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Interacting Spinor and Scalar Fields in Bianchi
Type I Universe Filled with Perfect Fluid: Exact
Self-consistent Solutions

B. Saha' and G. N. Shikin?

Received September 25, 1996. Rev. version April 7, 1997

In the framework of Bianchi I (BI) cosmological models a self-consistent
system of interacting spinor and scalar fields has been considered. We
introduced an interaction function F (7, J) which is an arbitrary function
of invariants [ and J, generated from the real bilinear forms of the spinor
field. Exact self-consistent solutions to the field equations have been
obtained for the cosmological model filled with perfect fluid. The initial
and the asymptotic behavior of the field functions and of the metric one
has been thoroughly studied.

KEY WORDS : Cosmological model with spinor and scalar field

1. INTRODUCTION

The quantum field theory in curved space-time has been a matter of great
interest in recent years because of its applications to cosmology and as-
trophysics. The evidence of existence of strong gravitational fields in our
universe led to the study of quantum effects of matter fields in an exter-
nal classical gravitational field. After the appearance of Parker’s paper on
scalar fields [1] and spin-Jz‘ fields [2], several authors have studied this sub-
ject. Although the universe seems homogenous and isotropic at present,
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there is no observational data that guaranties the isotropy in the era prior
to the recombination. In fact, there are theoretical arguments that sus-
tain the existence of an anisotropic phase that approaches an isotropic one
[3]. Interest in studying Klein—Gordon and Dirac equations in anisot ropic
models has increased since Hu and Parker [4] have shown that the creation
of scalar particles in anisotropic backgrounds can dissipate the anisotropy
as the universe expands.

A Bianchi type I (BI) universe, being the straightforward generaliza-
tion of the flat Robertson—-Walker (Rw) universe, is one of the simplest
models of an anisotropic universe that describes a homogenous and spa-
tially flat universe. Unlike the Rw universe which has the same scale factor
for each of the three spatial directions, a BI universe has a different scale
factor in each direction, thereby introducing an anisotropy to the system.
It moreover has the agreeable property that near the singularity it behaves
like a Kasner universe even in the presence of matter and consequently falls
within the general analysis of the singularity given by Belinskii et al. [5].
And in a universe filled with matter for p = y ¢, y < 1, it has been shown
that any initial anisotropy in a BI universe quickly dies away and a BI
universe eventually evolves into a Rw universe [6]. Since the present-day
universe is surprisingly isotropic, this feature of the BI universe makes it
a prime candidate for studying the possible effects of an anisotropy in the
early universe on present-day observations. In light of the importance of
what has been mentioned above, several authors have studied linear spinor
field equations [7,8] and the behavior of gravitational waves (cws) [9-11]
in the Bl universe. A nonlinear spinor field (NLsF) in an external cosmolog-
ical gravitational field was first studied by G. N. Shikin in 1991 [12]. This
study was extended by us to the more general case where we consider the
nonlinear term as an arbitrary function of all possible invariants generated
from spinor bilinear forms. In that paper we also studied the possibility
of elimination of initial singularity especially for a Kasner universe [13].
In a recent paper [14] we studied the behavior of self-consistent NLSF in
the BI universe, and that was followed by [15,16], where we studied the
self-consistent system of interacting spinor and scalar fields.

The purpose of the present paper is to extend our study on different
kinds of interacting term in presence of perfect fluid. Earlier we consid-
ered the function F (1) [15,16] that describes the interaction between spinor
fields and scalar ones, which is an arbitrary function of invariant 7 = S2,
where S = Y, generated from the real bilinear forms of the spinor field.
Herein we introduce interaction function F (7, J) containing an additional
argument J = P2 with P = iyy>y. Contrary to the previous papers
[15,16] the cosmological model in this case contains a perfect fluid. More-
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over, here we consider three types of interactions between the spinor and
scalar fields. In Section 2 we derive fundamental equations correspond-
ing to the Lagrangian for the self-consistent system of spinor, scalar and
gravitational fields in presence of perfect fluid and seek their general so-
lutions. In Section 3 we give a detailed analysis of the solutions obtained
for different kinds of interacting term. In Section 4 we sum up the results
obtained.

2. FUNDAMENTAL EQUATIONS AND GENERAL SOLUTIONS

The Lagrangian for the self-consistent system of spinor, scalar and
gravitational fields in the presence of a perfect fluid is

L=Lg+ Lgp+ Lsc+ Ly + Ling, (1)

where Lg, Lsp, Lsc, correspond to gravitational, free spinor and free scalar

fields read
Ly, = R/2x,

Lop = (i/2) Wr* Vil = V"Y1 = m gy,
L = ‘;‘(p,ytp’“,
with R being the scalar curvature, x the Einstein’s gravitational constant

and L, the Lagrangian of the perfect fluid. As interaction Lagrangian we
consider the following cases [15-17]:

(1) Line = (M/2) 9,09 °F,
(ii) Line = My Yo 4,
(i) Lin = iA07*y Yo u,

where A is the coupling constant and F can be presented as some arbitrary
functions of invariants generated from the real bilinear forms of spinor field
having the form

S=yy.  P=iy. =),
A" = (UMY, T = (e,

where oV = (i/2)[y*y" — y’y*]. Invariants, corresponding to the bilinear
forms, appear as

1=58 J=P  Li=A,4" = 077" gy vt ),

L= v v = (07" 9) oy v),
It = Ty T = (J6"°V) GuaGp(Yo™"V).
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According to the Pauli-Fierz theorem [18] among the five invariants only
I and J are independent, as all other can be expressed by them:

I, = -1,=1+1J, Ir=1-J.

Therefore we choose F = F(I,J).
We choose the BI space-time metric in the form

ds® = dr* -y (1) dx' dx’' . (2)

As it admits no rotational matter, the spatial metric y;; (#) can be put into
diagonal form. Now we can rewrite the BI space-time metric in the form
[19]

ds® = di* — &*(1)dx* — B (1) dy* - (1) dz?, (3)
where the velocity of light ¢ is taken to be unity.

Let us now write the Einstein equations for a(t), b(¢) and c(¢) corre-
sponding to the metric (3) and Lagrangian (1) [19]:

a, z<l_a+ _) _ _K<T11 _1T>) @

a a\b ¢ 2

b, l_a<2+ _> _ _K<T22 _1T>) )

b b\a ¢ 2

) (1)
g+[—’+5=_K<T(§’_lr>, (7)
a b ¢ 2

where points denote differentiation with respect to ¢, and T, is the energy-
momentum tensor of material fields and perfect fluid.

The scalar and the spinor field equations and the energy-momentum
tensor of material fields and perfect fluid corresponding to (1) are

Bu[A[-9(FP 0 5 + OLint/30.0)] = 0, (8)
iVHVul// -my+ 6Lint/al/_/ =0,

iVuly" + mi = 8Lint /W = 0. ©)
10 = 5 S U Vol + U1Vl = Vabrod = Volyah)
+ 0 + 28Lint o’ =& (Lsp + Lsc + Line) + Ty, (10)

ogv
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Here Tf(m) is the energy-momentum tensor of perfect fluid. For a universe

filled with perfect fluid, in the concomitant system of reference (1’ = 1
u'=0,i=1,23) we have

s

Tomy = (p+ &uuu® = 8p = (¢, -p, —p, —p), (11)

where energy ¢ is related to the pressure p by the equation of state p = y ¢,
the general solution has been derived by Jacobs [6]. y varies between
the interval 0 < y < 1; whereas y = 0 describes the dust universe,
y = ‘;‘ presents the radiation universe, ‘;‘ < y < 1 the hard universe and
y = 1 corresponds to the stiff matter. One sees changes in the solutions
performed by perfect fluid carried out through Einstein equations, namely
through 7 = a(1)b(t)c(t). Note that a perfect fluid appears in the system
through the energy-momentum tensor. In the field equations it does not
appear directly but acts on the fields through the metric functions. With
the perfect fluid taken into account, one can find metric functions solving
the Einstein equations. So, we first see how the quantities ¢ and p are
connected with the metric functions, namely with = where ¢ := ,[/-g=
abc. In doing this we use the well-known equality 7};,, = 0, which leads to

d
Z(Té‘) +1p=0, (12)
with the solution
de
Int= -] ——. (13)
(e+p)
Recalling the equation of state p = &, 0 < £ < 1 finally we get
(0]
T(?(m) &= TH_;;
1 2 3 &0é (14)
Tiony = Togmy = Tsgmy = -P = e

where ¢o is the integration constant.

Note that we consider space-independent fields only. Under this as-
sumption and with regard to spinor field equations, the components of the
energy-momentum tensor read:

Ty

1
mS + Etfiz + Lint + &,

(15)

1 —aLin aLin
Tll T22 = T33 = E([//a_l/_/t + a_l//tl//> — Lsc — Lint -p.
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In (8) and (10) V,, denotes the covariant derivative of spinor, having the
form [20]

V=25t (16)

where I'y(x) are spinor affine connection matrices. y*(x) matrices are
defined for the metric (3) as follows. Using the equalities [21,22]

Gio(x) = €)M, Yu(x) = (07",
where n,p = diag (1, =1, =1, —1), 74 are the Dirac matrices of Minkowski

space and ej(x) are the set of tetradic 4-vectors, we obtain the Dirac
matrices y*(x) of curved space-time,

=70 vy =3a(n, P =7N0, v =7/,

70 =70, v1 = ya(t), y2 = y2b(1), vz = yac(r).
I',(x) matrices are defined by the equality
Cu(x) = 4ro(x) (6ye5e - rps)V

which gives

Ta(n7'y°
77, T3 = ten7dy°

I'o=0, I'
(17)

I

Flat space-time matrices we choose in the form, given in [23],

10 0 0 0 0 0 1

o_l0 1 0o o0 o 0 1 0

“{o o -1 o Y~ 1 0 -1 0 0

00 0 -1 -1 0 0 0

0 0 0 -—i 001 0

2 00 i 0 5 00 0 -1

- 0 i 0 0 “l-10 0 0

i 0 0 0 01 0 0

Defining y° as follows:

y = ;EHUGPVHVUVGVP Euvep = wsyvcp €123 = 1,

<
|

5. 01,23 _ _ =
—l»\’—gVVVV ——WVVV —7/,
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we obtain
0 0 -1 0
-5 _ 0 0 0 -1
r 1 0 0 0

0 -1 0 0

Let us now solve the Einstein equations. With respect to (15) sum-
mation of Einstein equations (4), (5) and (6) leads to the equation

. \ \
<= —K<T3+T§+T§—5T)=7K(T[§’+Tf). (18)
T

If the right hand side of (18) is the function of ©(7) = a(#)b(t)c(?), this
equation takes the form
T+ d(r) =0, (19)

which possesses exact solutions for arbitrary function d(z). Note that the
assumption of the right hand side of (18) to be the function of 7 is not a
general one, though it is always a function of ¢ for the space-independent
field functions. But as will be shown later, in the particular case considered
here, the r.h.s. of (18) is a function of r. Given the explicit form of Liye,
from (18) one can find concrete function 7(¢) = abc. Once the value of 7 is
obtained, one can get expressions for components V, (1), a = 1,2,3,4. Let
us express «, b, ¢ through 7. For this we notice that subtraction of Einstein
equations (4)—(5) leads to the equation

a b ac be dfa b\ (a b\fa b ¢
a_b+ac_bc_dl<a_b>+<a_b><a+b+c>_0' (20)

Equation (20) possesses the solution

dt

%= D exp<X1 /—> D1 = const., X = const. (21)
T

Subtracting eqgs. (4)—(6) and (5)—(6) one finds the equations similar to (20),
having solutions

d b d
e Dzexp(Xz/_t>, == D3 exp<X3/_t>, (22)
C T C T

where D>, D3, X2, X3 are integration constants. There is a functional
dependence between the constants Dy, D2, D3, X1, X2, X3:

D, = Dy D3, Xo= X1+ X3
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Using the equations (21) and (22), we rewrite a(?), b(t), c(¢) in the explicit
form:

2X, + X dt
a() = (DiD3)"*¢' exp {g/—}

3 (1)
. X - X d
b(t) = (D; 1D3)1/3‘L'1/3 exp{—%/rﬁ)}
(t) = (D1 D) ”31”3exp{_)ﬁ+—m/i} (23)
3 (1)

Thus the previous system of Einstein equations is completely integrated.
In this process of integration only the first three of the complete system
of Einstein equations have been used. General solutions to these three
second order equations have been obtained. The solutions contain six
arbitrary constants: Dj, D3, X1, X3 and two others, that were obtained
while solving eq. (19). Equation (7) is the consequence of the first three
Einstein equations. To verify the correctness of the obtained solutions,
it is necessary to put a, b, ¢ into (7). It should lead either to identity or
to some additional constraint between the constants. Putting a, b, ¢ from
(23) into (7) one can get the following equality:

202 L K .o 1 = x?2 2
+ =5 X=-"(T) -3T)), X:=X{i+X1X3+X;, (24
T 9t 2

i

w [N

T

that guarantees the correctness of the solutions obtained.

It should be emphasized that we are dealing with a cosmological prob-
lem and our main goal is to investigate the initial and the asymptotic
behavior of the field functions and the metric functions. As one sees, all
these functions are in some functional dependence on r. Therefore in our
further investigation we mainly look for 7z, though in some particular cases
we write down field and metric functions explicitly.

3. ANALYSIS OF THE SOLUTIONS OBTAINED FOR SOME SPECIAL
CHOICE OF INTERACTION LAGRANGIAN

Let us now study the system for some special choice of Lin;. We first
study the solution to the system of field equations with minimal coupling
when the direct interaction between the spinor and scalar fields remains
absent. The reason for obtaining the solution to the self-consistent system
of equations for the fields with minimal coupling is the need to compare
this solution with that for the system of equations for the interacting
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spinor, scalar and gravitational fields that permits us to clarify the role of
interaction terms in the evolution of the cosmological model in question.
In this case from the scalar and spinor field equations one finds ¢ =
C/tand Yy = S = Co/7 with C and Cy being the constants of integration.
Therefore the components of the energy-momentum tensor appear as

me C? 1 2 c?

T(?: 3 Tl :T2:T33= - 5. (25)
T 27 T

Since in (25) Ty is the energy density of free fields, we assume that T is

positively defined. This leads to Co > 0. The inequality Co > 0 will also

be preserved for the system with direct interaction between the fields, as

in this case the correspondence principle should be fulfilled: for A = 0 the

field system with direct interaction turns into that with minimal coupling.
The components of spinor field functions in this case read

Yi2(1) = <c1,2/\/¥) e Va.a(1) = <c3,4/\ﬁ) M (26)

Taking into account (25), from (18) and (24) one gets
tliso = V3kC2/2+ X/31—>0, tlisw ~ V3kmCo 1.

Thus one concludes that the solutions obtained are initially singular and
the space-time is asymptotically isotropic.
Let us now study the case with different kinds of interactions.

Case 1. For the case when Lint = (A/2)¢ uo'*F(I,J) one writes the
scalar field equation as

%(rq}(l +AF)) =0, (27)

with the solution
¢ = C/t(l+ AF). (28)
In this case the first equation of the system (9) now reads

"V)(g*i)w—mwwwgwﬂ: 29)

where D := ¢ o¢0'*S Fr and G := ¢ ¢ *P F;. For the components Y, =
Vo(t), where p = 1,2,3,4, from (29) one deduces the following system of
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equations:

V1+£V1+i(m—D)V1—QV3
Vz+£Vz+i(m—D)Vz—QV4
i+ SV~ in ~ D)Vi + 6V =
m+£m-i(m_D)V4+QV2

I
=

I
=

I
=

I}
o

(30)
Let us now define the equations for

P=i(NVy = s+ hVy =V, V),
R= (Vs + V[ Va+ WV, + V3 Vi),
S=(V N+ W=V, ViV, V). (31)

After a little manipulation one finds

@_2GRO

dt
dR
L4 2m - D) Py + 2GSy =

dt
dPy
— -2 - DR
r (m ) Ro

where So = S, Pp = tP, Ry = tR. From this system one can easily find

I
=

I
=

0, (32)

S()S() + R()R() + Popo =0,
which gives
S*+ R*+ P’ = Az/rz, A = const. (33)

Let us go back to the system of equations (30). It can be written as
follows if one defines W, = 4t Vy:

Wy + i®W, — GW3 = 0, Wy + i®W, — GW;

. . (34)
Wi —i®Ws + Gy = 0, Wi — i®OWs + GW>

where ® = m — D. Defining U(o) = W(t), where o = f Gdt, we rewrite
the foregoing system as

U + i(®/6U - U =0, U, + i(®/ G U, — Uy

) ) 35
Uy -i(@/g)Us + U = 0, U, - i(®/G U + Uy (33)
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where prime () denotes differentiation with respect to 6. One can now
define V, giving the explicit value of Lin:.

Let us consider the case when F = I" = §%". It is clear that in this
case G= 0. From (32) we find

S =Co/r, Co = const. (36)

As in the case considered F depends only on S, from (36) it follows that
D is a functions of 7 = abc. Taking this fact into account, integration of
the system of equations (34) leads to the expressions

V(1) = (C,/\ﬁ) 1 r=12 Vi(n)= (C;/\ﬁ) F? 1=13,4 (37)

where C, and C; are integration constants and Q = f d(t)dt. Putting this
solution into (31) one gets

S=(CI+ G -CF - C/r. (38)

Comparing it with (36) we find Co = C? + C7 — C3 — CZ. In this case from
(18) and (24) we find

(1) liom = 7km Cot> —>00, (D)0~ VX/31 0.

Thus in the case considered, the asymptotical isotropization of the expan-
sion process of initially anisotropic Bianchi type I space-time takes place
without the influence of scalar field. For a detail analysis of this case see
[15].

We study the system when F = J" = P?" which means in the case
considered D = 0. Unfortunately, we have not yet been able to find the
exact solution for the case in question when m # 0. Therefore we consider
the particular case with m = 0. Then from (32) one gets

P(t) = Do/, Do = const. (39)

The system of equations (35) in this case reads

U -0 =0, U, - Us

' , (40)
U;+ U =0, u+u

Differentiating the first equation of system (40) and taking into account
the third one we get
U'+ U =0, (41)



1110 Saha and Shikin

which leads to the solution

U = Die'° +iDse '°, Us = iD1e'” + Dse” '°. (42)
Analogically for U> and Us one gets
Ur = D2e'° + iDse '°, Us = iD2e'° + Dye '°, (43)

where D; are the constants of integration. Finally, we can write

Vi = (1/4[t) (D1€'° + iDse” '9), Vo = (1/4]t) (D2¢' + iDye” '),

_ _ _ T (49)
Vi = (1/\];)(1'D1e'6 + Dse” '0), V= (1/\F)(i02e"’ + Dye” ).
Putting (44) into (31) one finds
P =2(D}+ D3 -D3-D})/r. (45)

Comparison of (39) with (45) gives Do = 2(D? + D3 — D? - D). Let us
now estimate 7. From (18) and (24) we obtain

Tl = ([\]ET)(éJF /210Y D |~ VX/31,

i.e. the solutions obtained are initially singular and the space-time is
asymptotically isotropic if & < 1 and anisotropic if &= 1.
Let us now study the case when F = F(I, J). Choosing

F=F(K+), Ki=I+J=1=-I4, K. =1-J=1Ir, (46)
in case of massless spinor field (m = 0) we find
D= ¢ p"SFk, , G=*o¢ .0 "SFk, , Fx. = dF/dK + .
Putting these into (32) we find
Se+ P} =D+ . (47)

Choosing F = K% from (18) and (24) one comes to the conclusion similar
to that of previous case [F = F(J)].

Case 2. In this case the scalar and spinor field equations read

%[r(m‘ +297°Y) 1= 0, (48)
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iy°<@+i)t//—mt//+my°t//=o,
ot 2t

0 T (49)
I 170 " -7 0
l<&+'%>WY'+mw—kw%f—0-

Using the spinor field equations one finds Yy’ = Ci/7 and S = Yy =
Co/ 7, with C; and Cy being the constant of integration. Putting it in the
scalar field equation one obtains

¢ =(C-1C1)/7, C = const. (50)

With all these taken into account, the spinor field equation can be written

as
yo<@+ L)l//Jriml//_Myow: N 1)
ot 2t T

with the solution

Yi2(1) = D\F exp {—i{mt—?x(C —xcl)/ T ldtH,
D34 . -1
V3.4(t) = T exp {z{mt+ A(C —kC])/ T dt}}

The components of energy-momentum tensor in this case read

(52)

o
|
L]
T
o

T1:T2_

where C:= (C* = A2C?)/2 and 0 < & < 1. Taking this into account, from
(18) and (24) one gets

tliso ~ VX/3 = 3k Ct —>0, Tl = V3kmCo £,

which means the solution obtained is initially singular and the isotropiza-
tion process of the initially anisotropic universe takes place as ¢ —»00.

Case 3. In this case the scalar and spinor field equations read

g[r((p‘ + gy’ Y1 =0, (53)
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i’ <@ + i) v —my+ ingy’y =0,
ot 2t

o (54)
: T )7.0 v ST 0.5

—+ +my -1 =0.

l<az 2T>WV my —rpyyy

We consider the massless spinor field (m = 0). In this case from the spinor
field equations one finds iyy°y° ¥ = C2/z, with C, being the constant of

integration. Putting it in the scalar field equation one obtains

¢ =(C -rC2)/m, C = const. (55)
With all these taken into account, the spinor field equation can be written
* 0 C C
0 T l)\, - 7\, 2 0 5
—+ - =0. 56
4 <6t 21) 4 T vy (56)
Defining W (t) = 4 [t ¥(¢) one writes the foregoing equations as
1 —Ap W3 =0, Wz—kq}W4=0,
. ' . (57)
Wi — Ao W1 =0, Wi —X¢W3=0.

Differentiating the fisrt equation of the foregoing system one gets
. r . 1
Wi+ < W - [M(C - AC)P =5 W = 0, (58)
T T
where the third equation of the system as well as ¢ has been taken into
account. The first integral of this equation reads

Wi = MC - ACo) Wi, (59)

with the constant of integration taken to be trivial. Procceding analogi-
cally one writes the solution of the system as

Wis = D+ exp[A(C — xcz)/f' ar,

(60)

Wia = D_ exp[A(C —xcz)/f' V1]

The components of energy-momentum tensor in this case read
m Cy C €0
+

<
T ‘L'2 ‘L'1+5

(C —AC2)?  &é&
- 272 e
where C:= (C? = A%C?)/2 and 0 < € < 1. From (18) and (24) in this case
one finds

tliso ~ VX/3 = 3xCt —>0, Tl = V3kmCo £,

which means the solution obtained is initially singular and the isotropiza-
tion process of the initially anisotropic universe takes place as ¢ —»00.

Ty =
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4. CONCLUSIONS

Exact solutions to the self-consistent system of spinor and scalar field
equations have been obtained for the BI space-time filled with perfect fluid.
It is shown that the solutions obtained are initially singular and the space-
time is basically asymptotically isotropic independent of the choice of in-
teracting term in the Lagrangian, though there are some special cases that
occur initially regular (with breaking energy-dominent condition; Ref. 15)
solutions and leave the space-time asymptotically anisotropic.
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