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The gauge symmetry inherent in the concept of manifold has been discussed. Within the
scope of this symmetry the linear connection or displacement field can be considered as a
natural gauge field on the manifold. The gauge-invariant equations for the displacement
field have been derived. It has been shown that the energy–momentum tensor of this
field conserves and hence the displacement field can be treated as one that transports
energy and gravitates. To show the existence of the solutions of the field equations, we
have derived the general form of the displacement field in Minkowski space–time which
is invariant under rotation and space and time inversion. With this ansatz we found
spherically-symmetric solutions of the equations in question.
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1. Introduction

According to the modern standpoint, space–time theory is the one that possesses a

mathematical representation whose elements are a smooth four-dimensional mani-

foldM and geometric objects defined on this manifold. The geometry on the man-

ifold is defined by metric and linear connection. In general, the linear connection

is in no way related to the metric since these concepts define different geometric

operations on the manifoldM. The metric on the manifold defines the length of a

curve while the linear connection defines parallel transport (displacement) of vectors

along arbitrary path on M. It should be emphasized that soon after the creation

of General Relativity, Eddington put forward the idea to derive all theories on the

basis of parallel displacement only.1 Here the metric and the linear connection as

a totally independent geometric objects by structure will be considered as funda-

mental fields. It is our principal assumption. According to the fundamental idea

of Einstein, metric corresponds to gravitational field while all other fields, being

the source of gravitational one, carry energy. Hence and from the above assump-

tion it follows that, like the electromagnetic field, the field of parallel displacement
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carries energy and appears to be the source of gravitational field, possessing geo-

metric meaning. Thus, our aim is to derive natural equations for the field of parallel

displacement and obtain the relevant conserving energy–momentum tensor, i.e. to

show that within the framework of the canonical Einstein theory of gravity the

linear connection can be considered on the same level with electromagnetic one.

2. Symmetry Group

There are two symmetry groups closely connected with the concept of manifold.

One of them is a group of transformations of the manifold M itself, the manifold

mapping group, and the other is a group of transformations acting in tangent

vector spaces Tp(M). The latter concept is clearly expounded in the treatise by

Misner and Thorne and Wheeler.2 The well-known manifold mapping group3 is

often called the group of general transformations of coordinates or the group of

diffeomorphisms. The physical meaning of the manifold mapping group is that it is

a group of symmetry of gravitational interactions in Einstein theory of gravity. A

systematic and thorough consideration of the questions connected with space–time

symmetry of General Relativity may be found in Ref. 3. We emphasize only that

the diffeomorphism group is evidently the widest group of space–time symmetry.

Let the given vector field V i undergo infinitesimal parallel displacement, then

dV i + Γ i
jkV

k dxj = 0 , (2.1)

where Γ i
jk are the components of linear connection. Vector fields form linear vector

space L. The isomorphic mapping of the vector space L onto itself is defined by

the tensor fields of type (1, 1). Let Sij be the components of a tensor field S of type

(1, 1) that satisfies the condition det(Sij) 6= 0 only. In this case, there exists a tensor

field S−1 with components T ij such that Sik T
k
j = δij . Now a tensor field S can be

regarded as an isomorphism of L onto itself

V̄ i(x) = Sij(x)V
j(x) . (2.2)

Since there is no objective reason to distinguish vector fields V̄ i(x) and V j(x), we

want to define the law of parallel displacement for the vector V̄ i induced by (2.1)

and (2.2). It can be shown that if the vector V i undergoes parallel displacement

(2.1) then V̄ i, defined by (2.2), undergoes parallel displacement

dV̄ i + Γ̄ i
jkV̄

k dxj = 0 , (2.3)

where

Γ̄ i
jk = SilΓ

l
jmT

m
k + Sil∂jT

l
k , (2.4)

and T ij are components of the field S−1 inverse to S. In what follows we will con-

sider the transformation group (2.2) as the natural group of gauge transformation

inherent in the manifoldM. The transformation (2.4) gives the realization of gauge

group on the fields of parallel displacement and in that sense Γ i
jk are analogical to
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the potentials of electromagnetic fields. Now our aim is to find equation for Γ that

is invariant under (2.4). From (2.4) it follows that if Γ i
jk are the components of

linear connection, then Γ̄ i
jk are also the components of linear connection, i.e. under

coordinate transformation Γ̄ transforms in accordance with the same well-known

laws as does Γ itself.3

3. Gauge-Invariant Equations

As it is noted above, the diffeomorphism group is responsible for gravitational inter-

actions, and thus, the gauge group under consideration is a symmetry group of new

interactions. To simplify computations and to write equations in a symmetrical and

manifestly gauge-invariant form, we introduce the notion of the gauge derivative.

We will say that a tensor field T of type (m,n) is of gauge type (p, q) if under the

transformations of gauge group there is the correspondence

T ⇒ T̄ = S · · ·S︸ ︷︷ ︸
p

TS−1 · · ·S−1︸ ︷︷ ︸
q

,

where

0 ≤ p≤ m and 0 ≤ q≤ n .

The Einstein potentials gij being a tensor field of type (0, 2) is to be assigned the

gauge type (0, 0) because the Einstein equations are not invariant with respect to

the transformations ḡij = gklT
k
i T

l
j . Let the vector field V i has a gauge type (1, 0).

We define gauge derivative as

DjV
k = ∂jV

k + Γ k
jlV

l .

Now, if the equality

D̄j V̄
k = ∂j V̄

k + Γ̄ k
jl V̄

l

holds, then from (2.2) and (2.4), it follows that

D̄iV̄
j = SjkDiV

k .

Since

DiDjV
k = ∂i(DjV

k) + Γ k
il (DjV

l) ,

DiDjV
k is not a tensor field, nevertheless, the commutator of gauge derivatives are

tensor fields, as

[Di, Dj ]V
k = B k

ijl V
l , (3.1)

where

B k
ijl = ∂iΓ

k
jl − ∂jΓ k

il + Γ k
imΓ m

jl − Γ k
jmΓ m

il , (3.2)
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is the Riemann tensor of curvature of connection Γ. Note that B k
ijl is a tensor field

of type (1, 3) and gauge type (1, 1). In what follows, for brevity, we use matrix

notation, assuming that

Γi = (Γ k
ij ), Bij = (B k

ijl ), TrBij = B k
ijk , Γi Γj = Γ k

imΓ m
jl .

In matrix notation

Bij = ∂iΓj − ∂jΓj + [Γi,Γj ] , (3.3)

Γ̄i = SΓiS
−1 + S∂iS

−1 , (3.4)

B̄ij = SBijS
−1 . (3.5)

It is obvious from (3.3)–(3.5) that, like Fij = ∂iAj − ∂jAi, Bij is strength ten-

sor. The generally covariant and gauge-invariant Lagrangian for gauge field Γ k
ij

(displacement field) has the form

L = −1

4
Tr(BijBij) , (3.6)

where

Bij = gikgjlBkl

and gij is a tensor field inverse to gij such that gjkg
ik = δij .

Varying (3.6) with respect to Γ, we obtain the following system of second-order

differential equations for the displacement field

1√−gDi(
√
−gBij) = 0 . (3.7)

In fact, if δΓi is variation, then

δBij = DiδΓj −DjδΓi .

Hence it follows that

δL = −Tr(BijDiδΓj) = −∂iJ i + Tr((DiB
ij)δΓj) ,

where J i = Tr(BijδΓj). Since

∂iJ i =
1√−g∂i(

√−gJ i)−
(
∂i
√−g√−g

)
J i ,

δL = − 1√−g∂i(
√−gJ i) + Tr

(
1√−gDi(

√−gBij)δΓj
)
.

Q.E.D.

Varying the action

A =

∫
dx4 L

√
−g
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with respect to the metric gij we obtain gauge-invariant energy–momentum metric

tensor for displacement field Γ

T ij = Tr(BikBjk)−
1

4
gij(BklB

kl) (3.8)

which on the solutions of Eq. (3.7) satisfies the local law of energy conservation

T ij ;j = 0 . (3.9)

Here semicolon denotes the covariant derivative with respect to the Levi–Cività

connection belonging to the metric gij

{ ijk} =
1

2
gil(∂jgkl + ∂kgjl − ∂lgjk) . (3.10)

In view of its significance, we underline few details of the proof of the relation (3.9).

We have

T ij ;j = ∂jT
ij + { jjk}T ik + { ijk}T jk =

1√−g∂j(
√
−gT ij) + { ijk}T jk . (3.11)

Since, according to (3.10)

∂ig
jk = −{ jil}gkl − { kil }gjl , (3.12)

it can be shown that

Tr(BjkDjB
i
k) = −{ ijk} Tr(BjlBkl)− { ljk}gik Tr(BjmBlm)

+
1

2
gik Tr(Bjl(DjBkl −DlBkj)) , (3.13)

Tr(BklDjB
kl) = Tr(BklDjBkl)− 4{ kjl} Tr(BkmB

lm) . (3.14)

From (3.11), (3.13) and (3.14), it follows that

T ij ;j = Tr

(
1√−gDj(

√
−gBjk)Bik

)
+

1

2
gik Tr(Bjl(DjBkl +DkBlj +DlBjk)) .

Since the equation

DjBkl +DkBlj +DlBjk = 0

is fulfilled identically, the local law of energy–momentum conservation (3.9) is also

fulfilled for the case in question.

Our conclusion is that Eq. (3.7) and the Einstein equations

Rij −
1

2
gijR = κTij , (3.15)

with the right-hand side given by the expression (3.8), form a consistent system of

partial differential equations which is invariant under gauge transformations as well

as under the transformations of diffeomorphism group. Now we have proven that

the displacement field Γ is really the origin of gravitational field within the scope

of the given gauge approach.
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4. Spherical-Symmetrical Gauge Potentials

As the first step to investigate Eq. (3.7), it is very important to show that they

have nontrivial solutions. In doing this we show that Eq. (3.7) possesses spherically

symmetric solutions.

The general theory of space–time symmetry within the scope of theory of gauge

fields has been developed in Refs. 6 and 7. We apply the results obtained there to our

particular case. Note that the spherically symmetric solutions of SU(2) Yang–Mills

equations were first derived by Ikeda and Miyachi8 and for SU(3) by Loos.9

In this section we consider Minkowski space–time with the metric in spherical

system of coordinates that is most convenient under the consideration of SO(3)

symmetry:

ds2 = dt2 − dr2 − r2 dϑ2 − r2 sin2 ϑdϕ2 , (4.1)

where c has been taken to be unity.

First of all we would like to find gauge potentials which are invariant under the

displacement along the time axis t→ t+ a, i.e.

Γijk(x
0, x1, x2, x3) = Γijk(x

0 + a, x1, x2, x3) . (4.2)

From (4.2) it follows that all Γ’s are independent of t. Now we shall look for SO(3)

invariant gauge potentials. Generators of SO(3) group in spherical coordinates have

the form5

X1 = sin ϕ
∂

∂ϑ
+ cotϑ cos ϕ

∂

∂ϕ
, (4.3a)

X2 = −cos ϕ
∂

∂ϑ
+ cotϑ sin ϕ

∂

∂ϕ
, (4.3b)

X3 = − ∂

∂ϕ
, (4.3c)

and hence, the problem is to find solutions of the equations LXΓ = 0 when Lie

derivatives are taken along the vector fields of SO(3) group. The equation LXaΓ =

0, a = 1, 2, 3 can be written in the following matrix representation:

LXaΓj = V `(a)∂`Γj + [Γj , A(a)] + Γ`A
`
(a)j + ∂jA(a) = 0 . (4.4)

Here, V `(a) are defined from X(a) = V `(a)∂` as

V `(1) = (0, 0, sinϕ, cotϑ cosϕ) ,

V `(2) = (0, 0, −cosϕ, cotϑ sinϕ) ,

V `(3) = (0, 0, 0,−1) .

The matrices A(a) here take the forms

A(1) = Ai(1)j = ∂jV
i

(1) =

(
0 0

0 Ã(1)

)
, Ã(1) =

(
0 cosϕ

−cosϕ/ sin2 ϑ −cotϑ sinϕ

)
,
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A(2) = Ai(2)j = ∂jV
i

(2) =

(
0 0

0 Ã(2)

)
, Ã(2) =

(
0 sinϕ

−sinϕ/ sin2 ϑ −cotϑ cosϕ

)
,

A(3) = Ai(3)j = ∂jV
i

3 = 0 .

Let us write the equations LX(a)
Γj = 0 explicitly. The equations LX(1)

Γj = 0 can

be written as follows:

sinϕ
∂Γ0

∂ϑ
+ cotϑ cosϕ

∂Γ0

∂ϕ
+ [Γ0, A(1)] = 0 , (4.5a)

sinϕ
∂Γ1

∂ϑ
+ cotϑ cosϕ

∂Γ1

∂ϕ
+ [Γ1, A(1)] = 0 , (4.5b)

sinϕ
∂Γ2

∂ϑ
+ cotϑ cosϕ

∂Γ2

∂ϕ
+ [Γ2, A(1)]−

cosϕ

sin2 ϑ
Γ3 +

∂A(1)

∂ϑ
= 0 , (4.5c)

sinϕ
∂Γ3

∂ϑ
+ cotϑ cosϕ

∂Γ3

∂ϕ
+ [Γ3, A(1)] + cosϕΓ2

− cotϑ sinϕΓ3 +
∂A(1)

∂ϕ
= 0 , (4.5d)

while the equations LX(2)
Γj = 0 read

−cosϕ
∂Γ0

∂ϑ
+ cotϑ sinϕ

∂Γ0

∂ϕ
+ [Γ0, A(2)] = 0 , (4.6a)

−cosϕ
∂Γ1

∂ϑ
+ cotϑ sinϕ

∂Γ1

∂ϕ
+ [Γ1, A(2)] = 0 , (4.6b)

−cosϕ
∂Γ2

∂ϑ
+ cotϑ sinϕ

∂Γ2

∂ϕ
+ [Γ2, A(2)]−

sinϕ

sin2 ϑ
Γ3 +

∂A(2)

∂ϑ
= 0 , (4.6c)

−cosϕ
∂Γ3

∂ϑ
+ cotϑ sinϕ

∂Γ3

∂ϕ
+ [Γ3, A(2)] + sinϕΓ2

+ cotϑ cosϕΓ3 +
∂A(2)

∂ϕ
= 0 . (4.6d)

Finally for LX(3)
Γj = 0 we obtain

∂Γj
∂ϕ

= 0 . (4.7)

Here assume that Γj are taken in the form

Γj =


Γ0
j0 Γ0

j1 Γ0
j2 Γ0

j3

Γ1
j0 Γ1

j1 Γ1
j2 Γ1

j3

Γ2
j0 Γ2

j1 Γ2
j2 Γ2

j3

Γ3
j0 Γ3

j1 Γ3
j2 Γ3

j3

 , (4.8)
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where the upper indices enumerate the rows. From Eq. (4.7) it follows that the Γj’s

are independent of ϕ. Taking into account that the Γj ’s are independent of t and

ϕ we finally combine the foregoing Eqs. (4.5) and (4.6) in the form

[Γ0, C] = 0,
∂Γ0

∂ϑ
+ [Γ0, D] = 0 , (4.9)

[Γ1, C] = 0,
∂Γ1

∂ϑ
+ [Γ1, D] = 0 , (4.10)

[Γ2, C]− 1

sin2 ϑ
Γ3 +

∂C

∂ϑ
= 0,

∂Γ2

∂ϑ
+ [Γ2, D] +

∂D

∂ϑ
= 0 , (4.11)

[Γ3, C] + Γ2 +D = 0,
∂Γ3

∂ϑ
+ [Γ3, D]− cotϑΓ3 − C = 0 , (4.12)

where we define

C = cosϕA(1) + sinϕA(2) =

(
0 0

0 C̃

)
, C̃ =

(
0 1

−1/ sin2 ϑ 0

)
,

D = sinϕA(1) − cosϕA(2) =

(
0 0

0 D̃

)
, D̃ =

(
0 0

0 −cotϑ

)
.

Solving Eqs. (4.9)–(4.12), we find Γj ’s which are independent of t and ϕ

Γ0 =


a α 0 0

β b 0 0

0 0 c −d sinϑ

0 0 d/ sinϑ c

 ,

Γ1 =


γ h 0 0

k δ 0 0

0 0 µ −ν sinϑ

0 0 ν/ sinϑ µ

 ,

Γ2 =


0 0 p q sinϑ

0 0 σ τ sinϑ

m λ 0 0

n/ sinϑ ε/ sinϑ 0 cotϑ

 ,

Γ3 =


0 0 −q sinϑ p sin2 ϑ

0 0 −τ sinϑ σ sin2 ϑ

−n sinϑ −ε sinϑ 0 − sinϑ cosϑ

m λ cotϑ 0

 .

(4.13)

Thus we found the general spherically symmetric ansatz for displacement field

Γ. All the unknown functions in (4.13) are the arbitrary functions of r only.

Now the problem is to find these functions as the solutions of Eq. (3.7). Taking

into account that ∂tΓj = 0 and ∂ϕΓj = 0, from (3.2) and (3.3) for the nontrivial
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components of the Riemann tensor we find

B10 =
∂Γ0

∂r
+ [Γ1,Γ0] , (4.14a)

B20 =
∂Γ0

∂ϑ
+ [Γ2,Γ0] , (4.14b)

B30 = [Γ3,Γ0] , (4.14c)

B12 =
∂Γ2

∂r
− ∂Γ1

∂ϑ
+ [Γ1,Γ2] , (4.14d)

B13 =
∂Γ3

∂r
+ [Γ1,Γ3] , (4.14e)

B23 =
∂Γ3

∂ϑ
+ [Γ2,Γ3] . (4.14f)

Putting (4.13) into (4.14) one can find the nontrivial components of the Riemann

tensor Bij . But we shall not do that since, for further simplification of our problem

we demand the Γj ’s to be invariant under time inversion, i.e. under

t→ t′ = −t, r → r′ = r, ϑ→ ϑ′ = ϑ, ϕ→ ϕ′ = ϕ

the Γj ’s should remain unaltered. Let us explain from the general point of view

what does it mean. Let the transformation φ on the manifoldM maps coordinate

patch U onto itself. The transformation φ can be represented by smooth functions

in U

φ : xi =⇒ φi(x); φ−1 : xi =⇒ f i(x); φi(f(x)) = xi .

Under φ, Γ transforms as follows:

Γ̃ s
jk(x) = φsl (f(x))Γ l

mn(f(x))fmj (x)fnk (x) + φsl (f(x))∂jf
l
k(x) , (4.15)

where fsl = ∂lf
s(x), φsl = ∂lφ

s(x). It is said that the field with components Γ i
jk is

invariant with respect to the transformation φ if

Γ̃ s
jk(x) = φsl (f(x))Γ l

mn(f(x))fmj (x)fnk (x) + φsl (f(x))∂jf
l
k(x) = Γ s

jk . (4.16)

At infinitesimal φ, when f i(x) = xi + viε, from (4.16) it follows that LXΓ i
jl = 0

where X = vi ∂
∂xi .

In case of time inversion f0(x) = −t, f1(x) = r, f2(x) = ϑ and f3(x) = ϕ, hence

F = f lk(x) =
∂f l(x)

∂xk
=


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .

Taking into account that ∂jf
l
k(x) = 0, multiplying (4.15) by f is(x) from the left

after a little manipulation we find the transformation law for Γj ’s

FΓj(x) = [fmj Γm(f(x))]F , (4.17)
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or more explicitly

FΓ0(x) = −Γ0(f(x))F, FΓµ(x) = Γµ(f(x))F, µ = 1, 2, 3 . (4.18)

From (4.18) we find

Γµ0ν = 0, Γ0
00 = 0, Γ0

µ1 = Γ0
µ2 = Γ0

µ3 = 0, Γ1
µ0 = Γ2

µ0 = Γ3
µ0 = 0, µ, ν = 1, 2, 3 .

(4.19)

Thus the Γj ’s are spherically symmetric and invariant under time inversion:

Γ0 =


0 α 0 0

β 0 0 0

0 0 0 0

0 0 0 0

 , Γ1 =


γ 0 0 0

0 δ 0 0

0 0 µ −ν sinϑ

0 0 ν/ sinϑ µ

 ,

Γ2 =


0 0 0 0

0 0 σ τ sinϑ

0 λ 0 0

0 ε/ sinϑ 0 cotϑ

 ,

Γ3 =


0 0 0 0

0 0 −τ sinϑ σ sin2 ϑ

0 −ε sinϑ 0 − sinϑ cosϑ

0 λ cotϑ 0

 .

(4.20)

Now putting (4.20) into (4.14) we obtain the following nontrivial components of

the Riemann tensor

B10 =


0 ᾱ 0 0

β̄ 0 0 0

0 0 0 0

0 0 0 0

 , B20 =


0 0 −ασ −ατ sinϑ

0 0 0 0

λβ 0 0 0

εβ/ sinϑ 0 0 0

 ,

B30 =


0 0 −ατ sinϑ −ασ sin2 ϑ

0 0 0 0

−εβ sinϑ 0 0 0

λβ 0 0 0

 ,

B12 =


0 0 0 0

0 0 σ̄ τ̄ sinϑ

0 λ̄ 0 0

0 ε̄/ sinϑ 0 0

 , B31 =


0 0 0 0

0 0 τ̄ sinϑ −σ̄ sin2 ϑ

0 σ̄ sinϑ 0 0

0 −λ̄ 0 0

 ,

B23 =


0 0 0 0

0 −2A sinϑ 0 0

0 0 A sinϑ B sin2 ϑ

0 0 −B A sinϑ

 ,

(4.21)
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where we define

ᾱ := α′ − α(δ − γ), β̄ := β′ + β(δ − γ) ,
σ̄ := σ′ + σ(δ − µ)− τν, τ̄ := τ ′ + τ(δ − µ) + σν ,

λ̄ := λ′ − λ(δ − µ)− εν, ε̄ := ε′ − ε(δ − µ) + λν ,

A := εσ − τλ, B := ετ + σλ+ 1 .

From (3.8) we obtain energy-density for the displacement field Γ i
jk

T00 = −ᾱβ̄ +
2

r2
αβ(σλ+ τε)− 2

r2
(σ̄λ̄+ τ̄ ε̄)

− 2

r4
(λτ − εσ)2 − 1

r4
[(εσ − τλ)2 − (ετ + σλ+ 1)2] . (4.22)

Once the Riemann tensor is defined, we immediately undertake to write the

equations for the functions under consideration. To this end we invoke Eq. (3.7)

that can be rewritten in the form

1√−g∂i(
√
−gBij) + [Γi, B

ij ] = 0 . (4.23)

Here Bij = Bpqg
ipgjq,

√−g = r2 sinϑ and gij = diag(1,−1,−r2,−r2 sinϑ). Insert-

ing (4.20) and (4.21) into (4.23) we obtain

ᾱ′ +
2

r
ᾱ+

2

r2
(B − 1)α = 0 , (4.24a)

β̄′ +
2

r
β̄ +

2

r2
(B − 1)β = 0 , (4.24b)

αβ̄ − βᾱ = 0 , (4.24c)

σ̄λ− λ̄σ + τ̄ ε− ε̄τ = 0 , (4.24d)

λ̄τ − τ̄λ+ σ̄ε− ε̄σ = 0 , (4.24e)

σ̄′ − (µ− δ)σ̄ − αβσ − τ̄ ν +
1

r2
(Bσ + 3Aτ) = 0 , (4.24f)

τ̄ ′ − (µ− δ)τ̄ − αβτ + σ̄ν +
1

r2
(Bτ − 3Aσ) = 0 , (4.24g)

λ̄′ + (µ− γ)λ̄− αβλ− ε̄ν +
1

r2
(Bλ− 3Aε) = 0 , (4.24h)

ε̄′ + (µ− γ)ε̄− αβε+ λ̄ν +
1

r2
(Bε+ 3Aλ) = 0 . (4.24i)

The system (4) contains ten unknown functions, but there is no equation for γ, δ, µ, ν

which determine Γ1. Let us demand the Γj’s be invariant under space inversion,

i.e. under

t→ t′ = t, r → r′ = r, ϑ→ ϑ′ = π − ϑ, ϕ→ ϕ′ = ϕ
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the Γj ’s should remain unaltered. In this case F in (4.17) reads

F = f lk(x) =
∂f l(x)

∂xk
=


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 .

Hence (4.17) explicitly reads

FΓ2(x) = −Γ2(f(x))F, FΓi(x) = Γi(f(x))F, i = 0, 1, 3 . (4.25)

From (4.25) we find ν = 0, τ = 0, ε = 0. Thus the Γj ’s those are spherically

symmetric and invariant under time and space inversion take the form

Γ0 =


0 α 0 0

β 0 0 0

0 0 0 0

0 0 0 0

 , Γ1 =


γ 0 0 0

0 δ 0 0

0 0 µ 0

0 0 0 µ

 ,

Γ2 =


0 0 0 0

0 0 σ 0

0 λ 0 0

0 0 0 cotϑ

 , Γ3 =


0 0 0 0

0 0 0 σ sin2 ϑ

0 0 0 −sinϑ cosϑ

0 λ cotϑ 0

 .

(4.26)

We again see that Γ1 6= 0. In view of this let us consider gauge transformations

which leave the equation LXΓ = 0 invariant, i.e. find transformations S such that

LXΓ = 0 implies LXΓ̄ = 0, where Γ̄ is given by (3.4)

Γ̄i = SΓiS
−1 + S∂iS

−1 .

The natural choice for the LXΓ = 0 to be gauge-invariant is to put

LXS = 0 (4.27)

or explicitly

sinϕ
∂S

∂ϑ
+ cotϑ cosϕ

∂S

∂ϕ
+ [S,A(1)] = 0 , (4.28a)

−cosϕ
∂S

∂ϑ
+ cotϑ sinϕ

∂S

∂ϕ
+ [S,A(2)] = 0 , (4.28b)

∂S

∂ϕ
= 0 . (4.28c)

In account of (4.28c) we combine (4.28a) and (4.28b) together to get the equations

for determining S:

∂S

∂ϑ
− [S,D] = 0 , (4.29a)

[S,C] = 0 . (4.29b)
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General solution of (4.29) takes the form

S =


ã b̃ 0 0

c̃ d̃ 0 0

0 0 ẽ −f̃ sinϑ

0 0 f̃/ sinϑ ẽ

 , (4.30)

with ã, b̃, c̃, d̃, ẽ, f̃ being the functions of r only. Now, our assumption of invariance

under space and time inversion leads to the functions b̃, c̃, f̃ to be trivial. Hence we

obtain the following expression for S:

S =


ã 0 0 0

0 d̃ 0 0

0 0 ẽ 0

0 0 0 ẽ

 . (4.31)

Let us now use the gauge arbitrariness. In doing so we demand Γ̄1 to be zero. Then

from (3.4), i.e.

Γ̄i = SΓiS
−1 + S∂iS

−1 ,

we obtain equation for fixing gauge

∂S

∂r
= SΓ1 , (4.32)

that yields the following results

ã = exp

[∫
γ dr

]
, d̃ = exp

[∫
δ dr

]
ẽ = exp

[∫
µdr

]
. (4.33)

Thus, without loss of generality we can put Γ1 = 0. Now the system (4.24) reduces

to

α′′ +
2

r
α′ +

2

r2
σλα = 0 , (4.34a)

β′′ +
2

r
β′ +

2

r2
σλβ = 0 , (4.34b)

αβ′ − βα′ = 0 , (4.34c)

σ′′ − αβσ +
1

r2
(σλ+ 1)σ = 0 , (4.34d)

λ′′ − αβλ+
1

r2
(σλ+ 1)λ = 0 , (4.34e)

λσ′ − σλ′ = 0 . (4.34f)

From (4.34c) and (4.34f) follow β = c0α and λ = d0σ, where c0 and d0 are some

arbitrary constants. In this case from (4.22) we find

T00 = −c0αpr2 +
2

r2
c0d0α

2σ2 − 2

r2
d0σ
′2 +

1

r4
(d0σ

2 + 1)2 . (4.35)
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It is obvious from (4.35) that for the energy to be positive definite one should simply

imply the constants c0 and d0 to be negative, i.e. c0 < 0 and d0 < 0.

In spherical coordinates the functions α, β, σ, λ and the constant d0 have the

following dimensions: [α] = L−1, [β] = L−1, [σ] = L−1, [λ] = L, [d0] = L2. The

constant c0 is dimensionless.

It is obvious that if the system (4) possesses nontrivial solutions, so does the

system (3.7). One of the special solutions is α = α0/r, β = β0/r, λ = 0 and σ = 0.

Since the constant d0 is not dimensionless, let us consider the case when d0 = 0.

In other words we assume the function λ to be zero. Under this condition from

(4.34) we find α = α0/r and β = β0/r. For σ we obtain the equation

r2σ′′ + (1− α0β0)σ = 0 . (4.36)

Introducing a dimensionless parameter % = r/l, where l is a constant such that

[l] = L, we rewrite Eq. (4.36)

%2 ∂
2σ

∂%2
+ (1− α0β0)σ = 0 . (4.37)

Defining b2 = (1− α0β0)
2 − 1/4, we find the following expressions for σ:

σ
√
%

=


C1 cos(b ln%) + C2 sin(b ln%), b2 > 0

C1%
b + C2%

−b, b2 < 0

C1 + C2 ln %, b2 = 0

(4.38)

where the constants C1 and C2 have the dimension of length. Thus the system

(4.34) possesses solution and so does the system (3.7).

5. Conclusion

Summarizing the results obtained we once again emphasize that within the frame-

work of gauge symmetry inherent in the concept of manifold it is natural to consider

the linear connection as a gauge field. Under the gauge symmetry condition it is

impossible to demand the condition Γkij = Γkji to be fulfilled, since it is not gauge-

invariant. It is shown that the conserving energy–momentum tensor exists for the

displacement field and hence, this field can be treated within the scope of GR as a

material one with deep geometrical meaning.

To show the similarity of the classical displacement field with the electromag-

netic one and to prove the existence of nontrivial solutions we have found the static

spherically-symmetric ansatz. We have also shown that its insertion into Eq. (3.7)

allows one to obtain the corresponding solutions.

Our conclusion is that together with the known long-range interactions there

can exist new type of long-range interactions defined by displacement field that was

the subject of our investigation.
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