grav-
itational part of the Lagrangian (2.2) in the form

Lg = R

2κ
, (2.4)

where R is the scalar curvature, κ = 8πG being the Ein-
stein’s gravitational constant. The gravitational field in our
case is given by a Bianchi type I (BI) metric

ds2 = dt2 − a2dx2 − b2dy2 − c2dz2, (2.5)
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with a, b, c being the functions of time t only. Here the
speed of light is taken to be unity.

2.3 Field equations

Let us now write the field equations corresponding to the
action (2.1).

Variation of (2.1) with respect to spinor field ψ (ψ̄ ) gives
spinor field equations

iγ μ∇μψ − mψ + Dψ + G iγ 5ψ = 0, (2.6a)

i∇μψ̄γ μ + mψ̄ − Dψ̄ − G iψ̄γ 5 = 0, (2.6b)

where we denote

D = 2λS
∂F

∂I
, G = 2λP

∂F

∂J
.

Variation of (2.1) with respect to metric tensor gμν gives
the Einstein’s equations which in account of the �-term for
the BI space-time (2.5) can be rewritten as

b̈

b
+ c̈

c
+ ḃ

b

ċ

c
= κT 1

1 + �, (2.7a)

c̈

c
+ ä

a
+ ċ

c

ȧ

a
= κT 2

2 + �, (2.7b)

ä

a
+ b̈

b
+ ȧ

a

ḃ

b
= κT 3

3 + �, (2.7c)

ȧ

a

ḃ

b
+ ḃ

b

ċ

c
+ ċ

c

ȧ

a
= κT 0

0 + �, (2.7d)

where over dot means differentiation with respect to t and
T

μ
ν is the energy-momentum tensor of the material field

given by

T ν
μ = T ν

spμ + T ν
mμ. (2.8)

Here T ν
spμ is the energy-momentum tensor of the spinor field

which with regard to (2.6) has the form

T ρ
spμ = i

4
gρν(ψ̄γμ∇νψ + ψ̄γν∇μψ − ∇μψ̄γνψ

− ∇νψ̄γμψ) + δρ
μ(DS + G P − λF). (2.9)

T ν
mμ is the energy-momentum tensor of a viscous fluid

having the form

T ν
mμ = (ε + p′)uμuν − p′δν

μ + ηgνβ [uμ;β + uβ;μ
− uμuαuβ;α − uβuαuμ;α], (2.10)

where

p′ = p −
(

ξ − 2

3
η

)
u

μ

;μ. (2.11)

Here ε is the energy density, p—pressure, η and ξ are the
coefficients of shear and bulk viscosity, respectively. In a
comoving system of reference such that uμ = (1,0,0,0) we
have

T 0
m0 = ε, (2.12a)

T 1
m1 = −p′ + 2η

ȧ

a
, (2.12b)

T 2
m2 = −p′ + 2η

ḃ

b
, (2.12c)

T 3
m3 = −p′ + 2η

ċ

c
. (2.12d)

In (2.6) and (2.9) ∇μ is the covariant derivatives acting
on a spinor field as (Zhelnorovich 1982; Brill and Wheeler
1957)

∇μψ = ∂ψ

∂xμ
− �μψ, ∇μψ̄ = ∂ψ̄

∂xμ
+ ψ̄�μ, (2.13)

where �μ are the Fock–Ivanenko spinor connection coeffi-
cients defined by

�μ = 1

4
γ σ (�ν

μσ γν − ∂μγσ ). (2.14)

For the metric (2.5) one has the following components of the
spinor connection coefficients

�0 = 0, �1 = 1

2
ȧ(t)γ̄ 1γ̄ 0,

�2 = 1

2
ḃ(t)γ̄ 2γ̄ 0, �3 = 1

2
ċ(t)γ̄ 3γ̄ 0.

(2.15)

The Dirac matrices γ μ(x) of curved space-time are con-
nected with those of Minkowski one as follows:

γ 0 = γ̄ 0, γ 1 = γ̄ 1/a, γ 2 = γ̄ 2/b, γ 3 = γ̄ 3/c

with

γ̄ 0 =
(

I 0
0 −I

)
, γ̄ i =

(
0 σ i

−σ i 0

)
,

γ 5 = γ̄ 5 =
(

0 −I

−I 0

)
,

where σi are the Pauli matrices:

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i

i 0

)
,

σ 3 =
(

1 0
0 −1

)
.

Note that the γ̄ and the σ matrices obey the following prop-
erties:

γ̄ i γ̄ j + γ̄ j γ̄ i = 2ηij , i, j = 0,1,2,3,
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γ̄ i γ̄ 5 + γ̄ 5γ̄ i = 0, (γ̄ 5)2 = I, i = 0,1,2,3,

σ jσ k = δjk + iεjklσ
l, j, k, l = 1,2,3,

where ηij = {1,−1,−1,−1} is the diagonal matrix, δjk is
the Kronekar symbol and εjkl is the totally antisymmetric
matrix with ε123 = +1.

We study the space-independent solutions to the spinor
field equations (2.6) so that ψ = ψ(t). Here we define

τ = abc = √−g (2.16)

The spinor field equation (2.6a) in account of (2.13) and
(2.15) takes the form

iγ̄ 0
(

∂

∂t
+ τ̇

2τ

)
ψ − mψ + Dψ + G iγ 5ψ = 0. (2.17)

Setting Vj (t) = √
τψj (t), j = 1, 2, 3, 4, from (2.17) one

deduces the following system of equations:

V̇1 + i(m − D)V1 − G V3 = 0, (2.18a)

V̇2 + i(m − D)V2 − G V4 = 0, (2.18b)

V̇3 − i(m − D)V3 + G V1 = 0, (2.18c)

V̇4 − i(m − D)V4 + G V2 = 0. (2.18d)

From (2.6a) we also write the equations for the invariants
S, P and A = ψ̄ γ̄ 5γ̄ 0ψ

Ṡ0 − 2G A0 = 0, (2.19a)

Ṗ0 − 2(m − D)A0 = 0, (2.19b)

Ȧ0 + 2(m − D)P0 + 2G S0 = 0, (2.19c)

where S0 = τS, P0 = τP , and A0 = τA. Equation (2.19)
leads to the following relation

S2 + P 2 + A2 = C2/τ 2, C2 = const. (2.20)

Giving the concrete form of F from (2.18) one writes
the components of the spinor functions in explicitly and us-
ing the solutions obtained one can write the components of
spinor current:

jμ = ψ̄γ μψ. (2.21)

The component j0

j0 = 1

τ
[V ∗

1 V1 + V ∗
2 V2 + V ∗

3 V3 + V ∗
4 V4], (2.22)

defines the charge density of spinor field that has the follow-
ing chronometric-invariant form

ρ = (j0 · j0)1/2. (2.23)

The total charge of spinor field is defined as

Q =
∫ ∞

−∞
ρ

√
−3gdxdydz = ρτV , (2.24)

where V is the volume. From the spin tensor

Sμν,ε = 1

4
ψ̄

{
γ εσμν + σμνγ ε

}
ψ. (2.25)

One finds chronometric invariant spin tensor

S
ij,0
ch = (Sij,0S

ij,0)1/2, (2.26)

and the projection of the spin vector on k axis

Sk =
∫ ∞

−∞
S

ij,0
ch

√
−3gdxdydz = S

ij,0
ch τV . (2.27)

Let us now solve the Einstein equations. To do it, we
first write the expressions for the components of the energy-
momentum tensor explicitly:

T 0
0 = mS − λF + ε ≡ T̃ 0

0 , (2.28a)

T 1
1 = DS + G P − λF − p′ + 2η

ȧ

a
≡ T̃ 1

1 + 2η
ȧ

a
, (2.28b)

T 2
2 = DS + G P − λF − p′ + 2η

ḃ

b
≡ T̃ 1

1 + 2η
ḃ

b
, (2.28c)

T 3
3 = DS + G P − λF − p′ + 2η

ċ

c
≡ T̃ 1

1 + 2η
ċ

c
. (2.28d)

In account of (2.28) subtracting (2.7a) from (2.7b), one finds
the following relation between a and b:

a

b
= D1 exp

(
X1

∫
e−2κ

∫
ηdtdt

τ

)
. (2.29)

Analogically, one finds

b

c
= D2 exp

(
X2

∫
e−2κ

∫
ηdtdt

τ

)
,

c

a
= D3 exp

(
X3

∫
e−2κ

∫
ηdtdt

τ

)
.

(2.30)

Here D1, D2, D3, X1, X2, X3 are integration constants,
obeying

D1D2D3 = 1, X1 + X2 + X3 = 0. (2.31)

In view of (2.31) from (2.29) and (2.30) we write the met-
ric functions explicitly (Saha 2001a)

a(t) = (D1/D3)
1/3τ 1/3

× exp

[
X1 − X3

3

∫
e−2κ

∫
ηdt

τ (t)
dt

]
, (2.32a)
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b(t) = (D2
1D3)

−1/3τ 1/3

× exp

[
−2X1 + X3

3

∫
e−2κ

∫
ηdt

τ (t)
dt

]
, (2.32b)

c(t) = (D1D
2
3)1/3τ 1/3

× exp

[
X1 + 2X3

3

∫
e−2κ

∫
ηdt

τ (t)
dt

]
. (2.32c)

As one sees from (2.32a), (2.32b) and (2.32c), for τ = tn

with n > 1 the exponent tends to unity at large t , and the
anisotropic model becomes isotropic one.

Further we will investigate the existence of singularity
(singular point) of the gravitational case, which can be done
by investigating the invariant characteristics of the space-
time. In general relativity these invariants are composed
from the curvature tensor and the metric one. In a 4D Rie-
mann space-time there are 14 independent invariants. In-
stead of analyzing all 14 invariants, one can confine this
study only in 3, namely the scalar curvature I1 = R, I2 =
RR

μνμν, and the Kretschmann scalar I3 = RαβμνR
αβμν . At

any regular space-time point, these three invariants I1, I2, I3

should be finite. One can easily verify that

I1 ∝ 1

τ 2
, I2 ∝ 1

τ 4
, I3 ∝ 1

τ 4
.

Thus we see that at any space-time point, where τ = 0 the
invariants I1, I2, I3, as well as the scalar and spinor fields
become infinity, hence the space-time becomes singular at
this point.

In what follows, we write the equation for τ and study it
in details.

Summation of Einstein equations (2.7a), (2.7b), (2.7c)
and (2.7d) multiplied by 3 gives

τ̈ = 3

2
κ(T̃ 0

0 + T̃ 1
1 )τ + 3κητ̇ + 3�τ, (2.33)

which can be rearranged as

τ̈ − 3

2
κξ τ̇

= 3

2
κ(mS + DS + G P − 2λF + ε − p)τ + 3�τ. (2.34)

For the right-hand-side of (2.34) to be a function of τ only,
the solution to this equation is well-known (Kamke 1957).

On the other hand from Bianchi identity Gν
μ;ν = 0 one

finds

T ν
μ;ν = T ν

μ,ν + �ν
ρνT

ρ
μ − �ρ

μνT
ν
ρ = 0, (2.35)

which in our case has the form

1

τ
(τT 0

0 )̇ − ȧ

a
T 1

1 − ḃ

b
T 2

2 − ċ

c
T 3

3 = 0. (2.36)

This equation can be rewritten as

˙̃
T

0

0 = τ̇

τ
(T̃ 1

1 − T̃ 0
0 ) + 2η

(
ȧ2

a2
+ ḃ2

b2
+ ċ2

c2

)
. (2.37)

Recall that (2.19) gives

(m − D)Ṡ0 − G Ṗ0 = 0.

In view of that after a little manipulation from (2.37) we
obtain

ε̇ + τ̇

τ
ω −

(
ξ + 4

3
η

)
τ̇ 2

τ 2
+ 4η(κT 0

0 + �) = 0, (2.38)

where

ω = ε + p (2.39)

is the thermal function. For further purpose we would like
to note that in absence of shear viscosity from (2.33) and
(2.37) one finds

κT̃ 0
0 = 3H 2 − � + C00, C00 = const, (2.40)

where in analogy with Hubble constant introduce the quan-
tity H , such that

τ̇

τ
= ȧ

a
+ ḃ

b
+ ċ

c
= 3H. (2.41)

Then (2.34) and (2.38) in account of (2.28) can be rewritten
as

Ḣ = κ

2
(3ξH − ω) − (3H 2 − κε − �)

+ κ

2
(mS + DS + G P − 2λF), (2.42a)

ε̇ = 3H(3ξH − ω) + 4η(3H 2 − κε − �)

− 4ηκ(mS − λF). (2.42b)

Thus, the metric functions are found explicitly in terms of
τ and viscosity. To write τ and components of spinor field
as well and scalar one we have to specify F in Lsp. In the
next section we explicitly solve (2.18) and (2.42) for some
concrete value of F .

Equations (2.42) can be written in terms of dynamical
scalar as well. For this purpose let us introduce the dynam-
ical scalars such as the expansion and the shear scalar as
usual

θ = u
μ

;μ, σ 2 = 1

2
σμνσ

μν, (2.43)

where

σμν = 1

2
(uμ;αP α

ν + uν;αP α
μ ) − 1

3
θPμν. (2.44)
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Here P is the projection operator obeying

P 2 = P. (2.45)

For the space-time with signature (+,−,−,−) it has the
form

Pμν = gμν − uμuν, P μ
ν = δμ

ν − uμuν. (2.46)

For the BI metric the dynamical scalar has the form

θ = ȧ

a
+ ḃ

b
+ ċ

c
= τ̇

τ
, (2.47)

and

2σ 2 = ȧ2

a2
+ ḃ2

b2
+ ċ2

c2
− 1

3
θ2. (2.48)

In account of (2.32) one can also rewrite share scalar as

2σ 2 = 6(X2
1 + X1X3 + X2

3)

9τ 2
e−4κ

∫
ηdt . (2.49)

From (2.7d) now yields

1

3
θ2 − σ 2 = κ[mS − λF + ε] + �. (2.50)

Equations (2.42) now can be written in terms of θ and σ as
follows

θ̇ = 3κ

2
(ξθ − ω) − 3κ

2
(mS − DS − G P) − 3σ 2, (2.51a)

ε̇ = θ(ξθ − ω) + 4ησ 2. (2.51b)

Note that (2.51) without spinor and scalar field contributions
coincide with the ones given in Banerjee et al. (1985).

3 Some special solutions

In this section we first solve the spinor field equations for
some special choice of F , which will be given in terms of τ .
Thereafter, we will study the system (2.42) in details and
give explicit solution for some special cases.

3.1 Solutions to the spinor field equations

As one sees, introduction of viscous fluid has no direct effect
on the system of spinor field equations (2.18). Viscous fluid
has an implicit influence on the system through τ . A de-
tailed analysis of the system in question can be found in
Saha (2001a). Here we just write the final results.

3.1.1 Case with F = F(I)

Here we consider the case when the nonlinear spinor field is
given by F = F(I). As in the case with minimal coupling
from (2.19a) one finds

S = C0

τ
, C0 = const. (3.1)

For components of spinor field we find (Saha 2001a)

ψ1(t) = C1√
τ

e−iβ , ψ2(t) = C2√
τ

e−iβ ,

ψ3(t) = C3√
τ

eiβ, ψ4(t) = C4√
τ

eiβ,

(3.2)

with Ci being the integration constants and are related to C0

as C0 = C2
1 + C2

2 − C2
3 − C2

4 . Here β = ∫
(m − D)dt .

For the components of the spin current from (2.21) we
find

j0 = 1

τ
[C2

1 + C2
2 + C2

3 + C2
4 ],

j1 = 2

aτ
[C1C4 + C2C3] cos(2β),

j2 = 2

bτ
[C1C4 − C2C3] sin(2β),

j3 = 2

cτ
[C1C3 − C2C4] cos(2β),

whereas, for the projection of spin vectors on the X, Y and
Z axis we find

S23,0 = C1C2 + C3C4

bcτ
, S31,0 = 0,

S12,0 = C2
1 − C2

2 + C2
3 − C2

4

2abτ
.

The total charge of the system in a volume V in this case is

Q = [C2
1 + C2

2 + C2
3 + C2

4 ]V . (3.3)

Thus, for τ 	= 0 the components of spin current and the
projection of spin vectors are singularity-free and the total
charge of the system in a finite volume is always finite. Note
that, setting λ = 0, i.e., β = mt in the foregoing expressions
one get the results for the linear spinor field.

3.1.2 Case with F = F(J )

Here we consider the case with F = F(J ). In this case we
assume the spinor field to be massless. Note that, in the uni-
fied nonlinear spinor theory of Heisenberg, the massive term
remains absent, and according to Heisenberg, the particle
mass should be obtained as a result of quantization of spinor
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prematter (Heisenberg 1966). In the nonlinear generaliza-
tion of classical field equations, the massive term does not
possess the significance that it possesses in the linear one,
as it by no means defines total energy (or mass) of the non-
linear field system. Thus without losing the generality we
can consider massless spinor field putting m = 0. Then from
(2.19b) one gets

P = D0/τ, D0 = const. (3.4)

In this case the spinor field components take the form

ψ1 = 1√
τ

(D1e
iσ + iD3e

−iσ ),

ψ2 = 1√
τ

(D2e
iσ + iD4e

−iσ ),

ψ3 = 1√
τ

(iD1e
iσ + D3e

−iσ ),

ψ4 = 1√
τ

(iD2e
iσ + D4e

−iσ ).

(3.5)

The integration constants Di are connected to D0 by D0 = 2
(D2

1 + D2
2 − D2

3 − D2
4). Here we set σ = ∫

G dt .
For the components of the spin current from (2.21) we

find

j0 = 2

τ
[D2

1 + D2
2 + D2

3 + D2
4],

j1 = 4

aτ
[D2D3 + D1D4] cos(2σ),

j2 = 4

bτ
[D2D3 − D1D4] sin(2σ),

j3 = 4

cτ
[D1D3 − D2D4] cos(2σ),

whereas, for the projection of spin vectors on the X, Y and
Z axis we find

S23,0 = 2(D1D2 + D3D4)

bcτ
, S31,0 = 0,

S12,0 = D2
1 − D2

2 + D2
3 − D2

4

2abτ
.

We see that for any nontrivial τ as in previous case the com-
ponents of spin current and the projection of spin vectors are
singularity-free and the total charge of the system in a finite
volume is always finite.

3.2 Determination of τ

In this section we simultaneously solve the system of equa-
tions for τ and ε. Since setting m = 0 in the equations for
F = F(I) one comes to the case when F = F(J ), we con-
sider the case with F being the function of I only. Let F

be the power function of S, i.e., F = Sn. As it was estab-
lished earlier, in this case S = C0/τ , or setting C0 = 1 sim-
ply S = 1/τ . Evaluating D in terms of τ we then come to
the following system of equations

τ̈ = 3κ

2
ξ τ̇ + 3κ

2

(
m

τ
+ λ(n − 2)

τn
+ ε − p

)
τ + 3�τ, (3.6a)

ε̇ = − τ̇

τ
ω +

(
ξ + 4

3
η

)
τ̇ 2

τ 2
− 4η

[
κ

(
m

τ
− λ

τn

)
+ �

]
,

(3.6b)
or in terms of H

τ̇ = 3Hτ, (3.7a)

Ḣ = 1

2
(3ξH − ω) − (3H 2 − κε − �)

+ κ

2

(
m

τ
+ λ(n − 2)

τn

)
, (3.7b)

ε̇ = 3H(3ξH − ω) + 4η(3H 2 − κε − �)

− 4ηκ

[
m

τ
− λ

τn

]
. (3.7c)

Here η and ξ are the bulk and shear viscosity, respectively
and they are both positively definite, i.e.,

η > 0, ξ > 0. (3.8)

They may be either constant or function of time or energy.
We consider the case when

η = Aεα, ξ = Bεβ, (3.9)

with A and B being some positive quantities. For p we set
as in perfect fluid,

p = ζε, ζ ∈ (0,1]. (3.10)

Note that in this case ζ 	= 0, since for dust pressure, hence
temperature is zero, that results in vanishing viscosity.

The system (3.7) without spinor field have been exten-
sively studied in literature either partially (Murphy 1973;
Huang 1990; Banerjee et al. 1985) or as a whole (Belin-
ski and Khalatnikov 1975). Here we try to solve the system
(3.6) for some particular choice of parameters.

3.2.1 Case with bulk viscosity

Let us first consider the case with bulk viscosity alone set-
ting coefficient of shear viscosity η = 0. We also demand
the coefficient of bulk viscosity be inverse proportional to
expansion, i.e.,

ξθ = 3ξH = C2, C2 = const. (3.11)
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Inserting η = 0, (3.11) and (3.10) into (3.7c) one finds

ε = 1

1 + ζ

[
C2 − C3

τ 1+ζ

]
, C3 = const. (3.12)

Then from (3.6a) we get the following equation for deter-
mining τ :

τ̈ = 3κ

2
m + 3

[
C2

2
κ + �

]
τ + 3κ(1 − ζ )

2(1 + ζ )

C2τ
1+ζ − C3

τ ζ

+ 3κ

2

λ(n − 2)

τn−1
≡ F (q, τ ), (3.13)

where q is the set of problem parameters. As one sees, the
right hand side of (3.13) is a function of τ , hence can be
solved in quadrature (Kamke 1957). We solve (3.13) numer-
ically. It can be noted that (3.13) can be viewed as one de-
scribing the motion of a single particle. Sometimes it is use-
ful to plot the potential of the corresponding equation which
in this case is

U (q, τ ) = −2
∫

F (q, τ )dτ. (3.14)

The problem parameters are chosen as follows: κ = 1,
m = 1, λ = 0.5, ζ = 1/3, n = 4, C2 = 2 and C3 = 1.
Here we consider the cases with different �, namely with
� = −2,0,1, respectively. The initial value of τ is taken to
be a small one, whereas, the first derivative of τ , i.e., τ̇ at that
point of time is calculated from (2.40). In Fig. 1 we have il-
lustrated the potential corresponding to (3.13). As one sees,
independent to the sign of � we have the expanding mode of
evolution, though a positive � accelerates the process, while
the negative one decelerates. Corresponding behavior of τ is
given in Fig. 2.

3.2.2 Case with bulk and shear viscosities

Let us consider a more general case. Following (Saha 2005a)
we choose the shear viscosity being proportional to the ex-
pansion, namely,

η = − 3

2κ
H = − 1

2κ
θ. (3.15)

In absence of spinor field this assumption leads to

3H 2 = κε + C4, C4 = const. (3.16)

It can be shown that the relation (3.16) in our case can be
achieved only for massless spinor field with the nonlinear
term being

F = F0S
2(κ−1)/κ .

Equation for τ in this case has the form

τ τ̈ − 0.5(1 − ζ )τ̇ 2 − 1.5κξτ τ̇

− 3[� − 0.5(1 − ζ )C4 − λF0τ
2(1−κ)/κ ]τ 2 = 0. (3.17)

Fig. 1 View of the potential corresponding to the different sign of the
� term

Fig. 2 Evolution of τ depending on the signs of the � term

In case of ξ = const. and λ = 0 there exists several special
solutions available in handbooks on differential equations.
But for nonzero λ we can investigate this equation only nu-
merically. We consider the case when the bulk viscosity is
given by a constant. Taking this into account for problem pa-
rameters we set ζ = 1/3, ξ = 1, F0 = 1, λ = 0.5 and C4 = 1.
We study the role of � term. In doing this we consider the
cases with positive, negative and trivial �. Since the non-
linear term in this case depends on κ , we also consider the
cases with different κ , namely with κ > 1 and κ < 1. In
Figs. 3 and 4 the evolution of τ is illustrated for κ < 1 and
κ > 1, respectively. In case of κ < 1 we have non-periodic
mode of evolution for all �, while for κ > 1 a negative �

gives a non-periodic mode of expansion. A non-negative �

in this case gives an ever expanding mode of evolution.
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Fig. 3 Evolution of the universe with nontrivial � term and κ < 1

Fig. 4 Evolution of the universe for different values of � term with
κ > 1

4 Conclusion

We consider a self consistent system of nonlinear spinor and
gravitational fields within the framework of Bianchi type-
I cosmological model filled with viscous fluid. The spinor
filed nonlinearity is taken to be some power law of the in-
variants of bilinear spinor forms. Solutions to the corre-
sponding equations are given in terms of the volume scale
of the BI space-time, i.e., in terms of τ = abc. The sys-
tem of equations for determining τ , energy-density of the
viscous fluid ε and Hubble parameter H has been worked
out. Exact solution to the aforementioned system has been
given only for the case of bulk viscosity. As one sees from

(2.42) or (2.51), the system in question is a multi-parametric
one and may have several solutions depending on the choice
of the problem parameters. As one sees, solutions can be
non-periodic independent to the sign of � term. Given the
richness of (3.6) we plan to give qualitative analysis of this
system in near future.
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