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We consider a nonlinear spinor field in general relativity. The nonlinearity
in the spinor field Lagrangian is given by an arbitrary function of the invari-
ants generated from the bilinear spinor forms S = 9t and P = ipy5. Exact
plane-symmetric solutions to the gravitational and spinor field equations have
been obtained. Role of gravitational field in the formation of the field con-
figurations with limited total energy, spin and charge has been investigated.
Influence of the change of the sign of energy density of the spinor field on the
properties of the configurations obtained has been examined.
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I. INTRODUCTION

Nonlinear selfcouplings of the spinor fields may arise as a consequence of the geometrical
structure of the space-time and, more precisely, because of the existence of torsion. As soon
as 1938, Ivanenko [1-3] showed that a relativistic theory imposes in some cases a fourth
order selfcoupling. In 1950 Weyl [4] proved that, if the affine and the metric properties of
the space-time are taken as independent, the spinor field obeys either a linear equation in a
space with torsion or a nonlinear one in a Riemannian space. As the selfaction is of spin-spin
type, it allows the assignment of a dynamical role to the spin and offers a clue about the
origin of the nonlinearities. This question was further clarified in some important papers by
Utiyama, Kibble and Sciama [5-7] In the simplest scheme the selfaction is of pseudovector
type, but it can be shown that one can also get a scalar coupling [8]. An excellent review
of the problem may be found in [9,10].

Nonlinear quantum Dirac fields were used by Heisenberg [11,12] in his ambitious unified
theory of elementary particles. They are presently the object of renewed interest since the
widely known paper by Gross and Neveu [13]

Nonlinear spinor field (NLSF) in external cosmological gravitational field was first studied
by Shikin in 1991 [14]. This study was extended by us for the more general case where we
consider the nonlinear term as an arbitrary function of all possible invariants generated from
spinor bilinear forms. In that paper we also studied the possibility of elimination of initial
singularity especially for the Kasner universe [15]. For few years we studied the behavior of
self-consistent NLSF in a BI universe [16,17] both in presence of perfect fluid and without
it that was followed by the Refs. [18-20], where we studied the self-consistent system of
interacting spinor and scalar fields. A detail review of nonlinear spinor field in BI universe
can be found in [21]. In a series of paper we also thoroughly studied the interacting scalar
and electromagnetic fields in spherically and cylindrically space-time [22-26]. The purpose
of the paper is to study the role of slef gravitation in the formation of configurations with
localized energy density and limited total energy, spin and charge of the spinor field.

II. FUNDAMENTAL EQUATIONS AND GENERAL SOLUTIONS

The Lagrangian of the nonlinear spinor and gravitational fields can be written in the
form

R
L= o + Ly, (2.1)
with
ir- _ _
Loy = 5 |¥7"Vuth = V" | —maptp + L. (2.2)

Here R is the scalar curvature and « is the Einstein’s gravitational constant. The nonlinear
term Ly in spinor Lagrangian describes the self-interaction of a spinor field and can be
presented as some arbitrary functions of invariants generated from the real bilinear forms of
a spinor field having the form

S =y, P =iy, ot = (Pyp), AF = (PP°yy), T = (o),
where o = (i/2)[v*y" — +*~*]. Invariants, corresponding to the bilinear forms, look like
I = 827 J = P2a I’U = U“ UN = (&7“1/’) guu(ﬁ’}’ulﬁ)a
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Iy = Ay AY = (0°9Y) g (YY), I =Tw T = (V0™ vV) guagup(ho® ).

According to the Pauli-Fierz theorem, [28] among the five invariants only I and J are inde-
pendent as all other can be expressed by them: I, = —I4 = I + J and Ir = I — J. Therefore
we choose the nonlinear term Ly = F(I,J), thus claiming that it describes the nonlinearity
in the most general of its form.

The static plane-symmetric metric we choose in the form

ds® = 2P dt? — e**dx? — e**(dy? + d2?), (2.3)

where the metric functions p, o, 3 depend on the spatial variable x only and obey the coor-
dinate condition

a=28+p. (2.4)

Variation of (2.1) with respect to spinor field v (¢) gives nonlinear spinor field equations

MV, — B + Gy Y = 0, (2.5a)
iV, + @ —iGYy® = 0, (2.5b)
with OF OF

Varying (2.1) with respect to metric tensor g,, we obtain the Einstein’s field equation

1
R — JOLR = T} (2.6)

which in view of (2.3) and (2.4) is written as follows

G =e (28 —2pB3 — %) = —KTY (2.7a)
Gi=e?*(2pB + ) = —&T} (2.7b)

Gy =e (B +p—2p8 — %) = —KT; (2.7¢)
Gy=Gs5, T3 =T, (2.7d)

Here prime denotes differentiation with respect to x and T# is the energy-momentum tensor
of the spinor field

T? = %g”“ (%Nmﬁ + 97, V) — Vuhy, i — VM’W) — 0 Lsp (2:8)

where L, with respect to (2.5) takes the form

1,-0F OF
In (2.5) and (2.8) V,, denotes the covariant derivative of spinor, having the form [29,30]
oy
V= i L, (2.10)
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where I',(z) are spinor affine connection matrices.  matrices in the above equations are

connected with the flat space-time Dirac matrices 4 in the following way

9w (2) = € (2)ey(@)ap, V(@) = €),(2)a,

(2.11)

where 7y, = diag(1, —1,—1,—1) and e}, is a set of tetrad 4-vectors. Using (2.11) we obtain

From
L) = 95w (@) (Oucbef — T2 )17
one finds
Fo=—%7°7162%, I, =0, F2=%72716"’“’)6, F3=%7371e‘”+ﬂ>6.

Flat space-time matrices 7 we will choose in the form, given in [31]:

100 0 0 0 01
o010 0 g 0 010
00—-1 0 0 —100
00 0 —1 ~1.0 00
000 —i 0010
L_| 000 o 000 —1
040 0 ~100 0
—i 00 0 0100

Defining 7° as follows,

’[: v _ 0o
V" = =1 Buwes? V'V Buop = V=0emep €012 =1,
VP = —iv=gr*y' = —i°7' 7 =

we obtain
0 0 -1 0
’75 _ 0O 0 0 -1
-1 0 0 O
0 -1 0 O

o7

(2.12)

(2.13)

(2.14)



We will consider the spinor field to be the function of the spatial coordinate z only
[ = ¢(z)]. Using (2.10), (2.12) and (2.14) we find

YT, = —=e “a7'. (2.15)
Then taking into account (2.15) we rewrite the spinor field equation (2.5a) as

(0 :
o (8_35 + %)¢ + ie*®1p + 2G5 = 0. (2.16)

Further setting V (z) = e®/?1(x) with

Vi(z)

Va(z

V= |

Vs(z)

Vi(z)
for the components of spinor field from (2.16) one deduces the following system of equations:
Vi +ie®®V; — e*GV3 = 0, (2.17a)
Vi 4+ ie*®V, — e?GVy = 0, (2.17b)
Vo —ie®®V3 + e*GV1 = 0, (2.17¢c)
Vi —ie®®Vy + e*GV, = 0. (2.17d)

As one sees, the equation (2.17) gives following relations

VE = Vg — Vi + V2 = const. (2.18)

Using the solutions obtained one can write the components of spinor current:
G* = Pytp. (2.19)

Taking into account that ¢ = 3%, where ' = (7, ¥3, ¥3, ¥}) and o; = e™*2V;, j =
1,2, 3,4 for the components of spinor current we write

J = [ViVi + Vo Vo + ViVs + Vi Vile (@F0), (2.20a)
it =i Va+ Vo Vs + ViVo + Vi Vile (2.20Db)
] = —i[VyVi— Vo' Vs + ViVa — Vi Vile @A) (2.20c)

= [ViVa =V Vi + Vi Vi — ViVale (49, (2.20d)

Since we consider the field configuration to be static one, the spatial components of spinor
current vanishes, i.e.,

jt=0, j*=0, j°=0. (2.21)



This supposition gives additional relation between the constant of integration. The compo-
nent j° defines the charge density of spinor field that has the following chronometric-invariant
form

o= (jo-5°)"". (2.22)

The total charge of spinor field is defined as

Q= / 9\/—79dx (2.23)

(in (2.23) integrations by y and z are performed in the limit (0,1)).
Let us consider the spin tensor [31]

1-
SHvse — Z,(/){,.YEO.IW + O-NV’YE}QZJ' (224)

We write the components S*° (i,k = 1,2,3), defining the spatial density of spin vector
explicitly. From (2.24) we have

g 1_ 3 3 1_ .
5§90 = 2{1°0Y + 0"7° Yy = S0y (2.25)

that defines the projection of spin vector on k axis. Here 1, j, k takes the value 1, 2, 3 and
1 # j # k. Thus, for the projection of spin vectors on the X, Y and Z axis we find

S0 = ViVa+ VEVi+ V3V + Vi Vale @207, (2.26a)
SO = [ViVa = VyVi+ Vi Vi = ViVale 22 P07, (2.26b)
10 = [ViVi = Vi Vo Vg Vs = Vi ViJe A, (2:26¢)

The chronometric invariant spin tensor takes the form
S0 = (840572, (2.27)

and the projection of the spin vector on k axis is defined by

Sy = / SH0\ [ —3gda. (2.28)

(In (2.28), as well as in (2.23) integrations by y and z are performed in the limit (0, 1)).
From (2.5) one can write the equations for S = ¢, P =itpy*y) and A = Y7554

S+ aS+2e*GA=0, (2.29a)
P +aP+2e*®A=0, (2.29b)
A+ aA+2e*P P +2e*GS = 0. (2.29¢)

Note that, A in (2.29) is indeed the pseudo-vector A'. Here for simplicity, we use the notation
A. From (2.29) immediately follows
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S?+ P? — A* = Cye™®, (Cy = const. (2.30)
Let us now solve the Einstein equations. To do it we first write the expression for the

components of the energy-momentum tensor explicitly. Using the property of flat space-time
Dirac matrices and the explicit form of covariant derivative V,, for the spinor field one finds

T'=mS — F(I,J), Ty=T;=T;=DS+GP—F(I, J). (2.31)

In view of TQ = T, subtraction of Einstein equations (2.7a) and (2.7c) leads to the
equation

p—v=0, (2.32)
with the solution
B(z) = ~(z) + Baz, (2.33)

where B is the integration constant. The second constant has been chosen to be trivial, since
it acts on the scale of Y and Z axes only. In account of (2.32) from (2.4) one obtains

p=3z0, y=3a (2.34)

Solutions to the equation (2.34) together with (2.4) and (2.33) lead to the following expression
for f(z) and y(z)

B(z) = %(a(z) +BX), ~(z)= %(a(m) _ 9Ba). (2.35)

Equation (2.7b), being the first integral of (2.7a) and (2.7c), is a first order differential

equation. Inserting § and 7 from (2.35) and T} in account of (2.31) into (2.7b) for o one
gets

o’ — B? = —3ke™ [mS — F(I,J)]. (2.36)
AS one sees from (2.29) and (2.30), the invariants are the functions of «, so is the right hand

side of (2.36), hence can be solved in quadrature. In the sections to follow, we analyze the
equation (2.36) in details given the concrete form of nonlinear term in spinor Lagrangian.

ITII. ANALYSIS OF THE RESULTS

In this section we shall analyze the general results obtained in the previous section for
concrete nonlinear term.

A. Case with linear spinor field

Let us first consider the linear spinor field. By doing so we can compare the results
obtained with those for nonlinear spinor one, hence clarify the role of nonlinearity of the
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fields in question in the formation of regular localized solutions such as static solitary wave
or solitons [33,34].
In this case for the linear spinor field we have

T,'=mS, T,'=T,"=T,*=0. (3.1)

As one can easily verify, for the linear spinor field the equation (2.29a) results

S = Coe_a. (32)

Taking this relation into account and the fact that a(z) = =% from (2.36) we write

ds
/ — g, (3.3)
\/3252 — 3kmCES
with the solution
M? 27 2 2

S(z) = —5cosh”(Hz), M*=3xmCy, H = B/2. (3.4)

= B
Further we define the functions 1);. Taking into account that in this case
F(S) = mCy/SVB2S? — M28,
for N; 5 in view of (3.4) we find
Ny o(z) = £(2B/3kC)tanh(Hz) + R, 5.
We can then finally write
Y12(x) = a1 2 E(x)cosh[f(z) + Ry ],

(3.5)
¢3,4($) = ag,lE(x)sinh[f(a:) + Rg’l],
where E(z) = \/3kmCy/B2cosh(Hz) and f(z) = (2B/3kmCp)tanh(Hz).
For the total charge () of the system in this case we have
T 4B - CoB? 32
_ 9,2 0 2Bz /3
Q=2a _Zo COSh[3/~cCO tanh(Hz) + 2R] <—M2cosh2(1:1x)) e dx < o0. (3.6)

It can be shown that, in case of linear spinor field both charge and spin of spinor field are
limited.

B. Nonlinear spinor field

Case I: F = F(I). Let us consider the case when the nonlinear term in spinor field
Lagrangian is a function of I (S) only, that leads to G = 0. From (2.29) as in case of linear
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spinor field we find S = Che~*®). Proceeding as in foregoing subsection, for S from (2.36)
we write

% = +\/B25* — 353 [ms — F ()] (3.7)

with the solution

/ ds
\/3252 — 3kC3[mS — F(9)]

= £(z + o). (3-8)

Given the concrete form of the functions F'(S) from (3.8) yields S, hence «, £, p.
Let us now go back to spinor field equations (2.17). Setting Vj(z) = U;(S), j = 1,2,3,4
and taking into account that in this case G = 0, for U;(S) we obtain

dU,

—g TIFEU =0, (3.9a)
% +iF(S)U, =0, (3.9b)
‘;—% — iF(S)Us =0, (3.9¢)
‘;—(gl —iF(S)Us = 0, (3.9d)

with F(S) = ®L(S)Cy/S. Differentiating (3.9a) with respect to S and inserting (3.9d) into
it for U, we find

d*Uy 1 dF dU,

—_——— — 2 —_—
is? " Fdsas U (3.10)
that transforms to
1 d,1dU,
— (=2 U, = A1
]-'dS(]-' dS) Ve=10, (3.11)
with the first integral
du.
d—; =+ U +C,-F(S), Cy=const. (3.12)
For C; = a? > 0 from (3.12) we obtain
Uy(S) = aisinhNy(S), Ny = :I:/]:(S)dS—i- Ry, R; = const. (3.13)

whereas, for C; = —b7 < 0 from (3.12) we obtain
U4(S) = aycoshN,(S) (3.14)
Inserting (3.13) and (3.14) into (3.9d) one finds
U\(S) = iarcoshN, (S), Ui(S) = ibisinh Ny (S). (3.15)
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Analogically, for U and Us we obtain

Us(S) = assinhNy(S), Us(S) = becoshNy(S). (3.16)
and

Us(S) = iagcoshNo(S), Us(S) = ibgsinhNo(S). (3.17)

where Ny = + [ F(S)dS + Ry and as, by and Ry are the integration constants. Thus we find
the general solutions to the spinor field equations (3.9) containing four arbitrary constants.
Using the solutions obtained, from (2.20) we find the components of spinor current

7% = [a®cosh(2NV1(S)) + a2cosh(2N,(S))]e~ @+, (3.18a)
jt=0, (3.18b)
j% = —[a?sinh(2N,(S)) — a2sinh(2Ny(S))]e~ @), (3.18c¢)
i =0. (3.18d)

The supposition (2.21) leads to the following relations between the constants: a; = ag = a
and Ry = Ry = R, since N1(S) = Ny(S) = N(S). The chronometric-invariant form of the
charge density and the total charge of spinor field are

0 = 2a*cosh(2N(S))e™, (3.19)
Q = 2a? / cosh(2N(S))e* Pdzx. (3.20)

From (2.25) we find
S0 =0, S0 =0, 5% =q%cosh(2N(S))e **. (3.21)

Thus, the only nontrivial component of the spin tensor is $?30 that defines the projection of
spin vector on X axis. From (2.27) we write the chronometric invariant spin tensor

S0 = a2cosh(2N(S))e @, (3.22)
and the projection of the spin vector on X axis
S = a? / cosh(2N(S))e* ?dzx. (3.23)

(in (2.28), as well as in (2.23) integrations by y and z are performed in the limit (0, 1)). Note
that the integrants both in (3.20) and (3.23) coincide.
Let us now analyze the result obtained choosing the nonlinear term in the form F'(I) =

AS™ = A[™? with n > 2 and X is the parameter of nonlinearity. For n = 2 we have
Heisenberg-Ivanenko type nonlinear spinor field equation [35]

ie 7 (0, + %a)w —map + 2A(YY)y = 0. (3.24)
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Setting F' = S? into (3.8) we come to the expression for S that is similar to that for linear
case with

B? - H? = B% + 3k\C,,. (3.25)

Let us write the functions 9; explicitly. In this case we have

F(S) = m(Cy — 2)\S)/S\/H2S2 — M28,

NLQ(.T) = (2H1/3/$Co)tanh(1:11:r) — QAC():E + Rl’g, Hl = H1/2
We can then finally write

and

3KTmCO(:osh(lfllx)costh,g (x),

1

¢1,2 (33) = ia1,2

(3.26)

V3kmC =
Y3.4() = iag; %cosb(Hlx)costh(m).
1

The energy-density distribution of the spinor field in the case considered in a unit invariant
volume is

3kmC _
T(?(_3g)1/2 _ )\Cg[ K';InQ OcoshQ(Hlac)] 1/3 eZBw/S_ (327)

1

From (3.27) follows that, the energy density of the system is not localized and the Heisenberg-
Ivanenko equation does not possess soliton-like solutions [36].
In case of n > 2, the energy density of the system in question is

T) = AMn —1)S™. (3.28)
The equation (3.28) shows that the regular solutions with localized energy density exists

iff S = 19 is a continuous and limited function and lim S () — 0. Inserting F(I) =

AS™, n > 2into (3.8) we find the condition, when S possesses the properties mentioned
above:

ds
/ V/B2S? — 3kC3(mS — AS™)

=z. (3.29)

As one sees from (3.29), for m # 0 at no value of x S becomes trivial, since as S — 0,
the denominator of the integrant beginning from some finite value of S becomes imaginary.
It means that for S(z) to be trivial at spatial infinity (r — o0), it is necessary to choose
massless spinor field setting m = 0 in (3.29). Note that, in the unified nonlinear spinor
theory of Heisenberg, the massive term is absent, and according to Heisenberg, the particle
mass should be obtained as a result of quantization of spinor prematter [37]. It should be
emphasized that in the nonlinear generalization of classical field equations, the massive term
does not possess the significance that it possesses in the linear one, as it by no means defines
total energy (or mass) of the nonlinear field system [38]. Thus without losing the generality
we can consider massless spinor field putting m = 0. Note that in the sections to follow
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where we consider the nonlinear spinor term as F' = P" or F' = (K4)" with Ky = (I + J),
we will study the massless spinor field only.
From (3.29) for m =0, A > 0 and n > 2 for S(z) we obtain

]2/(%2)’ ¢ = cosh((n — 2) Hy] (3.30)

S(x) = [~H1/\/36AC3(C2 - 1)

from which follows that li_I)I(l) |S(z)| = oo. It means that 79 (z) is not bounded at z = 0 and

the initial system of equations does not possess solutions with localized energy density.
If we set in (3.29) m =0, A = —A%2 < 0 and n > 2, then for S we obtain

S(a) = [H1/y/367C3¢]) "7 (3.31)

It is seen from (3.31) that S(z) has maximum at x = 0 and lim S(z) — 0. Taking into

T—Eo0
account the energy density

T) = —A*(n — 1)S", (3.32)
of the case in question, one can show that for B > 0 and n > 7/3, the spinor field energy-

density is localized in the space along x-axis and the total field energy (if integration limits
along y and z axes are finit) is bound, i.e.,

|E| = | / Ty\/—3gdz| < .

The components of spinor field in this case have the form

Y12(x) = ia1 2 E(x)cosh Ny o(x),

(3.33)
P34(z) = a1 E(z)sinh Ny 3 (),
where
Pla) = (100 [/ 3r0G3]
and

27’LH1\/<2 —1
 3kCo(n — 2)¢

For the solutions obtained we write the chronometric-invariant charge density of the
spinor field p:

Nl,g(x) = + RLQ.

— = cosh{ VS - St B
olw) = g -eos 3kCo(n — 2)C 3kA2C2C?

As one sees from (3.34), the charge density is localized, since 1_1>Iin o(z) — 0. Nevertheless,

the charge density of the spinor field, coming to unit invariant volume g/—3g, is not localized:
0\/—3g = 2acosh[2N (z)]e*™" = 2a%cosh[2N (2)](Cy/S)*/3e?B2/3. (3.35)
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It leads to the fact that the total charge of the spinor field is not bounded as well. As far as
the expression for chronometric-invariant tensor of spin (3.22) coincides with that of p(z)/2,
the conclusions made for p(z) and @ will be valid for the spin tensor SCQ}?’O and projection of
spin vector on X axis 51, i.e., Sf}::”o is localized and S; is unlimited.

The solution obtained describes the configuration of nonlinear spinor field with localized
energy density but with the metric that is singular at spatial infinity, as in this case

3kAC2( N 2/(n—2)
2a 0
¢ = (Co/S)? = C2{ 2 } 00 (3.36)
Let us consider the massless spinor field with
F = —A%S"", v = constant > 0. (3.37)

In this case the energy density of the nonlinear spinor field takes the form
Ty = A*(v+1)S™ (3.38)
For S in this case we get

as

/ —z (3.39)
\/B2S? — 3kC3A25
with the solution
3kA2C? 11/(v+2) _
S(z) = [T%f] , (1= cosh[(v + 2)Hiz]. (3.40)
1

For energy density in this case we have

H? ]u/(u+2)

(3.41)

It follows from (3.41) that the contribution of the spinor field in the energy density is local-

ized,
The energy density distribution of the field system, coming to unit invariant volume is

e(z) = Tgy/ -39 = [A2(l/ + 1)5"’] e
_Hiv+1) ! Hy VO e
 3k(? \3kCEAE '

(3.42)

As one sees from (3.42) £(z) is a localized function, i.e., lim e(z) — 0,if H > 2B. In this

case the total energy is also finite.
The components of spinor field in this case have the form

1[11,2(1‘) = Z'CLLQE(.’L')COS}INLQ(.I),
(3.43)
w3,4(.’l?) = GQ,1E(IE)SiHhN2,1(£E),
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where

kA2C3  11/(+2
Bw) = 1o ra]

and

The chronometric-invariant charge density of the spinor field coming to unit invariant
volume with a; = ay = @ and N; = N, reads

0 —39 = 2(L2COS}1[2]\[(.%)]606_’y = (344)
AH v\ /(2 =1 H2 )
— 2a2(00)2/3COSh{2R— 1 Cl }{ 21 2}2/3( +2)eQBz/3.
3kCh(v +2)( ? L3kCFA2(T

It follows from (3.44) that p\/—3¢ is a localized function and the total charge @ is finite.
The spin of spinor field is limited as well.
It should be emphasized that in a flat space-time where « = # = p0 we have

Yu(x) = Cpe™® + Coe ™" 1 =1,2,3,4, (3.45)

with M = m — F' = mCj. The integration constants in (3.45) are connected with each
other as U5, = —i1Cy, (39 = i1Cq, Cy = —iChy, Cio = iCiy. In this case S = Yy =
4(C11C19 + C31Cy) and F' = Cy. Hence follows that the nonlinear spinor field not not
possess soliton-like solutions in a flat space-time.

Case II: F = F(J). Here we consider the massless spinor field with the nonlinearity
F = F(J). In this case from (2.29b) immediately follows

P = Dye*®) Dy = const. (3.46)
From (2.17) we now have
Vy—e"GV3 =0, (3.47a)
Vy — e*GVy = 0, (3.47b)
Vo +eGVi =0, (3.47¢)
V,+e*GVy =0, (3.47d)

with the solutions

Vi = Cysinh[—A + C5] (3.48a)
Vo = Cicosh[—A + 5] (3.48Db)
V3 = Cssinh[A + Cy] (3.48c)
Vi = Cscosh[A + C4] (3.48d)

with C1, Cs, C3 and C5 being the constant of integration and A = [e*Gdx.
Using the solutions obtained, from (2.20) we now find the components of spinor current
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7° = [C?%cosh[2(—A + Cy)] + Ccosh[2(A + Cy)]|e @+, (3.49a)
§' = [2C,C3sinh(Cy + Cy)]e™2e, (3.49b)
=0, (3.49c¢)
3% = —[20,Cscosh[2A — Oy + Cy)]e (@), (3.49d)

The supposition (2.21) that the spatial components of the spinor current are trivial leads at
least one of the constants (Cy, C3) to be zero. Let us set C; = 0. The chronometric-invariant
form of the charge density and the total charge of spinor field are

0= C2cosh[2(A + Cy)]e™?, (3.50)
Q=C: / cosh[2(A + Cy)]e* ?dz. (3.51)

From (2.25) we find
§120 = _(C2e=(atbte) G310 = §20 = C2sinh[2(A + Cy)]e 2. (3.52)

Thus, in this case we have two nontrivial components of the spin tensor $?*° and S'29. those
define the projections of spin vector on X and Z axis, respectively. From (2.27) we write
the chronometric invariant spin tensor

5230 = C2sinh[2(A + Cy)]e™, (3.53a)
S0 = 2 (3.53b)

and the projections of the spin vector on X and Z axes are

o0

S, =C2 / sinh[2(A + Cy)]e**dz, (3.54a)
Sz = C3 / e Pdzx. (3.54b)

Note that the equation for «, therefore for P will be the same as in previous case (i.e.,
for S with m = 0) with all the conclusions made there. So we will not proceed further with
this. We also note that for FF = K, with Ky = I 4+ J for massless spinor field we obtain
K., = Kye 2 and the conclusions made above will be remain valid.

IV. CONCLUSION

A nonlinear spinor field has been thoroughly studied within the scope of general relativity
given by a plane-symmetric space-time. Energy density and the total energy of the linear
spinor field are not bounded and the system does not possess real physical infinity, hence
the configuration is not observable for an infinitely remote observer, since in this case
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i i AC H
Rz/,/gud:vz /ead:rz ]\402 < 0. (4.1)

—0o0

But introduction of nonliear spinor term into the system eliminates these shortcomings and
we have the configuration with finite energy density and limited total energy which is also
observable as in this case the system possesses real physical infinity. Thus we see, spinor
field nonlinearity is crucial for the regular solutions with localized energy density.
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