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Self-consistent system of nonlinear spinor field and Bianchi I (BI) gravitational one
with time-dependent gravitational constant (G) and cosmological constant (Λ) has been
studied. The initial and the asymptotic behaviors of the field functions and the metric
one have been thoroughly investigated. Given Λ = Λ0/τ2, with τ =

√−g, G has been
estimated as a function of τ . The role of perfect fluid at the initial state of expansion
and asymptotical isotropization process of the initially anisotropic universe has been
elucidated.

1. Introduction

Einstein’s theory of gravity contains two parameters, considered as fundamental
constants: Newton’s gravitational constant G and the cosmological constant Λ.1 A
possible time variation of G has been suggested by Dirac2 and extensively discussed
in the literature.3–7 The “cosmological constant” Λ as a function of time was studied
by many authors. Chen and Wu8 advocated the possibility that the cosmological
constant varies in time as 1/R2, with R being the scale factor of Robertson–Walker
model. Furthermore Abdel–Rahman9 considered a model with the same kind of
variation, while Berman et al.10–12 stressed that the relation R ∝ t−2 plays an
important role in cosmology. Berman and Gomide13 also showed that all the phases
of the universe, i.e. radiation, inflation, and pressure-free, may be considered as
particular cases of the deceleration parameter q = const. type, where

q = −RR̈/Ṙ2 , (1.1)

where the dots stand for time derivative. This definition was extended by Singh and
Agrawal14 to the Bianchi cosmological models. Recently we studied the behavior
of self-consistent nonlinear spinor field (NLSF) in a Bianchi I (B-I) universe15 that
was followed by the study of the self-consistent system of interacting spinor and
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scalar fields.16 These studies were further extended to more general NLSF in the
presence of perfect fluid.17,18

The aim of this paper is to extend our study with time-dependent gravitational
constant G and cosmological constant Λ in Einstein’s equation.

2. Fundamental Equations and General Solutions

The Dirac spinor field is given by the Lagrangian

L =
i

2

[
ψ̄γµ∇µψ −∇µψ̄γµψ

]
−mψ̄ψ + LN . (2.1)

The nonlinear term LN describes the self-interaction of a spinor field and can be
presented as some arbitrary functions of invariants generated from the real bilinear
forms of a spinor field having the form

S = ψ̄ψ , P = iψ̄γ5ψ , vµ = (ψ̄γµψ) ,

Aµ = (ψ̄γ5γµψ) , T µν = (ψ̄σµνψ) ,

where σµν = (i/2)[γµγν − γνγµ]. Invariants, corresponding to the bilinear forms,
look like

I = S2 , J = P 2 , Iv = vµv
µ = (ψ̄γµψ)gµν(ψ̄γνψ) ,

IA = AµA
µ = (ψ̄γ5γµψ)gµν(ψ̄γ5γνψ) ,

IT = TµνT
µν = (ψ̄σµνψ)gµαgνβ(ψ̄σαβψ) .

According to the Pauli–Fierz theorem,19 among the five invariants only I and J

are independent as others can be expressed by them: Iv = −IA = I + J and
IT = I − J . Therefore we choose the nonlinear term LN = F (I, J), thus claiming
that it describes the nonlinearity in the most general of its form.

The NLSF equations and components of the energy–momentum tensor for the
spinor field corresponding to the Lagrangian (2.1) are

iγµ∇µψ − (m−D)ψ + iGγ5ψ = 0 , (2.2a)

i∇µψ̄γµ + (m−D)ψ̄ − iGψ̄γ5 = 0 , (2.2b)

and

T ρµ =
i

4
gρν(ψ̄γµ∇νψ + ψ̄γν∇µψ −∇µψ̄γνψ −∇νψ̄γµψ)− δρµLsp + T ρµ(m) , (2.3)

where

D = 2S
∂F

∂I
, G = 2P

∂F

∂J
.

Here T ρµ(m) is the energy–momentum tensor of a perfect fluid. For a universe
filled with perfect fluid, in the concomitant system of reference (u0 = 1, ui = 0,
i = 1, 2, 3) we have

T νµ(m) = (p+ ε)uµuν − δνµp = (ε,−p,−p,−p) , (2.4)
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where energy ε is related to the pressure p by the equation of state p = ζε. The
general solution has been derived by Jacobs.20 Here ζ varies between the interval
0 ≤ ζ ≤ 1, whereas ζ = 0 describes the dust universe, ζ = 1/3 represents radiation
universe, 1/3 < ζ < 1 ascribes hard universe and ζ = 1 corresponds to the stiff
matter. In (2.2) and (2.3) ∇µ denotes the covariant derivative of spinor, having the
form21

∇µψ =
∂ψ

∂xµ
− Γµψ , (2.5)

where Γµ(x) are spinor affine connection matrices.
Einstein’s field equations with variable cosmological and gravitational

“constants” Λ and G are given by

Rµν −
1
2
δµνR = −8πG(t)T µν + Λ(t)δµν , (2.6)

where Rµν is the Ricci tensor; R = gµνRµν is the Ricci scalar; and T µν is the energy–
momentum tensor of matter field given by (2.3). From the divergence of (2.6) we
get

8πG,µT µν + 8πG(T µν;µ)− Λ, µδµν = 0 . (2.7)

The Bianchi I model is given by

ds2 = dt2 − a2(t)dx2 − b2(t)dy2 − c2(t)dz2 . (2.8)

We study the space-independent spinor fields, hence T µν is the function of t alone.
Taking this into account for the metric (2.8), the Einstein’s equations (2.6) and
(2.7) reduce to

b̈

b
+
c̈

c
+
ḃ

b

ċ

c
= 8πGT 1

1 − Λ , (2.9a)

c̈

c
+
ä

a
+
ċ

c

ȧ

a
= 8πGT 2

2 − Λ , (2.9b)

ä

a
+
b̈

b
+
ȧ

a

ḃ

b
= 8πGT 3

3 − Λ , (2.9c)

ȧ

a

ḃ

b
+
ḃ

b

ċ

c
+
ċ

c

ȧ

a
= 8πGT 0

0 − Λ , (2.9d)

8πĠT 0
0 + 8πG

[
Ṫ 0

0 + T 0
0

(
ȧ

a
+
ḃ

b
+
ċ

c

)
+ T 1

1

ȧ

a
+ T 2

2

ḃ

b
+ T 3

3

ċ

c

]
− Λ̇ = 0 , (2.10)

where points denote differentiation with respect to t. If we suppose the energy
conservation law T µν;µ = 0 to hold, then (2.10) reduces to

Ṫ 0
0 + T 0

0

(
ȧ

a
+
ḃ

b
+
ċ

c

)
+ T 1

1

ȧ

a
+ T 2

2

ḃ

b
+ T 3

3

ċ

c
= 0 , (2.11a)

8πĠT 0
0 − Λ̇ = 0 . (2.11b)
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Let us now go back to the spinor field equations (2.2). Using the equalities4,22

gµν(x) = eaµ(x)ebν(x)ηab , γµ(x) = eaµ(x)γ̄a ,

where ηab = diag(1,−1,−1,−1), γ̄α are the Dirac matrices of Minkowski space and
eaµ(x) are the set of tetrad four-vectors, we obtain the Dirac matrices γµ(x) of B-I
space–time

γ0 = γ̄0 , γ1 = γ̄1/a(t) , γ2 = γ̄2/b(t) , γ3 = γ̄3/c(t) ,

γ0 = γ̄0 , γ1 = γ̄1a(t) , γ2 = γ̄2b(t) , γ3 = γ̄3c(t) .

The Γµ(x) matrices are defined by the equality

Γµ(x) =
1
4
gρσ(x)(∂µebδe

ρ
b − Γρµδ)γ

σγδ ,

which gives

Γ0 = 0 , Γ1 =
1
2
ȧ(t)γ̄1γ̄0 , Γ2 =

1
2
ḃ(t)γ̄2γ̄0 , Γ3 =

1
2
ċ(t)γ̄3γ̄0 , (2.12)

where the flat space–time matrices are in the form23

γ̄0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , γ̄1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ,

γ̄2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 , γ̄3 =


0 0 1 0
0 0 0 −1
−1 0 0 0

0 1 0 0

 .

Defining γ5 as follows:

γ5 = − i
4
Eµνσργ

µγνγσγρ , Eµνσρ =
√
−gεµνσρ , ε0123 = 1 ,

γ5 = −i
√
−gγ0γ1γ2γ3 = −iγ̄0γ̄1γ̄2γ̄3 = γ̄5 ,

we obtain

γ̄5 =


0 0 −1 0
0 0 0 −1
−1 0 0 0

0 −1 0 0

 .

Defining

τ(t) = a(t)b(t)c(t) =
√
−g , (2.13)
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we rewrite Eq. (2.2a) together with (2.5) and (2.12)

iγ̄0

(
∂

∂t
+

τ̇

2τ

)
ψ − (m−D)ψ + iGγ5ψ = 0 . (2.14)

Vj(t) =
√
τψj(t), j = 1, 2, 3, 4, from (2.2a) one deduces the following system of

equations:

V̇1 + i(m−D)V1 − GV3 = 0 , (2.15a)

V̇2 + i(m−D)V2 − GV4 = 0 , (2.15b)

V̇3 − i(m−D)V3 + GV1 = 0 , (2.15c)

V̇4 − i(m−D)V4 + GV2 = 0 . (2.15d)

From (2.2a) one can write the equations for S = ψ̄ψ, P = iψ̄γ5ψ and A = ψ̄γ̄5γ̄0ψ

Ṡ0 − 2GA0 = 0 , (2.16a)

Ṗ0 − 2(m−D)A0 = 0 , (2.16b)

Ȧ0 + 2(m−D)P0 + 2GS0 = 0 , (2.16c)

where S0 = τS, P0 = τP and A0 = τA, leading to the following relation

S2 + P 2 +A2 = C2/τ2 , C2 = const. (2.17)

Let us now solve the Einstein’s equations. To do it we first write the expressions
for the components of the energy–momentum tensor explicitly. Using the property
of flat space–time Dirac matrices and the explicit form of covariant derivative ∇µ,
one can easily find

T 0
0 = mS − F (I, J) + ε , T 1

1 = T 2
2 = T 3

3 = DS + GP − F (I, J)− p . (2.18)

Summation of Einstein equations (2.9a), (2.9b), (2.9c) and (2.9d) multiplied by 3
gives

τ̈

τ
= 12πG(T 1

1 + T 0
0 )− 3Λ

= 12πG(mS +DS + GP − 2F (I, J) + ε− p)− 3Λ . (2.19)

Since the right-hand side of (2.19) is a function of τ only, the solution to this
equation is well known.24 Given the explicit form of the nonlinear term from (2.19)
one finds the concrete solution for τ in quadrature.

Let us express a, b, c through τ . For this we notice that subtraction of Einstein
equations (2.9b) and (2.9a) leads to the equation

ä

a
− b̈

b
+
ȧċ

ac
− ḃċ

bc
=

d

dt

(
ȧ

a
− ḃ

b

)
+
(
ȧ

a
− ḃ

b

)(
ȧ

a
+
ḃ

b
+
ċ

c

)
= 0 (2.20)
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with the solution

a

b
= D1 exp

(
X1

∫
dt

τ

)
, D1 = const. , X1 = const. (2.21)

Analogically, one finds

a

c
= D2 exp

(
X2

∫
dt

τ

)
,

b

c
= D3 exp

(
X3

∫
dt

τ

)
, (2.22)

where D2, D3, X2, X3 are integration constants. In view of (2.13) we find the
following functional dependence between the constants D1, D2, D3, X1, X2, X3:

D2 = D1D3 , X2 = X1 +X3 .

Finally, from (2.21) and (2.22) we write a(t), b(t) and c(t) in the explicit form

a(t) = (D2
1D3)1/3τ1/3 exp

[
2X1 +X3

3

∫
dt

τ(t)

]
, (2.23a)

b(t) = (D−1
1 D3)1/3τ1/3 exp

[
−X1 −X3

3

∫
dt

τ(t)

]
, (2.23b)

c(t) = (D1D
2
3)−1/3τ1/3 exp

[
− X1 + 2X3

3

∫
dt

τ(t)

]
. (2.23c)

Thus the system of Einstein’s equations is completely integrated. Let us now go
back to Eqs. (2.11a) and (2.11b). In view of (2.18) and (2.13), from (2.11a) we
have

ε̇ + (ε+ p)
τ̇

τ
+ (m−D)Ṡ0 − GṖ0 = 0 . (2.24)

On the other hand, from (2.16a) and (2.16b) we have

(m−D)Ṡ0 − GṖ0 = 0 .

Taking this into account and also the equation of state p = ζε, 0 ≤ ζ ≤ 1 from
(2.24) we find

ε =
ε0

τ1+ζ
, p =

ζε0

τ1+ζ
, (2.25)

where ε0 is the integration constant. Let us now define G. Taking into account that
Ġ = τ̇ ∂G/∂τ and Λ̇ = τ̇ ∂Λ/∂τ we rewrite (2.11b) as

8πT 0
0

∂G

∂τ
=
∂Λ
∂τ

. (2.26)

On the other hand, inserting a, b, c from (2.23) into (2.9d) we obtain

8πT 0
0G =

τ̇2

3τ2
− X

3τ2
+ Λ , (2.27)
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where X = X2
1 +X1X3+X2

3 . Dividing (2.26) by (2.27) we find the following equation
for G

∂G/∂τ

G
=

3τ2∂Λ/∂τ
τ̇2 −X + 3τ2Λ

. (2.28)

Now, Λ is a given function of τ , namely, Λ = Λ0/τ
2 as well as T 1

1 and T 0
0 . Then

(2.19), multiplied by 2τ̇ can be written as

2τ̇ τ̈ = [2(12πG(T 1
1 + T 0

0 )− 3Λ)τ ]τ̇ = Ψ(τ)τ̇ . (2.29)

In quadrature, the solution to Eq. (2.29) can be written as∫
dτ√∫
Ψ(τ)dτ

= t . (2.30)

Giving the explicit form of F (I, J), from (2.30) one finds concrete function τ(t).
Once the value of τ is obtained, one can get expressions for components ψj(t),
j = 1, 2, 3, 4.

In what follows, we analyze the solutions obtained previously. In Ref. 17 we
gave a detailed analysis of the problem for different F (I, J). Here we give a brief
account of that.

Setting F = F (I), i.e. when G = 0 from (2.16a) one finds

S =
C0

τ
, C0 = const. (2.31)

For the spinor field in this case we obtain

ψ1(t) = (C1/
√
τ )e−i

∫
(m−D)dt , (2.32a)

ψ2(t) = (C2/
√
τ )e−i

∫
(m−D)dt , (2.32b)

ψ3(t) = (C3/
√
τ )ei

∫
(m−D)dt , (2.32c)

ψ4(t) = (C4/
√
τ )ei

∫
(m−D)dt , (2.32d)

where C1, C2, C3 and C4 are integration constants such that C0 = C2
1 +C2

2−C2
3−C2

4 .
Let us now consider the case with F being the function of J only, i.e. F = F (J).

We study the massless spinor field putting m = 0. Then from (2.16b) one finds

P (t) =
D0

τ
, D0 = const. (2.33)

In this case for spinor field we obtain

ψ1 = (1/
√
τ )(D1e

i
∫
G dt + iD3e

−i
∫
G dt) , (2.34a)

ψ2 = (1/
√
τ )(D2e

i
∫
G dt + iD4e

−i
∫
G dt) , (2.34b)

ψ3 = (1/
√
τ )(iD1e

i
∫
G dt + D3e

−i
∫
G dt) , (2.34c)

ψ4 = (1/
√
τ )(iD2e

i
∫
G dt + D4e

−i
∫
G dt) , (2.34d)
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where D1, D2, D3 and D4 are the constants of integration obeying D0 = 2(D2
1 +

D2
2 −D2

3 −D2
4).

Let us note that, in the unified nonlinear spinor theory of Heisenberg, the mas-
sive term remains absent, and according to Heisenberg, the particle mass should be
obtained as a result of quantization of spinor prematter.25 In the nonlinear general-
ization of classical field equations, the massive term does not possess the significance
that it possesses in the linear one, as it by no means defines total energy (or mass)
of the nonlinear field system. So our consideration massless spinor field is justified.

Another choice of nonlinear term is F = F (K±), K+ = I + J = Iv = −IA,
K− = I − J = IT . In the case of massless NLSF one finds

S2 ± P 2 =
D±
τ

. (2.35)

In all the cases mentioned above we mainly found τ = αt for small t guaranteeing
anisotropic behavior of the universe at initial state, while τ = βt2 as t→∞ which
is in accord with present day isotropic state. Note that this result was obtained
for G constant. Here α and β are constants. As one can see, for τ = αt as t → 0,
the solutions of spinor field are initially singular. But for some special cases, it
is possible to obtain the solutions which are initially regular,17,18 but it violates
the dominant energy condition in the Hawking–Penrose theorem.26 Note that one
comes to the analogical conclusion choosing F = F (K), K = IJ .

Now, setting Λ = Λ0/τ
2 from (2.28) we find

G = C/τ6Λ0/(α
2−X+3Λ0) , τ = αt , C = const. (2.36)

and

G = D

(
4βτ

4βτ −X + 3Λ0

)6Λ0/(X−3Λ0)

, τ = βt2 , D = const. (2.37)

Here we would like to emphasize the properties of Bianchi type-I universe. As
was noticed in Ref. 27 it has the agreeable property that near the singularity it
behaves like a Kasner universe, even in the presence of matter, and consequently
falls within the general analysis of the singularity. Since in a Kasner universe a =
a0t

p1 , b = b0t
p2 and c = c0t

p3 , with p1 + p2 + p3 = p2
1 + p2

2 + p2
3 = 1, our assumption

to set τ ∝ t at initial time is correct. On the other hand, in a universe filled
with matter for p = γε, γ < 1, it has been shown that any initial anisotropy in
a B-I universe quickly dies away and a B-I universe eventually evolves into a RW
universe.20 Setting τ ∝ t2 is also a correct one.

If we consider Λ = Λ0/τ
2 and G = const., then the conservation law T µν;µ = 0

does not hold separately, as in that case (2.11b) leads to Λ = const., which contra-
dicts our assumption. In this case from (2.10) we find

ε̇+ (1 + ζ)
τ̇

τ
= −2Λ0τ̇

τ3
(2.38)
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with the solution

ε =
2Λ0

1− ζ
1
τ2
. (2.39)

Setting F = Kn with K = {I, J, (I ± J), IJ} from (2.30) we conclude that even in
the presence of time-dependent Λ in the Einstein’s equation, perfect fluid plays no
role at the early stage of expansion as well as isotropization of BI universe leaving
it to the nonlinear spinor term in (2.1) which confirms our claim made in Refs. 17
and 18.

Finally, we see what happens with the system in the absence of spinor field. As
one can see, in this case the relation ε = ε0/τ

1+ζ takes place. Given Λ = Λ0/τ
2

from (2.11b) for G one finds

G =
Λ0

4πε0(1− ζ)
1

τ (1−ζ) . (2.40)

3. Conclusions

Exact solutions to the NLSF equations have been obtained for the nonlinear terms
being arbitrary functions of the invariant I = S2 and J = P 2, where S = ψ̄ψ and
P = iψ̄γ5ψ are the real bilinear forms of spinor field, for B-I space–time. It has
been shown that introduction of time-dependent Λ term in Einstein’s equation and
consideration of gravitational constant to be a function of time do not effect the
initial singularity and asymptotic isotropization process which is dominated by the
nonlinear spinor term in the Lagrangian. It has also been shown that the results
remain unchanged even in the case when the B-I space–time is filled with perfect
fluid.
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