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Interacting Spinor and Scalar Fields in Bianchi

Type I Universe Filled with Perfect Fluid: Exact

Self-consistent Solutions
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In the framework of B ianchi I (B I) cosm ological models a self-consistent

system of interact ing spinor and scalar ® elds has been considered. We

introduced an interact ion funct ion F ( I , J ) which is an arbitrary funct ion

of invariants I and J , generated from the real bilinear forms of the spinor

® eld. Exact self-consistent solutions to the ® eld equat ions have been

obtained for the cosmological m odel ® lled with perfect ¯ uid. The initial

and the asymptot ic behav ior of the ® eld functions and of the m etric one

has been thoroughly studied.
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1. INTRODUCTION

The quantum ® eld theory in curved space-t ime has been a matter of great

int erest in recent years because of its applicat ions to cosmology and as-

trophysics. The evidence of existence of strong gravit ational ® elds in our

universe led to the study of quant um eŒects of matter ® elds in an exter-

nal classical gravitational ® eld. After the appearance of Parker’ s paper on

scalar ® elds [1] and spin- 1
2 ® elds [2], several authors have studied this sub-

ject. Although the universe seems homogenous and isotropic at present,
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there is no observat ional data that guarant ies the isotropy in the era prior

to the recombinat ion. In fact, there are theoretical argument s that sus-

tain the existence of an anisot ropic phase that approaches an isotropic one

[3]. Interest in studying Klein± Gordon and Dirac equat ions in anisot ropic

models has increased since Hu and Parker [4] have shown that the creation

of scalar part icles in anisot ropic backgrounds can dissipat e the anisot ropy

as the universe expands.

A Bianchi type I (BI) universe, being the straight forward generaliza-

tion of the ¯ at Robertson± Walker (rw ) universe, is one of the simplest

models of an anisot ropic universe that describes a homogenous and spa-

tially ¯ at universe. Unlike the rw universe which has the same scale factor

for each of the three spat ial direct ions, a BI universe has a diŒerent scale

factor in each direct ion, thereby int roducing an anisot ropy to the system.

It moreover has the agreeable property that near the singularity it behaves

like a Kasner universe even in the presence of matter and consequent ly falls

within the general analysis of the singularity given by Belinskii et al. [5].

And in a universe ® lled with matter for p = c e , c < 1, it has been shown

that any init ial anisot ropy in a BI universe quickly dies away and a BI

universe eventually evolves into a rw universe [6]. Since the present-day

universe is surprisingly isotropic, this feature of the BI universe makes it

a prime candidat e for studying the possible eŒects of an anisot ropy in the

early universe on present-day observat ions. In light of the importance of

what has been mentioned above, several authors have studied linear spinor

® eld equat ions [7,8] and the behavior of gravit ational waves (gws) [9± 11]

in the BI universe. A nonlinear spinor ® eld (nlsf ) in an external cosmolog-

ical gravit at ional ® eld was ® rst studied by G. N. Shikin in 1991 [12]. This

study was extended by us to the more general case where we consider the

nonlinear term as an arbit rary funct ion of all possible invariant s generated

from spinor bilinear forms. In that paper we also studied the possibility

of eliminat ion of init ial singularity especially for a Kasner universe [13].

In a recent paper [14] we studied the behavior of self-consist ent nlsf in

the BI universe, and that was followed by [15,16], where we studied the

self-consist ent system of interacting spinor and scalar ® elds.

The purpose of the present paper is to extend our study on diŒerent

kinds of interacting term in presence of perfect ¯ uid. Earlier we consid-

ered the function F (I ) [15,16] that describes the interaction between spinor

® elds and scalar ones, which is an arbit rary function of invariant I = S2 ,

where S = Åw w , generated from the real bilinear forms of the spinor ® eld.

Herein we introduce interaction funct ion F (I , J ) containing an addit ional

argument J = P 2 with P = i Åw c 5 w . Contrary to the previous papers

[15,16] the cosmological model in this case contains a perfect ¯ uid. More-
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over, here we consider three types of interactions between the spinor and

scalar ® elds. In Section 2 we derive fundamental equat ions correspond-

ing to the Lagrangian for the self-consist ent system of spinor, scalar and

gravitational ® elds in presence of perfect ¯ uid and seek their general so-

lut ions. In Sect ion 3 we give a detailed analysis of the solut ions obtained

for diŒerent kinds of int eract ing term. In Section 4 we sum up the results

obtained.

2. FUNDAMENTAL EQUATIONS AND GENERAL SOLUTIONS

The Lagrangian for the self-consist ent system of spinor, scalar and

gravitational ® elds in the presence of a perfect ¯ uid is

L = Lg + Lsp + Lsc + Lm + Lint , (1)

where Lg , Lsp , Lsc , correspond to gravitational, free spinor and free scalar

® elds read
Lg = R/ 2k,

Lsp = (i/ 2) [ Åw c
m Ñ m w ± Ñ m

Åw c
m w ] ± m Åw w ,

Lsc = 1
2 u ,m u

,m ,

with R being the scalar curvature, k the Einstein’ s gravitational constant

and Lm the Lagrangian of the perfect ¯ uid. As interaction Lagrangian we

consider the following cases [15± 17]:

(i) Lint = (l/ 2) u ,a u
,a F,

(ii) Lint = l Åw c
m w u ,m ,

(iii) Lint = il Åw c
m

c
5 w u ,m ,

where l is the coupling constant and F can be presented as some arbit rary

funct ions of invariant s generated from the real bilinear forms of spinor ® eld

having the form

S = Åw w , P = i Åw c
5
w , v

m
= ( Åw c

m
w ),

A
m

= ( Åw c
5
c

m w ), T
mu

= ( Åw s
mu w ),

where smu = (i / 2)[c m c u ± c u c m ]. Invariant s, corresponding to the bilinear

forms, appear as

I = S
2
, J = P

2
, IA = Am A

m
= ( Åw c

5
c

m w ) gmu ( Åw c
5
c

u w ),

I v = vm v
m

= ( Åw c
m w ) gmu ( Åw c

u w ),

IT = Tmu T
mu

= ( Åw s
mu w ) gma gub ( Åw sab w ).
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According to the Pauli± Fierz theorem [18] among the ® ve invariant s only

I and J are independent , as all other can be expressed by them:

I v = ± IA = I + J, IT = I ± J.

Therefore we choose F = F (I , J ).

We choose the BI space-t ime metric in the form

ds
2

= dt
2

± c i j (t) dx
i
dx

j . (2)

As it admits no rotational matter, the spat ial metric c i j (t) can be put into

diagonal form. Now we can rewrite the BI space-t ime metric in the form

[19]

ds
2

= dt
2

± a
2
(t) dx

2
± b

2
( t) dy

2
± c

2
(t) dz

2
, (3)

where the velocity of light c is taken to be unity.

Let us now write the Einstein equat ions for a( t), b(t) and c(t) corre-

sponding to the metric (3) and Lagrangian (1) [19]:

Èa

a
+

Ça

a

Çb

b
+

Çc

c
= ± k T

1
1 ±

1

2
T , (4)

Èb

b
+

Çb

b

Ça

a
+

Çc

c
= ± k T

2
2 ±

1

2
T , (5)

Èc

c
+

Çc

c

Ça

a
+

Çb

b
= ± k T

3
3 ±

1

2
T , (6)

Èa

a
+

Èb

b
+

Èc

c
= ± k T

0
0 ±

1

2
T , (7)

where points denote diŒerentiat ion with respect to t, and Tu
m is the energy-

momentum tensor of material ® elds and perfect ¯ uid.

The scalar and the spinor ® eld equat ions and the energy-momentum

tensor of material ® elds and perfect ¯ uid corresponding to (1) are

¶ a [ Ö ± g(gab
u ,b + ¶ Lint / ¶ u ,a ) ] = 0, (8)

ic
m Ñ m w ± m w + ¶ L int / ¶ Åw = 0,

i Ñ m
Åw c

m
+ m Åw ± ¶ L int / ¶ w = 0 .

(9)

T
r
m =

i

4
gru

( Åw c m Ñ u w + Åw c u Ñ m w ± Ñ m
Åw c u w ± Ñ u

Åw c m w )

+ u ,m u
,r

+ 2
d Lint

d gmu
gru

± d r
m (Lsp + Lsc + Lint ) + T

r

m ( m ) . (10)



In t e r a c t in g S p in or a n d S c a lar F ie ld s in B ia n ch i T y p e I U n iv e r s e 1 1 0 3

Here T
r

m ( m ) is the energy-momentum tensor of perfect ¯ uid. For a universe

® lled with perfect ¯ uid, in the concomitant system of reference (u0 = 1,

u i = 0, i = 1, 2, 3) we have

T
u
m ( m ) = (p + e )um u

u
± d u

m p = ( e , ± p, ± p, ± p), (11)

where energy e is relat ed to the pressure p by the equat ion of state p = c e ,

the general solut ion has been derived by Jacobs [6]. c varies between

the interval 0 £ c £ 1; whereas c = 0 describes the dust universe,

c =
1
3 presents the radiat ion universe,

1
3 < c < 1 the hard universe and

c = 1 corresponds to the stiŒmatter. One sees changes in the solut ions

performed by perfect ¯ uid carried out through Einstein equat ions, namely

through t = a(t)b(t)c(t). Note that a perfect ¯ uid appears in the system

through the energy-momentum tensor. In the ® eld equat ions it does not

appear direct ly but acts on the ® elds through the metric funct ions. With

the perfect ¯ uid taken into account , one can ® nd metric funct ions solving

the Einstein equat ions. So, we ® rst see how the quant ities e and p are

connected with the metric functions, namely with t where t := Ö ± g =

abc. In doing this we use the well-known equality Tu
m ;u = 0, which leads to

d

dt
(t e ) + Çt p = 0, (12)

with the solut ion

ln t = ±
d e

( e + p)
. (13)

Recalling the equat ion of state p = j e , 0 £ j £ 1 ® nally we get

T
0
0 ( m ) = e =

e 0

t 1+ j
,

T
1
1 ( m ) = T

2
2( m ) = T

3
3 ( m ) = ± p = ±

e 0 j

t 1+ j
,

(14)

where e 0 is the integrat ion constant.

Note that we consider space-independent ® elds only. Under this as-

sumption and with regard to spinor ® eld equat ions, the component s of the

energy-momentum tensor read:

T
0
0 = m S +

1

2
Çu
2

+ Lint + e ,

T
1
1 = T

2
2 = T

3
3 =

1

2
Åw
¶ Lint

¶ Åw
+

¶ Lint

¶ w
w ± Lsc ± Lint ± p.

(15)
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In (8) and (10) Ñ m denotes the covariant derivat ive of spinor, having the

form [20]

Ñ m w =
¶ w

¶ xm
± Cm w , (16)

where Cm (x) are spinor a� ne connect ion matrices. c m (x) matrices are

de® ned for the metric (3) as follows. Using the equalit ies [21,22]

gmu (x) = e
a
m (x)e

b
u(x)ga b , c m (x) = e

a
m (x) Åc

a
,

where ga b = diag (1, ± 1, ± 1, ± 1) , Åc a are the Dirac matrices of Minkowski

space and ea
m (x) are the set of tetradic 4-vectors, we obtain the Dirac

matrices c m (x) of curved space-t ime,

c
0

= Åc
0
, c

1
= Åc

1 / a( t) , c
2

= Åc
2 / b( t) , c

3
= Åc

3 / c(t),

c 0 = Åc 0 , c 1 = Åc 1 a(t), c 2 = Åc 2 b(t) , c 3 = Åc 3 c(t).

Cm (x) matrices are de® ned by the equality

Cm (x) =
1
4 grs (x) ( ¶ m eb

d e
r
b ± C

r
m d )c s c d ,

which gives

C0 = 0, C1 = 1
2 Ça(t) Åc 1 Åc 0 ,

C2 = 1
2

Çb(t) Åc 2 Åc 0 , C3 = 1
2 Çc(t) Åc 3 Åc 0 .

(17)

Flat space-t ime matrices we choose in the form, given in [23],

Åc
0

=

1 0 0 0

0 1 0 0

0 0 ± 1 0

0 0 0 ± 1

, Åc
1

=

0 0 0 1

0 0 1 0

0 ± 1 0 0

± 1 0 0 0

,

Åc
2

=

0 0 0 ± i

0 0 i 0

0 i 0 0

± i 0 0 0

, Åc
3

=

0 0 1 0

0 0 0 ± 1

± 1 0 0 0

0 1 0 0

.

De® ning c 5 as follows:

c
5

= ±
i

4
E musrc

m
c

u
c

s
c

r
, E musr = Ö ± g e musr , e 012 3 = 1,

c
5

= ± i Ö ± gc
0
c

1
c

2
c

3
= ± i Åc

0
Åc

1
Åc

2
Åc

3
= Åc

5
,
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we obtain

Åc
5

=

0 0 ± 1 0

0 0 0 ± 1

± 1 0 0 0

0 ± 1 0 0

.

Let us now solve the Einstein equat ions. With respect to (15) sum-

mation of Einstein equat ions (4), (5) and (6) leads to the equat ion

Èt

t
= ± k T

1
1 + T

2
2 + T

3
3 ±

3

2
T =

3k

2
(T

0
0 + T

1
1 ). (18)

If the right hand side of (18) is the funct ion of t (t) = a(t)b(t)c(t), this

equat ion takes the form

Èt + F (t ) = 0, (19)

which possesses exact solut ions for arbit rary funct ion F (t ). Note that the

assumpt ion of the right hand side of (18) to be the funct ion of t is not a

general one, though it is always a funct ion of t for the space-independent

® eld funct ions. But as will be shown later, in the part icular case considered

here, the r.h.s. of (18) is a function of t . Given the explicit form of Lint ,

from (18) one can ® nd concrete funct ion t ( t) = abc. Once the value of t is

obtained, one can get expressions for components Va (t), a = 1, 2, 3, 4. Let

us express a, b, c through t . For this we notice that subtraction of Einst ein

equat ions (4) ± (5) leads to the equat ion

Èa

a
±

Èb

b
+

Ça Çc

ac
±

Çb Çc

bc
=

d

dt

Ça

a
±

Çb

b
+

Ça

a
±

Çb

b

Ça

a
+

Çb

b
+

Çc

c
= 0 . (20)

Equat ion (20) possesses the solut ion

a

b
= D1 exp X 1

dt

t
, D1 = const., X 1 = const. (21)

Subtracting eqs. (4) ± (6) and (5) ± (6) one ® nds the equat ions similar to (20) ,

having solut ions

a

c
= D 2 exp X 2

dt

t
,

b

c
= D3 exp X 3

dt

t
, (22)

where D2 , D 3 , X 2 , X 3 are integrat ion constants. There is a functional

dependence between the constants D1 , D 2 , D3 , X 1 , X 2 , X 3 :

D 2 = D1 D3 , X 2 = X 1 + X 3 .
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Using the equat ions (21) and (22) , we rewrite a( t), b(t) , c(t) in the explicit

form:

a(t) = (D
2
1 D 3 )

1 / 3
t

1 / 3
exp

2X 1 + X 3

3

dt

t ( t)
,

b(t) = (D
- 1
1 D3 )

1 / 3
t

1 / 3
exp ±

X 1 ± X 3

3

dt

t (t)
,

c(t) = (D1 D
2
3 )

- 1 / 3
t

1 / 3
exp ±

X 1 + 2X 3

3

dt

t (t)
. (23)

Thus the previous system of Einstein equat ions is completely integrat ed.

In this process of integrat ion only the ® rst three of the complete system

of Einstein equat ions have been used. General solut ions to these three

second order equat ions have been obtained. The solut ions contain six

arbit rary constant s: D 1 , D3 , X 1 , X 3 and two others, that were obtained

while solving eq. (19) . Equat ion (7) is the consequence of the ® rst three

Einstein equat ions. To verify the correctness of the obtained solut ions,

it is necessary to put a, b, c into (7). It should lead either to ident ity or

to some addit ional constraint between the constant s. Putt ing a, b, c from

(23) into (7) one can get the following equality:

Èt

t
±

2

3

Çt 2

t 2
+

2

9t 2
X = ±

k

2
(T

0
0 ± 3T

1
1 ), X := X

2
1 + X 1X 3 + X

2
3 , (24)

that guarant ees the correctness of the solut ions obtained.

It should be emphasized that we are dealing with a cosmological prob-

lem and our main goal is to invest igate the init ial and the asymptotic

behavior of the ® eld funct ions and the metric functions. As one sees, all

these functions are in some funct ional dependence on t . Therefore in our

further invest igat ion we mainly look for t , though in some part icular cases

we write down ® eld and metric functions explicit ly.

3. ANALYSIS OF THE SOLUTIONS OBTAINED FOR SOME SPECIAL

CHOICE OF INTERACTION LAGRANGIAN

Let us now study the system for some special choice of L int . We ® rst

study the solut ion to the system of ® eld equat ions with minimal coupling

when the direct interaction between the spinor and scalar ® elds remains

absent . The reason for obtaining the solut ion to the self-consist ent system

of equat ions for the ® elds with minimal coupling is the need to compare

this solut ion with that for the system of equat ions for the interacting
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spinor, scalar and gravitational ® elds that permits us to clarify the role of

int eract ion terms in the evolut ion of the cosmological model in quest ion.

In this case from the scalar and spinor ® eld equat ions one ® nds Çu =

C/ t and Åw w = S = C0 / t with C and C0 being the constants of integrat ion.

Therefore the components of the energy-momentum tensor appear as

T
0
0 =

m C0

t
+

C 2

2t 2
, T

1
1 = T

2
2 = T

3
3 = ±

C 2

2t 2 . (25)

Since in (25) T0
0 is the energy density of free ® elds, we assume that T0

0 is

posit ively de® ned. This leads to C0 > 0. The inequality C0 > 0 will also

be preserved for the system with direct interaction between the ® elds, as

in this case the correspondence principle should be ful® lled: for l = 0 the

® eld system with direct interaction turns into that with minimal coupling.

The component s of spinor ® eld functions in this case read

w 1 ,2 (t) = (C1 ,2 / Ö t ) e
- i m t

, w 3 ,4 (t) = (C3 ,4 / Ö t ) e
i m t . (26)

Taking into account (25) , from (18) and (24) one gets

t j t ® 0 ¼ 3kC 2 / 2 + X / 3 t ® 0, t j t ® ¥ ¼ 3km C0 t
2 .

Thus one concludes that the solut ions obtained are init ially singular and

the space-t ime is asymptotically isotropic.

Let us now study the case with diŒerent kinds of int eract ions.

C ase 1. For the case when L int = (l/ 2) u ,m u
,m F (I , J ) one writes the

scalar ® eld equat ion as

¶
¶ t

(t Çu (1 + lF ) ) = 0, (27)

with the solut ion

Çu = C / t (1 + lF ) . (28)

In this case the ® rst equat ion of the system (9) now reads

i Åc
0 ¶

¶ t
+

Çt

2t
w ± m w + Dw + iGc

5 w = 0, (29)

where D := u ,a u
,a S F I and G := u ,a u

,a P FJ . For the component s w r =

Vr (t), where r = 1, 2, 3, 4, from (29) one deduces the following system of
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equat ions:

ÇV1 +
Çt

2t
V1 + i(m ± D)V1 ± GV3 = 0,

ÇV2 +
Çt

2t
V2 + i(m ± D)V2 ± GV4 = 0,

ÇV3 +
Çt

2t
V3 ± i(m ± D)V3 + GV1 = 0,

ÇV4 +
Çt

2t
V4 ± i(m ± D)V4 + GV2 = 0 . (30)

Let us now de® ne the equat ions for

P = i (V1 V
*

3 ± V
*

1 V3 + V2 V
*

4 ± V
*

2 V4 ) ,

R = (V1V
*

3 + V
*

1 V3 + V2V
*

4 + V
*

2 V4 ),

S = (V
*

1 V1 + V
*

2 V2 ± V
*

3 V3 ± V
*

4 V4 ). (31)

After a lit tle manipulat ion one ® nds

dS0

dt
± 2G R0 = 0,

dR0

dt
+ 2(m ± D) P0 + 2GS0 = 0,

dP0

dt
± 2(m ± D) R0 = 0, (32)

where S0 = t S , P0 = t P , R0 = t R . From this system one can easily ® nd

S0
ÇS0 + R0

ÇR0 + P0
ÇP0 = 0,

which gives

S
2

+ R
2

+ P
2

= A
2 / t

2
, A

2
= const. (33)

Let us go back to the system of equat ions (30) . It can be written as

follows if one de® nes Wa = Ö t Va :

ÇW1 + i F W1 ± GW3 = 0, ÇW2 + i F W2 ± GW4 = 0,

ÇW3 ± i F W3 + GW1 = 0, ÇW4 ± i F W4 + GW2 = 0,
(34)

where F = m ± D. De® ning U(s) = W (t), where s = Gdt, we rewrite

the foregoing system as

U 91 + i( F / G)U1 ± U3 = 0, U 92 + i( F / G)U2 ± U4 = 0,

U 9
3 ± i( F / G)U3 + U1 = 0, U 9

4 ± i( F / G)U4 + U2 = 0,
(35)
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where prime ( 9 ) denotes diŒerentiat ion with respect to s. One can now

de® ne Va giving the explicit value of L int .

Let us consider the case when F = I n = S 2n . It is clear that in this

case G = 0. From (32) we ® nd

S = C0 / t, C0 = const. (36)

As in the case considered F depends only on S , from (36) it follows that

D is a functions of t = abc. Taking this fact into account , integrat ion of

the system of equat ions (34) leads to the expressions

Vr (t) = (Cr / Ö t ) e
- i V

, r = 1, 2, Vl (t) = (Cl / Ö t ) e
i V

, l = 3, 4, (37)

where Cr and Cl are integrat ion constants and V = F (t)dt. Putting this

solut ion into (31) one gets

S = (C
2
1 + C

2
2 ± C

2
3 ± C

2
4 )/ t . (38)

Comparing it with (36) we ® nd C0 = C 2
1 + C 2

2 ± C 2
3 ± C 2

4 . In this case from

(18) and (24) we ® nd

t (t) j t ® ¥ ¼ 3
4 km C0 t2 ® ¥ , t (t) j t ® 0 ¼ X / 3 t ® 0 .

Thus in the case considered, the asymptotical isotropizat ion of the expan-

sion process of init ially anisot ropic Bianchi type I space-t ime takes place

without the in¯ uence of scalar ® eld. For a detail analysis of this case see

[15].

We study the system when F = J n = P 2n , which means in the case

considered D = 0. Unfortunat ely, we have not yet been able to ® nd the

exact solut ion for the case in quest ion when m /= 0. Therefore we consider

the part icular case with m = 0. Then from (32) one gets

P (t) = D 0 / t , D0 = const. (39)

The system of equat ions (35) in this case reads

U 91 ± U3 = 0, U 92 ± U4 = 0,

U 9
3 + U1 = 0, U 9

4 + U2 = 0.
(40)

DiŒerentiat ing the ® rst equat ion of system (40) and taking into account

the third one we get

U 9 9
1 + U1 = 0, (41)
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which leads to the solut ion

U1 = D 1e
is

+ iD3 e
- i s

, U3 = iD1 e
i s

+ D3 e
- i s . (42)

Analogically for U2 and U4 one gets

U2 = D 2e
is

+ iD4 e
- i s

, U4 = iD2 e
i s

+ D4 e
- i s

, (43)

where D i are the constants of int egrat ion. Finally, we can write

V1 = (1/ Ö t ) (D1 e
i s

+ iD 3e
- is

), V2 = (1/ Ö t ) (D2 e
i s

+ iD 4e
- i s

),

V3 = (1/ Ö t ) (iD 1e
is

+ D 3e
- is

), V4 = (1/ Ö t ) (iD2 e
i s

+ D 4e
- i s

).
(44)

Putt ing (44) into (31) one ® nds

P = 2 (D
2
1 + D

2
2 ± D

2
3 ± D

2
4 )/ t. (45)

Comparison of (39) with (45) gives D 0 = 2 (D 2
1 + D 2

2 ± D 2
3 ± D 2

4 ). Let us

now estimate t . From (18) and (24) we obtain

t j t ® ¥ ¼ ( [ Ö e 0 (j + 1) / 2] t)
2 / ( j+ 1)

, t j t ® 0 ¼ X / 3 t,

i.e. the solut ions obtained are init ially singular and the space-t ime is

asymptotically isotropic if j < 1 and anisot ropic if j = 1.
Let us now study the case when F = F (I , J ). Choosing

F = F (K ± ), K + = I + J = Iv = ± IA , K - = I ± J = IT , (46)

in case of massless spinor ® eld (m = 0) we ® nd

D = u ,m u
,m

SFK ± , G = ± u ,m u
,m

SFK ± , FK ± = dF / dK ± .

Putt ing these into (32) we ® nd

S
2
0 ± P

2
0 = D± . (47)

Choosing F = K n
± from (18) and (24) one comes to the conclusion similar

to that of previous case [F = F (J )].

C ase 2 . In this case the scalar and spinor ® eld equat ions read

¶
¶ t

[t ( Çu + l Åw c
0 w ) ] = 0, (48)
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ic
0 ¶

¶ t
+

Çt

2t
w ± m w + l Çu c

0 w = 0,

i
¶
¶ t

+
Çt

2t
Åw c

0
+ m Åw ± l Çu Åw c

0
= 0 .

(49)

Using the spinor ® eld equat ions one ® nds Åw c 0 w = C1 / t and S = Åw w =

C0 / t , with C1 and C0 being the constant of integrat ion. Putting it in the

scalar ® eld equat ion one obtains

Çu = (C ± lC1 )/ t , C = const. (50)

With all these taken into account , the spinor ® eld equat ion can be written

as

c
0 ¶

¶ t
+

Çt

2t
w + im w ±

il(C ± lC1 )

t
c

0 w = 0, (51)

with the solut ion

w 1 ,2 (t) =
D1 ,2

Ö t
exp ± i m t ± l(C ± lC1 ) t

- 1
dt ,

w 3 ,4 (t) =
D3 ,4

Ö t
exp i m t + l(C ± lC1 ) t

- 1
dt .

(52)

The component s of energy-momentum tensor in this case read

T
0
0 =

m C0

t
+

C
t 2

+
e 0

t 1+ j
,

T
1
1 = T

2
2 = T

3
3 = ±

(C ± lC1 )2

2t 2
±

e 0 j

t 1+ j
,

where C := (C 2 ± l2 C2
1 )/ 2 and 0 < j < 1. Taking this into account , from

(18) and (24) one gets

t j t ® 0 ¼ X / 3 ± 3kC t ® 0, t j t ® ¥ ¼ 3km C0 t
2
,

which means the solut ion obtained is init ially singular and the isotropiza-

tion process of the init ially anisot ropic universe takes place as t ® ¥ .

C ase 3 . In this case the scalar and spinor ® eld equat ions read

¶
¶ t

[t ( Çu + il Åw c
0
c

5 w ) ] = 0, (53)
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ic
0 ¶

¶ t
+

Çt

2t
w ± m w + il Çu c

0
c

5 w = 0,

i
¶
¶ t

+
Çt

2t
Åw c

0
+ m Åw ± l Çu Åw c

0
c

5
= 0 .

(54)

We consider the massless spinor ® eld (m = 0). In this case from the spinor

® eld equat ions one ® nds i Åw c 0c 5 w = C2 / t, with C2 being the constant of

int egrat ion. Putting it in the scalar ® eld equat ion one obtains

Çu = (C ± lC2 )/ t , C = const. (55)

With all these taken into account , the spinor ® eld equat ion can be written

as

c
0 ¶

¶ t
+

Çt

2t
w ±

il(C ± lC2 )

t
c

0
c

5
w = 0 . (56)

De® ning W ( t) = Ö t w (t) one writes the foregoing equat ions as

ÇW1 ± l Çu W3 = 0, ÇW2 ± l Çu W4 = 0,

ÇW3 ± l Çu W1 = 0, ÇW1 ± l Çu W3 = 0 .
(57)

DiŒerentiat ing the ® srt equat ion of the foregoing system one gets

ÈW1 +
Çt

t
ÇW1 ± [l(C ± lC2 )]

2 1

t 2
W1 = 0, (58)

where the third equat ion of the system as well as Çu has been taken into

account . The ® rst integral of this equat ion reads

t ÇW1 = l(C ± lC2 )W1 , (59)

with the constant of integrat ion taken to be trivial. P rocceding analogi-

cally one writes the solut ion of the system as

W1 ,3 = D+ exp[l(C ± lC2 ) t
- 1

dt],

W2 ,4 = D - exp[l(C ± lC2 ) t
- 1

dt].
(60)

The component s of energy-momentum tensor in this case read

T
0
0 =

m C0

t
+

C
t 2

+
e 0

t 1+ j
,

T
1
1 = T

2
2 = T

3
3 = ±

(C ± lC2 )2

2t 2
±

e 0 j

t 1+ j
,

where C := (C2 ± l2 C2
2 )/ 2 and 0 < j < 1. From (18) and (24) in this case

one ® nds

t j t ® 0 ¼ X / 3 ± 3kC t ® 0, t j t ® ¥ ¼ 3km C0 t
2
,

which means the solut ion obtained is init ially singular and the isotropiza-

tion process of the init ially anisot ropic universe takes place as t ® ¥ .
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4. CONCLUSIONS

Exact solut ions to the self-consist ent system of spinor and scalar ® eld

equat ions have been obtained for the BI space-t ime ® lled with perfect ¯ uid.

It is shown that the solut ions obtained are init ially singular and the space-

time is basically asymptotically isotropic independent of the choice of in-

teracting term in the Lagrangian, though there are some special cases that

occur init ially regular (with breaking energy-dominent condit ion; Ref. 15)

solut ions and leave the space-t ime asymptotically anisot ropic.
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