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Anisotropic Cosmological Models with Perfect Fluid and Dark Energy
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We consider a self-consistent system of Bianchi type-I (BI) gravitational fields and a binary
mixture of a perfect fluid and dark energy. The perfect fluid is taken to be one obeying the
usual equation of state, i.e., p = ζε, with ζ ∈ [0, 1], whereas the dark energy density is con-
sidered to be either quintessence or the Chaplygin gas. Exact solutions to the corresponding
Einstein equations are obtained.
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I. INTRODUCTION

The description of the different phases of the Universe concerning the time evolution
of its acceleration field is among the main objectives of the cosmological models. There is
mounting evidence that the Universe at present is dominated by the so-called dark energy.
Although the nature of the dark energy (DE) is currently unknown, it is felt that it is
non-baryonic in origin [1]. It is also believed that the dark energy has a large negative
pressure that leads to an accelerated expansion of the Universe.

In view of its importance in explaining observational cosmology, many authors have
considered cosmological models with dark energy. The simplest example of dark energy
is the cosmological constant, introduced by Einstein in 1917 [2]. The discovery that the
expansion of the Universe is accelerating [3] has promoted the search for new types of
matter that can behave like a cosmological constant [4, 5], by combining a positive energy
density and negative pressure. This type of matter is often called quintessence. Zlatev et

al. [6] showed that the “tracker field”, a form of quintessence, may explain the coincidence,
adding new support to the quintessence scenario.

An alternative model for the dark energy density was used by Kamenshchik et al. [7],
where the authors suggested the use of some perfect fluid that obeys an “exotic” equation
of state. This type of matter is known as a Chaplygin gas. The fate of density perturbations
in a Universe dominated by a Chaplygin gas, which exhibits negative pressure, was studied
by Fabris et al. [8]. Models with Chaplygin gas were also studied in Refs. [9, 10]. In a
recent paper Kremer [11] has modelled the Universe as a binary mixture, with constituents
described by a van der Waals fluid and by a dark energy density. In doing so the authors
considered mainly a spatially flat, homogeneous and isotropic Universe that can be described
by a Friedmann-Robertson-Walker (FRW) metric.
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The theoretical arguments and recent experimental data, which support the existence
of an anisotropic phase that approaches an isotropic one, leads us to consider models of
the Universe with an anisotropic background. The simplest of the anisotropic models,
which nevertheless rather completely describes the anisotropic effects, are Bianchi type-I
(BI) homogeneous models, whose spatial sections are flat but the expansion or contraction
rate is direction-dependent. Moreover, a BI universe falls within the general analysis of
the singularity given by Belinskii et al. [12] and evolves into a FRW universe [13] in the
presence of matter obeying the equation of state p = ζε, ζ < 1. Since the modern-day
Universe is almost isotropic on the large scale, this feature of the BI universe makes it a
prime candidate for studying the possible effects of anisotropy in the early Universe based
on present-day observations. In a number of papers, e.g., [14, 15], we have studied the
role of a nonlinear spinor and/or a scalar fields in the formation of an anisotropic Universe
free from an initial singularity. It was shown that for a suitable choice of nonlinearity
and the sign of the Λ term, the model in question allows for regular solutions and the
Universe becomes isotropic during the process of evolution. Recently Khalatnikov et al.

[16] studied the Einstein equations for a BI Universe in the presence of dust, stiff matter
and a cosmological constant. In a recent paper [17] the author studied a self-consistent
system with a Bianchi type-I gravitational field with a binary mixture of a perfect fluid and
dark energy given by the cosmological constant. The perfect fluid in that paper was chosen
to obey either the usual equation of state, i.e., p = ζε, with ζ ∈ [0, 1], or a van der Waals
equation of state. In this paper we study the evolution of an initially anisotropic Universe
given by a BI spacetime and a binary mixture of a perfect fluid obeying the equation of
state p = ζε and dark energy given by either quintessence or a Chaplygin gas.

II. BASIC EQUATIONS

The gravitational field in our case is given by a Bianchi type I metric in the form

ds2 = dt2 − a2dx2 − b2dy2 − c2dz2 , (1)

with the metric functions a, b, c being functions of time t only.
We write the Einstein field equations for the BI space-time in the form
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Here κ is the Einstein gravitational constant and the over-dot means differentiation with
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respect to t. The energy-momentum tensor of the source is given by

T ν
µ = (ε + p)uµuν − pδν

µ , (3)

where uµ is the flow vector satisfying

gµνuµuν = 1 . (4)

Here ε is the total energy density of a perfect fluid and/or dark energy density, while p
is the corresponding pressure. p and ε are related by an equation of state which will be
studied below in detail. In the co-moving system of coordinates, from (3) one finds

T 0
0 = ε, T 1

1 = T 2
2 = T 3

3 = −p . (5)

In view of (5), from (2) one immediately obtains [14]

a(t) = D1τ
1/3 exp[X1

∫

dt

τ(t)
] , (6a)

b(t) = D2τ
1/3 exp[X2

∫

dt

τ(t)
] , (6b)

c(t) = D3τ
1/3 exp[X3

∫

dt

τ(t)
] . (6c)

Here Di and Xi are some arbitrary constants obeying

D1D2D3 = 1 , X1 + X2 + X3 = 0 ,

and τ is a function of t defined to be

τ = abc . (7)

From (2) for τ one finds

τ̈

τ
=

3κ

2
(ε − p) . (8)

On the other hand, the conservation law for the energy-momentum tensor gives

ε̇ = − τ̇

τ
(ε + p) . (9)

After a little manipulation, from (8) and (9), we find

τ̇ = ±
√

C1 + 3κετ2 , (10)

with C1 being an integration constant. On the other hand, rewriting (9) in the form

ε̇

(ε + p)
= − τ̇

τ
(11)
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and taking into account that the pressure and the energy density obey an equation of state
of type p = f(ε), we conclude that ε and p, hence the right hand side of Eq. (8), is a
function of τ only, i.e.,

τ̈ =
3κ

2
(ε − p) τ ≡ F(τ) . (12)

From the mechanical point of view, Eq. (12) can be interpreted as the equation of motion
for a single particle with a unit mass under the force F(τ). Then the following first integral
exists [18]:

τ̇ =
√

2[E − U(τ)] . (13)

Here E can be viewed as energy and U(τ) is the potential of the force F . Comparing
Eqs. (10) and (13) one finds E = C1/2 and

U(τ) = −3

2
κετ2 . (14)

Finally, rearranging (10), we write the solution to Eq. (8) in quadrature form:

∫

dτ√
C1 + 3κετ2

= t + t0 , (15)

where the integration constant t0 can be taken to be zero, since it only gives a shift in time.
In the following we study Eqs. (8) and (9) for a perfect fluid and/or dark energy, for

different equations of state obeyed by the source fields.

III. THE UNIVERSE AS A BINARY MIXTURE OF PERFECT FLUID AND DARK

ENERGY

In this section we thoroughly study the evolution of the BI Universe filled with a
perfect fluid and dark energy. Taking into account that the energy density (ε) and pressure
(p) in this case comprise those of a perfect fluid and dark energy, i.e.,

ε = εpf + εDE , p = ppf + pDE ,

the energy momentum tensor can be decomposed as

T ν
µ = (εDE + εpf + pDE + ppf)uµuν − (pDE + ppf)δ

ν
µ . (16)

In the above equation, εDE is the dark energy density, pDE is its pressure. We also use
the notations εpf and ppf to denote the energy density and the pressure of the perfect
fluid, respectively. Here we consider the case when the perfect fluid in question obeys the
following equation of state

ppf = ζ εpf , (17)
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where ζ is a constant that lies in the interval ζ ∈ [0, 1]. Depending on its numerical value,
ζ describes the following types of Universes [13] :

ζ = 0 , (dust Universe) , (18a)

ζ = 1/3 , (radiation Universe) , (18b)

ζ ∈ (1/3, 1) , (hard Universes) , (18c)

ζ = 1 , (Zel’dovich Universe or stiff matter) . (18d)

In a comoving frame the conservation law of the energy momentum tensor leads to
the balance equation for the energy density

ε̇DE + ε̇pf = − τ̇

τ
(εDE + εpf + pDE + ppf) . (19)

The dark energy is supposed to interact with itself only, so it is minimally coupled to the
gravitational field. As a result, the evolution equation for the energy density decouples
from that of the perfect fluid, so from Eq. (19) we obtain two balance equations :

ε̇DE +
τ̇

τ
(εDE + pDE) = 0 , (20a)

ε̇pf +
τ̇

τ
(εpf + ppf) = 0 . (20b)

In view of Eq. (17), from (20b) one easily finds

εpf = ε0/τ
(1+ζ) , ppf = ε0ζ/τ (1+ζ) , (21)

where ε0 is the integration constant. In the absence of the dark energy one immediately
finds that

τ = Ct2/(1+ζ) , (22)

with C being some integration constant. As one can see from (6), in the absence of a Λ
term, for ζ < 1, an initially anisotropic Universe eventually evolves into an isotropic FRW
one, whereas, for ζ = 1, i.e., in the case of stiff matter, the isotropization does not take
place.

In what follows, we consider the case where the Universe is also filled with the dark
energy. In Fig. 1 we have plotted the potentials for a Universe filled with a perfect fluid,
a perfect fluid plus quintessence and perfect fluid plus Chaplygin gas, respectively. The
perfect fluid is given by a radiation. As one can see, these types of potentials allow only
infinite motion, i.e., the Universe expands infinitely. Fig. 2 shows the evolution of the BI
Universe. The introduction of dark energy results in accelerated expansion of the Universe.
The acceleration has been illustrated in Fig. 3.

Fig. 4 shows the evolution of a BI Universe filled with a perfect fluid and a Chaplygin
gas. Here “d”, “r”, “h” and “s” stand for dust, radiation, hard Universe, and stiff matter,
respectively. As one sees, even in the case of stiff matter the Universe expands rapidy
enough to evolve into an isotropic one.
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FIG. 1: The potentials when the Universe is filled with a perfect fluid, a perfect fluid plus
quintessence and a perfect fluid plus Chaplygin gas, respectively.

FIG. 2: Evolution of the BI Universe corresponding to the potentials illustrated in Fig. 1.

FIG. 3: Acceleration of a BI Universe filled with a perfect fluid, a perfect fluid plus quintessence
and a perfect fluid plus Chaplygin gas, respectively.
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FIG. 4: Evolution of the BI Universe filled with a perfect fluid and Chaplygin gas.

III-1. The case with a quintessence

Let us consider the case when the dark energy is given by a quintessence. As was
mentioned earlier, a new type of matter, often known as quintessence, can behave like
a cosmological constant. It was constructed by combining a positive energy density and
negative pressure and obeys the equation of state

pq = wqεq , (23)

where the constant wq varies between −1 and zero, i.e., wq ∈ [−1, 0]. On account of (23),
from (20a) one finds

εq = ε0q/τ
(1+wq) , pq = wqε0q/τ

(1+wq) , (24)

with ε0q being some integration constant.
Now the evolution equation for τ (8) can be written as

τ̈ =
3κ

2

(

(1 − ζ)ε0

τ ζ
+

(1 − wq)ε0q

τwq

)

. (25)

As was mentioned earlier, Eq. (25) admits an exact solution that can be written in quadra-
ture as

∫

dτ
√

C1 + 3κ
(

ε0τ (1−ζ) + ε0qτ (1−wq)
)

= t + t0 . (26)

Here t0 is a constant of integration that can be taken to be trivial.

III-2. The case with a Chaplygin gas

Let us now consider the case where the dark energy is represented by a Chaplygin
gas. We have already mentioned that the Chaplygin gas was suggested as an alternative
model of dark energy with an exotic equation of state, namely

pc = −A/εc , (27)
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FIG. 5: The energy density and the corresponding pressure when the Universe is filled with a perfect
fluid, quintessence and Chaplygin gas, respectively.

FIG. 6: The energy density and corresponding pressure when the Universe is a binary mixture of a
perfect fluid and quintessence and a perfect fluid and Chaplygin gas, respectively.

with A being a positive constant. In view of Eq. (27), from (20a) one now obtains

εc =
√

ε0c/τ2 + A , pc = −A/
√

ε0c/τ2 + A , (28)

with ε0c being an integration constant.
Proceeding analogously, as in previous case for τ , we now have

τ̈ =
3κ

2

(

(1 − ζ)ε0

τ ζ
+

√

ε0c + Aτ2 + A/
√

ε0c + Aτ2

)

. (29)

The corresponding solution in quadrature now has the form

∫

dτ
√

C1 + 3κ
(

ε0τ (1−ζ) +
√

ε0cτ2 + Aτ4
)

= t , (30)

where the second integration constant has been taken to be zero.
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IV. CONCLUSION

A self-consistent system of a BI gravitational field filled with a perfect fluid and dark
energy has been considered. The exact solutions to the corresponding field equations are
obtained. The inclusion of the dark energy into the system gives rise to an accelerated
expansion of the model. As a result, the initial anisotropy of the model quickly dies away.
Note that the introduction of the dark energy does not eliminate the initial singularity.
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