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ON THE NATURAL GAUGE FIELDS OF MANIFOLDS
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The gauge symmetry inherent in the concept of manifold has been discussed. Within the
scope of this symmetry the linear connection or displacement field can be considered as a
natural gauge field on the manifold. The gauge-invariant equations for the displacement
field have been derived. It has been shown that the energy-momentum tensor of this
field conserves and hence the displacement field can be treated as one that transports
energy and gravitates. To show the existence of the solutions of the field equations, we
have derived the general form of the displacement field in Minkowski space—time which
is invariant under rotation and space and time inversion. With this ansatz we found
spherically-symmetric solutions of the equations in question.

Keywords: Symmetry, gauge field, displacement field, space—time theory

PACS Nos.: 04.20, 11.15, 02.30.H

1. Introduction

According to the modern standpoint, space—time theory is the one that possesses a
mathematical representation whose elements are a smooth four-dimensional mani-
fold M and geometric objects defined on this manifold. The geometry on the man-
ifold is defined by metric and linear connection. In general, the linear connection
is in no way related to the metric since these concepts define different geometric
operations on the manifold M. The metric on the manifold defines the length of a
curve while the linear connection defines parallel transport (displacement) of vectors
along arbitrary path on M. It should be emphasized that soon after the creation
of General Relativity, Eddington put forward the idea to derive all theories on the
basis of parallel displacement only.! Here the metric and the linear connection as
a totally independent geometric objects by structure will be considered as funda-
mental fields. It is our principal assumption. According to the fundamental idea
of Einstein, metric corresponds to gravitational field while all other fields, being
the source of gravitational one, carry energy. Hence and from the above assump-
tion it follows that, like the electromagnetic field, the field of parallel displacement
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carries energy and appears to be the source of gravitational field, possessing geo-
metric meaning. Thus, our aim is to derive natural equations for the field of parallel
displacement and obtain the relevant conserving energy—momentum tensor, i.e. to
show that within the framework of the canonical Einstein theory of gravity the
linear connection can be considered on the same level with electromagnetic one.

2. Symmetry Group

There are two symmetry groups closely connected with the concept of manifold.
One of them is a group of transformations of the manifold M itself, the manifold
mapping group, and the other is a group of transformations acting in tangent
vector spaces T,(M). The latter concept is clearly expounded in the treatise by
Misner and Thorne and Wheeler.? The well-known manifold mapping group® is
often called the group of general transformations of coordinates or the group of
diffeomorphisms. The physical meaning of the manifold mapping group is that it is
a group of symmetry of gravitational interactions in Einstein theory of gravity. A
systematic and thorough consideration of the questions connected with space-time
symmetry of General Relativity may be found in Ref. 3. We emphasize only that
the diffeomorphism group is evidently the widest group of space-time symmetry.
Let the given vector field V* undergo infinitesimal parallel displacement, then

dvi+ T VFdad =0, (2.1)

where I' jik are the components of linear connection. Vector fields form linear vector
space L. The isomorphic mapping of the vector space L onto itself is defined by
the tensor fields of type (1,1). Let Sji- be the components of a tensor field .S of type
(1,1) that satisfies the condition det(Sji-) # 0 only. In this case, there exists a tensor
field S—! with components Tj? such that S} Tjk = 6; Now a tensor field S can be
regarded as an isomorphism of L onto itself

Vi(x) = S]’(m)V](a:) . (2.2)

Since there is no objective reason to distinguish vector fields V(z) and V7 (z), we
want to define the law of parallel displacement for the vector V* induced by (2.1)
and (2.2). It can be shown that if the vector V' undergoes parallel displacement
(2.1) then V¥, defined by (2.2), undergoes parallel displacement

AV + T, VFdal =0, (2.3)
where
[ =SIDL T+ S[0; T}, (2.4)

and T ]1 are components of the field S~! inverse to S. In what follows we will con-
sider the transformation group (2.2) as the natural group of gauge transformation
inherent in the manifold M. The transformation (2.4) gives the realization of gauge
group on the fields of parallel displacement and in that sense I' j"k are analogical to
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the potentials of electromagnetic fields. Now our aim is to find equation for I that
is invariant under (2.4). From (2.4) it follows that if T/ are the components of
linear connection, then I'} are also the components of linear connection, i.e. under
coordinate transformation I' transforms in accordance with the same well-known
laws as does T itself.3

3. Gauge-Invariant Equations

As it is noted above, the diffeomorphism group is responsible for gravitational inter-
actions, and thus, the gauge group under consideration is a symmetry group of new
interactions. To simplify computations and to write equations in a symmetrical and
manifestly gauge-invariant form, we introduce the notion of the gauge derivative.
We will say that a tensor field T' of type (m,n) is of gauge type (p,q) if under the
transformations of gauge group there is the correspondence

T=T=8---STS'...57!
—_—— N————
p q

where
0<p<m and 0<g<n.

The Einstein potentials g;; being a tensor field of type (0,2) is to be assigned the
gauge type (0,0) because the Einstein equations are not invariant with respect to
the transformations g;; = gleikT} . Let the vector field V? has a gauge type (1,0).
We define gauge derivative as

D;VE=0;V* +T v
Now, if the equality
D;V* = ;7% + T 47
holds, then from (2.2) and (2.4), it follows that
D;Vi = 8iD;V*.
Since
D;D;V* = 9;(D;V*) + T;r(D; V'),

D;D; V'* is not a tensor field, nevertheless, the commutator of gauge derivatives are
tensor fields, as

[D;, D;lV*F = B, fvt, (3.1)

ijl
where

Byi =0T — oL+ =T T" (3.2)

ijl — im* jl jmt il
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is the Riemann tensor of curvature of connection I'. Note that B, j’f is a tensor field
of type (1, 3) and gauge type (1, 1). In what follows, for brevity, we use matrix
notation, assuming that

=@k, By=(By), TeBj=B,, LT;=TkT".

ij ijk> im=— jl

In matrix notation

B;; = aiI‘j - aij + [Fi, Fj] s (33)
fi = SFiS_l + S@iS_l s (34)
B;j = SB;;S™!. (3.5)

It is obvious from (3.3)—(3.5) that, like Fj; = 0;A; — 0;A,;, B;; is strength ten-
sor. The generally covariant and gauge-invariant Lagrangian for gauge field I‘{;
(displacement field) has the form

1 ii
L= _ZTI(B ]Bi]’) , (36)
where
Bl] — gikglekl

and g% is a tensor field inverse to g;; such that g;,g** = 6;
Varying (3.6) with respect to I', we obtain the following system of second-order
differential equations for the displacement field

\/L__gDMTgB“) —0. (3.7)

In fact, if 6T'; is variation, then
§B,; = D;6T; — D;0T; .

Hence it follows that

6L = —Tr(BYD;0T;) = —0;J" + Tr((D; BY)T;),
where J* = Tr(B"6I;). Since
07" = —=o(v=57" - (B0 7

1

Vg

L

oL = 0i(v/=gJ") + Tr(\/__gDi(\/_gBij)él"j) .

Q.E.D.
Varying the action

Az/da:‘lﬁ\/—_g
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with respect to the metric g;; we obtain gauge-invariant energy-momentum metric
tensor for displacement field I’

.. . . 1 ..
T = Te(B*B’,) - 19" (Br B*) (3.8)
which on the solutions of Eq. (3.7) satisfies the local law of energy conservation
T9.,=0. (3.9)

Here semicolon denotes the covariant derivative with respect to the Levi-Civita
connection belonging to the metric g;;

. 1.
{ji} = 5911(@91@1 + Okgjt — Oigjk) - (3.10)

In view of its significance, we underline few details of the proof of the relation (3.9).
We have
1

TY ;= 0;T9 + { /3T + {,}T7" = =

O;(V=gT") + { /i }T7% . (3.11)
Since, according to (3.10)

dig" = ~{{}g" —{ite", (3.12)
it can be shown that

Te(B*D;BY%) = —{i} Te(B"' BY) — { 19" Te(B"" Bim)

1, ,
+ 591’“ Tr(B’(D; By — Dy By;j)), (3.13)
Tr(ByD; BM) = Tr(B* D;By) — 4{,;} Tr(BrmB'™) . (3.14)

From (3.11), (3.13) and (3.14), it follows that

. 1 . . 1 . .
TY.; = Tr(| ——D;(v—gB*)B% | + 59" Te(B’"(D; B + Dy Bij + DiBjy)) -
/=g 9
Since the equation
D;Byy + DyBij + DiBj, =0

is fulfilled identically, the local law of energy—momentum conservation (3.9) is also
fulfilled for the case in question.
Our conclusion is that Eq. (3.7) and the Einstein equations

1
Rij — igin = K,Ti]’ 5 (315)

with the right-hand side given by the expression (3.8), form a consistent system of
partial differential equations which is invariant under gauge transformations as well
as under the transformations of diffeomorphism group. Now we have proven that
the displacement field T is really the origin of gravitational field within the scope
of the given gauge approach.
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4. Spherical-Symmetrical Gauge Potentials

As the first step to investigate Eq. (3.7), it is very important to show that they
have nontrivial solutions. In doing this we show that Eq. (3.7) possesses spherically
symmetric solutions.

The general theory of space—time symmetry within the scope of theory of gauge
fields has been developed in Refs. 6 and 7. We apply the results obtained there to our
particular case. Note that the spherically symmetric solutions of SU(2) Yang—Mills
equations were first derived by Ikeda and Miyachi® and for SU(3) by Loos.’

In this section we consider Minkowski space—time with the metric in spherical
system of coordinates that is most convenient under the consideration of SO(3)
symmetry:

ds* = dt? — dr* — r? d¥? — r*sin® 9 dp?, (4.1)
where ¢ has been taken to be unity.

First of all we would like to find gauge potentials which are invariant under the
displacement along the time axis t — ¢ + a, i.e.

;’k(xovxlaxgaq:?)) = Fék($0+a7$17$25$3)' (42)
From (4.2) it follows that all I'’s are independent of ¢. Now we shall look for SO(3)

invariant gauge potentials. Generators of SO(3) group in spherical coordinates have
the form®

X1 =sin go% + cot ¥ cos ga% , (4.3a)
X9 = —cos iJrcot19s’n 9 (4.3b)
2 = —C08 Yo i go&p, .
0
Xg=—— 4.3
3 8907 ( C)

and hence, the problem is to find solutions of the equations LxI' = 0 when Lie
derivatives are taken along the vector fields of SO(3) group. The equation Lx I' =
0, a =1,2,3 can be written in the following matrix representation:

Lx,Tj = Vol + [T, A@)] + TeAl,); + 0A@) = 0. (4.4)
Here, V(‘fl ) are defined from X,) = V(L;)E)g as
V(Zl) = (0, 0,sin ¢, cot ¥ cos ),
Vé) = (0, 0, —cos ¢, cot ¥sinyp),
Vé) = (Oa 07 Oa 71) .

The matrices A,) here take the forms

A= Al Vi = 0 0 Ao 0 cos
W20 =5 T g Ay, ) YT —cosp/sin?d —cotdsing |
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A Al A% 00 A ; Sine
@ =A@y =0V = | Aw )’ @ = —sinp/sin?9 —cotdcosyp |

Aw) = Alg); = 03V5 = 0.

Let us write the equations Ly, I'; = 0 explicitly. The equations Lx, I'; = 0 can
be written as follows:

I T
singa% + cot ¥ cos ga%—(po +[To, A1)l =0, (4.5a)
r r
singa% + cot ¥ cos gaaa—(pl + [T, 40)] =0, (4.5b)
Oy ol cosp . 94
sinp—o- + cot ¥ cos 908—90 + T2, Ay — 2 191’3 + 59 = 0, (4.5¢)

or or
singpa—ﬁ3 -+ cot ¥ cos wa—; + [T'3, A(1)] + cos oIz

. 0A )
—cotdsinpl's + ——= =0, (4.5d)
dp
while the equations Lx, I'; = 0 read
or or
—cos ¢8—1; + cot ¥ singaa—(p0 + Lo, A2yl =0, (4.6a)
or or
—cos <'08—191 + cot ﬂsingoa—(pl +[T1,A)] =0, (4.6b)
0y - Ony sing - 94
—cosp— o + cotq?smgoa—(p + T2, Aeay] — a2 191’3 + 59 = 0, (4.6¢)

r r
—cos @% + cot singoaa—go3 + '3, A2)] +sinpl'y

+ cotdcospl's + =0. (4.6d)
O
Finally for Lx, I'; =0 we obtain
or;
i _y. (4.7)
dp
Here assume that I'; are taken in the form
F?O F?l 1“92 F?B
1 1 1 1
oo Fjo i1 Tjo T3 (4.8)
J ) .
F?o F?l F?Q F??,
F?O F?l F§‘2 F?B
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where the upper indices enumerate the rows. From Eq. (4.7) it follows that the I';’s
are independent of . Taking into account that the I';’s are independent of ¢ and
¢ we finally combine the foregoing Egs. (4.5) and (4.6) in the form

B oy B
[T, C] =0, 59 T (Lo, DI =0, (4.9)
or
[[1,C] =0, 8—191 +[l1,D] =0, (4.10)
1 aC ary oD
r
[[s5,C] 4+ T2+ D =0, %—&—[Fg,,D]—cotz?Fg—C:O, (4.12)

where we define

C = cos cpA(l) 4 sin S014(2) _ (0

= 0 1
0 ) ¢= (1/sin219 o) ’
. 0
D = sinpA(1) — cos pA(g) = (

~ 0 0
0 ) ’ D= (0 cot19> ’

Solving Egs. (4.9)—(4.12), we find I';’s which are independent of ¢ and ¢

UJO [@=}

a « 0 0
Iy — 6 b 0 (). ’
0 0 c —dsin ¢
0 0 d/sin? c
¥ h 0 0
r, — k 90 0 0
0 0 7 —vsind |’
0 0 v/sind o . (4.13)
0 0 p gsind
0 0 o Tsind
IPES )
m A 0 0
n/sind e/sind 0 cot?d
0 0 —gsind psin’ 9
Ty = 0 0 —Tsind osin? 9
—nsing —esind 0 —sind cos ¥
m A cot ¥ 0

Thus we found the general spherically symmetric ansatz for displacement field
I'. All the unknown functions in (4.13) are the arbitrary functions of r only.

Now the problem is to find these functions as the solutions of Eq. (3.7). Taking
into account that 9,I'; = 0 and 9,I'; = 0, from (3.2) and (3.3) for the nontrivial
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components of the Riemann tensor we find

Byo = % + [I'1,T], (4.14a)
Bao = % 4 D2, ] (4.14b)
Bsp = [I'3, T, (4.14c)
By = % - % +[01, Ty, (4.14d)
B3 = % + [, D], (4.14e)
Bas — % +[[a,Ty]. (4.14)

Putting (4.13) into (4.14) one can find the nontrivial components of the Riemann
tensor B;;. But we shall not do that since, for further simplification of our problem
we demand the I';’s to be invariant under time inversion, i.e. under

t=t=—t, r—=r =nr 9= =9, o=@ =0
the I';’s should remain unaltered. Let us explain from the general point of view
what does it mean. Let the transformation ¢ on the manifold M maps coordinate
patch U onto itself. The transformation ¢ can be represented by smooth functions
inU
prat = ¢'(z); ¢ 2t = fi(a); ¢(f(2)) =2
Under ¢, I" transforms as follows:

L5 (@) = 6 (f (@)D (f (@) F7 () f7 () + 65 (f (2))0; fi (@) , (4.15)
where f7 = 0,f°(x), ¢] = 0,¢°(x). It is said that the field with components Fjik is
invariant with respect to the transformation ¢ if

L5 (@) = 6] (f(@))D o (f (@) ] (@) F7 () + 67 (F ()03 fi(x) =Tj5. . (4.16)

At infinitesimal ¢, when f'(z) = 2’ + v'e, from (4.16) it follows that LxT;; = 0
where X = v*-2

=55
In case of time inversion fO(z) = —t, f1(z) =, f2(z) = ¥ and f3(z) = ¢, hence
-1 0 0 O
of(x) 01 0 0
— fl _ _
F=0@="3%=1 001 0
0 0 01

Taking into account that 9;f}(x) = 0, multiplying (4.15) by fi(z) from the left
after a little manipulation we find the transformation law for I';’s

FTj(z) = [f]"Tm(f(2))]F, (4.17)
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or more explicitly

FTo(z) = —=To(f(x))F, FT,(xz) =Tu(f(x))F, nw=1213. (4.18)
From (4.18) we find
Iy, =0, Igy=0, IO =Tp,=Tp3=0, T),g=Tr=T50=0, purv=123.

pl =
(4.19)
Thus the I';’s are spherically symmetric and invariant under time inversion:
0 a 0O v 0 0 0
Ty = 6 0 0 0 7 r, — 0 9 0 (). ’
0 0 0 O 0 0 n —vsind
0 0 0O 0 0 v/sind ©
0 0 0 0
0 0 o Tsind
I = 0 A\ 0 0 ) (4.20)
0 ¢/sind 0 cotd
0 0 0 0
Iy — 0 0 —7sind osin? 9
0 —esind 0 —sind cos ¢
0 A cot ¥ 0

Now putting (4.20) into (4.14) we obtain the following nontrivial components of
the Riemann tensor

0 a 0O 0 0 —aoc —oarsind
B B 0 0 0 B 0 0 0 0
1o 0o 0 o’ 20 A8 0 0 0 ’
0 0 0O ef/sind 0 0 0
0 0 —arsind —aosin®?d
0 0 0 0
B3y = . ;
—egfBsind 0 0 0
230 0 0
(4.21)
0 0 0 0 0 0 0 0
0 0 o Tsind 0 0 7sind —asin?d
Bis = - , DBz1 = _ . )
0 A 0 0 0 osind 0 0
0 &/sind 0 0 0 - 0 0
0 0 0 0
0 —2Asin?d 0 0
Bas = ) . 9
0 0 Asind Bsin“d
0 0 -B Asind
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where we define

a:=a —ald—7), B:=0+p(6-"7),
=0 +o(0—p)—TY, Ti=7470—u) +ov,
A= N = A\(6 — p) — ev, g=¢ —e(0—p)+ v,
A:=¢ec0—T\ B:=ert+o)+1.

From (3.8) we obtain energy-density for the displacement field T j"k

= 2 2, <
Too = —afb + T—2aﬂ(0)\ + 7€) — r_Q(U)\ + 7€)

2 1
- r—4(>\7' —¢e0)? — 7'_4[(60 —7A)? = (eT + oA+ 1)7]. (4.22)
Once the Riemann tensor is defined, we immediately undertake to write the
equations for the functions under consideration. To this end we invoke Eq. (3.7)
that can be rewritten in the form
1 y g

——0i(v/—¢B")+[I';,BY] =0. (4.23)

N
Here BY = B,,,g"¢%, \/—g = r?sind and g¢;; = diag(1, —1, —r%, —r? sin¥). Insert-
ing (4.20) and (4.21) into (4.23) we obtain

B 2 _ 2
a'+;a+r—2(B—1)a =0, (4.24a)
B2+ 2(B-1)8=0 (4.24b)
r r2 - '
af —pa=0, (4.24c)
GA— Ao+ Te—&r=0, (4.24d)
AT —TA+Ge—é0=0, (4.24e)
1
7 —(u—0)5 —afo —Tv+ T—2(BG' +3A1) =0, (4.24f)
1
7 —(u— 6T —afT + v+ T—2(B7' —3A0) =0, (4.24g)
- - _ 1
X 4 (1= 7)A = aPA — év + — (BA - 34¢) = 0, (4.24h)
. _ 5 1 :
g+ (p—7)E—afe+ v+ T—Q(Bs +3AN) = 0. (4.24i)

The system (4) contains ten unknown functions, but there is no equation for v, 8, u, v
which determine I';. Let us demand the I';’s be invariant under space inversion,
i.e. under

t—t =t r—=r =r 9= =719, o= =9
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the I';’s should remain unaltered. In this case F' in (4.17) reads

1 0 0 0
of(x) 01 00
— £l — —
F=ile)="37 =10 0 -1 0
0 0 0 1
Hence (4.17) explicitly reads
FTy(z) = —Ta(f(x))F, FTi(z) =T:i(f(2))F, i=0,1,3. (4.25)

From (4.25) we find v = 0,7 = 0,¢ = 0. Thus the I';’s those are spherically
symmetric and invariant under time and space inversion take the form

0 a 0 0 v 0 0 0
[B 000 10§ 0 0
To=19 00 0] Fl*oouo’
00 00 00 0 pu
(4.26)
00 0 0 00 0 0
r_ |00 0 r._ |00 0 o sin® ¥
27 1o x o 0 ’ 57 1o o 0 —sind cos ¥
0 0 0 cot? 0 X cotd 0

We again see that I'y # 0. In view of this let us consider gauge transformations
which leave the equation LxI" = 0 invariant, i.e. find transformations S such that
LxT = 0 implies LxT = 0, where T is given by (3.4)

f‘i = SFZ‘S71 + SaiS71 .

The natural choice for the LxI' = 0 to be gauge-invariant is to put

LxS=0 (4.27)
or explicitly
sin wg—g + cot ¥ cos @% +[S, A =0, (4.28a)
—cos @Z—? + cot ¥ sin @% +[S,Aig)] =0, (4.28b)
oS
— =0. 4.28
- (1250

In account of (4.28c) we combine (4.28a) and (4.28b) together to get the equations
for determining S:

g—‘g —[$,D] =0, (4.29a)

[S,C] = 0. (4.29b)
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General solution of (4.29) takes the form

a b 0 0
¢ d 0 0

=10 o é —fsind |’ (4.30)
0 0 f/sin¥ é

with a, b c, d e, f being the functions of r only. Now, our assumptlon of invariance
under space and time inversion leads to the functions b, ¢, f to be trivial. Hence we
obtain the following expression for S:

S = (4.31)

o o a,o
o m o o
™~ o oo

O O O @

Let us now use the gauge arbitrariness. In doing so we demand T'; to be zero. Then
from (3.4), i.e

fi = SI‘iS’l + Sai571 s
we obtain equation for fixing gauge

5. = ST, (4.32)

that yields the following results

a = exp [/ydr} ., d=exp [/6dr] € = exp |:/Md7“:| . (4.33)

Thus, without loss of generality we can put I'1 = 0. Now the system (4.24) reduces
to

2
o’ + Toz + —U)\a =0, (4.34a)
U 2 /

r r
afff —Ba’ =0, (4.34c)
o' —afo + r%(cr)\ +1)o =0, (4.34d)

1

N — B+ T—2(U)\ + 1A =0, (4.34e)
Ao’ —aoXN =0. (4.34f)

From (4.34c) and (4.34f) follow 8 = cpor and A = dyo, where ¢y and dy are some
arbitrary constants. In this case from (4.22) we find

2
TOO = 7000&pr2 + r—CodoOl O' — d()O',2 + (d()O' + 1) (435)
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It is obvious from (4.35) that for the energy to be positive definite one should simply
imply the constants ¢y and dy to be negative, i.e. ¢ < 0 and dy < 0.

In spherical coordinates the functions «, 3,0, A and the constant dy have the
following dimensions: [o] = L7, [3] = L7, [0] = L7, [\] = L,[do] = L?. The
constant ¢y is dimensionless.

It is obvious that if the system (4) possesses nontrivial solutions, so does the
system (3.7). One of the special solutions is « = ag /7, 8 = Bo/r,A =0 and o = 0.

Since the constant dy is not dimensionless, let us consider the case when dy = 0.
In other words we assume the function A to be zero. Under this condition from
(4.34) we find o = ap/r and 8 = By /r. For o we obtain the equation

20" 4+ (1 — apfBy)o = 0. (4.36)

Introducing a dimensionless parameter ¢ = r/I, where [ is a constant such that
[[] = L, we rewrite Eq. (4.36)

82
928—; + (1 - aof)o =0. (4.37)

Defining b? = (1 — apfp)? — 1/4, we find the following expressions for o:

Cy cos(blnp) + Cy sin(bln p), b2 >0
o
% = Clgb + CQQ_b, b2 <0 (4.38)
C1+ Cylnp, =0

where the constants C; and C5 have the dimension of length. Thus the system
(4.34) possesses solution and so does the system (3.7).

5. Conclusion

Summarizing the results obtained we once again emphasize that within the frame-
work of gauge symmetry inherent in the concept of manifold it is natural to consider
the linear connection as a gauge field. Under the gauge symmetry condition it is
;?j = F;?i to be fulfilled, since it is not gauge-
invariant. It is shown that the conserving energy—momentum tensor exists for the
displacement field and hence, this field can be treated within the scope of GR as a

material one with deep geometrical meaning.

impossible to demand the condition I'

To show the similarity of the classical displacement field with the electromag-
netic one and to prove the existence of nontrivial solutions we have found the static
spherically-symmetric ansatz. We have also shown that its insertion into Eq. (3.7)
allows one to obtain the corresponding solutions.

Our conclusion is that together with the known long-range interactions there
can exist new type of long-range interactions defined by displacement field that was
the subject of our investigation.
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