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Abstract
Given the growing interest of the researchers in cosmological models and their eagerness to

construct the local tensors describing the strength of gravitational field, we write the expression for
the Bel-Robinson tensor defined in three different ways for a Bianchi type-I cosmological model.
In doing so we use the orthonormal basis and compare the results obtained with those for ordinary
coordinate basis.
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1 Introduction

The spatially homogeneous isotropic Friedmann-Robertson-Walker (FRW) models are widely consid-
ered as a good approximation of the present and early stages of the Universe. However, the large
scale matter distribution in the observable Universe, largely manifested in the form of discrete struc-
tures, does not exhibit a high degree of homogeneity. Recent space investigations detect anisotropy
in the cosmic microwave background. The Cosmic Background Explorer’s differential radiometer has
detected and measured cosmic microwave background anisotropies at different angular scales.

These anisotropies are supposed to contain in their fold the entire history of cosmic evolution dating
back to the recombination era and are being considered as indicative of the geometry and the content
of the Universe. More information about cosmic microwave background anisotropy is expected to be
uncovered by the investigations of the microwave anisotropy probe. There is widespread consensus
among cosmologists that cosmic microwave background anisotropies at small angular scales are the
key to the formation of discrete structures. The theoretical arguments [1] and recent experimental
data that support the existence of an anisotropic phase that approaches an isotropic phase leads one
to consider universe models with an anisotropic background. Its simplicity, the Kasner-universe-like
behavior near the singularity [2] and evolution into a FRW universe when filled with matter obeying
the equation of state p = ζ ε, ζ < 1 [3] make the Bianchi type-I (BI) model a prime candidate for
studying the possible effects of an anisotropy in the early Universe on present-day observations.

On the other hand, the lack of a well-posed definition of local energy-momentum tensor which is
the consequence of the Principle of Equivalence [4], lies at the heart of Einstein’s theory of general
relativity and quest for the local tensors describing the strength of gravitational field has long been
going on. One of the first successful attempt to address this problem was taken by Bel [5]-[7] and
independently Robinson [8]. In recent years tensors describing the strength of gravitational field known
as super-energy tensors or Bel-Robinson (BR) tensors have been constructed and their properties were
studied by many authors, e. g. [9]-[19]. In this report we give a review of different definitions of BR
commonly found in literature and illustrate the components of BR for a BI spacetime.
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2 Bianchi I Universe: a brief description

A diagonal BI spacetime is a spatially homogeneous spacetime, which admits an Abelian group G3,
acting on spacelike hypersurfaces, generated by the spacelike Killing vectors ξi = ∂i, i = 1, 2, 3 with
the Lie algebra [ξi, ξj ] = 0, i, j = 1, 2, 3. In synchronous coordinates, the metric is [20, 21]:

ds2 = dt2 −
3∑

i=1

a2
i (t)dx2

i . (1)

If the three scale factors are equal (i.e., a1 = a2 = a3), Eq. (1) describes an isotropic and spatially
flat FRW universe. The BI universe has a different scale factor in each direction, thereby introducing
an anisotropy to the system. Thus, a BI universe, being the straightforward generalization of the flat
FRW universe, is one of the simplest models of an anisotropic universe that describes a homogeneous
and spatially flat universe. When two of the metric functions are equal (e.g., a2 = a3) the BI spacetime
is reduced to the important class of plane symmetric spacetime (a special class of the locally rotational
symmetric spacetimes [22, 23]), which admits a G4 group of isometries acting multiply transitively
on the spacelike hypersurfaces of homogeneity generated by the Killing vectors ξi, i = 1, 2, 3, and
ξ4 = x2∂3−x3∂2. The BI has the agreeable property that near the singularity it behaves like a Kasner
universe, given by

a1(t) = a0
1t

p1 , a2(t) = a0
2t

p2 , a3(t) = a0
3t

p3 , (2)

with pj being the parameters of the BI spacetime which measure the relative anisotropy between any
two asymmetry axes. The Kasner solution is a general spatially homogeneous vacuum solution of
Einstein’s equations, aside from Minkowski metric, where the parameters pj satisfy the constraints

p1 + p2 + p3 = 1, p2
1 + p2

2 + p2
3 = 1. (3)

As one sees, p1, p2 and p3 cannot be equal. Only two of them can be equal, and only in two special
cases, namely, (0, 0, 1) and (−1/3, 2/3, 2/3). In all other cases p1, p2 and p3 are different, moreover,
one of them is negative, while the two others are positive. If it is supposed that p1 < p2 < p3, then
their values are confined in the following intervals:

−1/3 ≤ p1 ≤ 0, 0 ≤ p2 ≤ 2/3, 2/3 ≤ p3 ≤ 1.

The solutions of the algebraic equations (3) can be presented as

p1 =
−p

p2 + p + 1
, p2 =

p(p + 1)
p2 + p + 1

, p3 =
p + 1

p2 + p + 1
.

with 0 ≤ p ≤ 1. Therefore the space of solutions (modulo isometries) is characterized by only one
arbitrary parameter taking values on a circle in (p1, p2, p3) ∈ R3.

For later convenience we list the Christoffel symbol, scalar curvature, Ricci, Riemann and Weyl
tensors for the BI spacetime. The non-trivial Christoffel symbols are the following:

Γi
i0 =

ȧi

ai
, Γ0

ii = aiȧi, i = 1, 2, 3 , (4)

and the non-trivial components of Riemann tensors are

R0i
0i = − äi

ai
, Rij

ij = − ȧi

ai

ȧj

aj
, i, j = 1, 2, 3, i 6= j. (5)

Finally the nontrivial components of the Ricci tensors for the BI metric are

R0
0 = −

3∑

i=1

äi

ai
, Ri

i = −
[ äi

ai
+

ȧi

ai

( ȧj

aj
+

äk

ak

)]
,

i, j, k = 1, 2, 3, i 6= j 6= k.
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and the scalar curvature is

R = −2
( 3∑

i=1

äi

ai
+

ȧ1

a1

ȧ2

a2
+

ȧ2

a2

ȧ3

a3
+

ȧ3

a3

ȧ1

a1

)
. (6)

It is convenient to separate the Riemann tensor into a trace-free part and a ”Ricci” part. This
gives the Weyl tensor

Cijkl = Rijkl − 1
(n− 2)

(
gikRjl + gjlRik − gjkRil − gilRjk

)

+
1

(n− 1)(n− 2)

(
gikgjl − gilgjk

)
R.

This tensor has manifestly all the symmetries of the Riemann tensor. However contrary to the
Riemann tensor while it gives rise to Ricci tensor, the Weyl tensor satisfies

gikCijkl ≡ 0. (7)

A further distinction is that while the Riemann tensor can be defined in a manifold endowed only
with a connection, the Weyl tensor can be defined only when a metric is also defined. In 4 dimensions
the Riemann tensor has 20 distinct components, while the Weyl and the Ricci have 10 components
each. The non-trivial components of the Weyl tensor for the BI spacetime are

C0i0i =
ai

6ajak
{2äiajak − äjakai − äkaiaj − ȧiȧjak − ȧkȧiaj + 2ȧj ȧkai}

Cjkjk = −ajak

6ai
{2äiajak − äjakai − äkaiaj − ȧiȧjak − ȧkȧiaj + 2ȧj ȧkai},

i, j, k = 1, 2, 3, i 6= j 6= k. (8)

From (8) one easily finds the following relation:

C0i0i = − a2
i

a2
ja

2
k

Cjkjk, i, j, k = 1, 2, 3, i 6= j 6= k. (9)

Now having all the non-trivial components of Ricci and Riemann tensors, one can easily write the
invariants of gravitational field which we need to study the spacetime singularity. Moreover now we
can construct the BR tensor that is defined differently by different authors.

3 Bel-Robinson tensors: definitions and general properties

BR tensor first appeared in the endless search for a covariant version of gravitational energy. As it
was mentioned earlier, search for a well-posed definition of local energy-momentum tensor in gravity
led Bel [5]-[7] and independently Robinson [8] to construct a four-index tensor for the gravitational
field in vacuum.

In general relativity, the energetic content of an electromagnetic field propagating in a region free
of charge is described by the well-known symmetric trace-less tensor

Tαβ
el = − 1

4π
(FαλF β

λ −
1
4
gαβFµνFµν), (10)

where Fαβ is the electromagnetic field tensor. This tensor satisfies:

Tαβ
el ;α = 0 (11)

as a consequence of Maxwell equations with jµ = 0. The tensor Tαβ
el enables us to define a local density

of electromagnetic energy as measured by an observer moving with the unit 4-velocity u:

wel(u) = Tαβ
el uαuβ. (12)
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It follows from (10) that the energy density is positive definite for any time-like vector u.
Within the scope of general relativity, however, it is well known that the concept of local energy

density is meaningless for a gravitational field. To overcome this difficulty led to introduce the notion
of super-energy tensor constructed with the curvature tensor Rµναβ . The first example of such a tensor
was exhibited by Bel [5], that was further generalized to the case of an arbitrary gravitational field
[6]. Note that a similar tensor was also introduced by Robinson [8]. This tensor is now commonly
know as the BR tensor as well. Since we are going to compare some distinct definition of BR in this
paper, before defining them let us see what kind of properties they should have. The properties of
the BR tensor are similar to the traditional energy-momentum tensor and following Senovilla [9, 10]
can be formulated as follows: (i) it possesses a positive-definite time-like component and a ”causal”
momentum vector; (ii) its divergence vanishes (in vacuum); (iii) the tensor is zero if and only if the
curvature of the spacetime vanishes; (iv) it has positivity property similar to the electromagnetic one;
and some others. The symmetry properties can be written as follows:

Bµναβ = Bνµαβ, (13)
Bµναβ = Bµνβα, (14)
Bµναβ = Bαβµν . (15)

These symmetry properties leads to the fact that that in n-dimensional case there are n(n + 1)[n(n +
1) + 2]/8 independent components of the BR tensor. In case of n = 4 out of 256 components only 55
are linearly independent.

In literature there are a few definitions of BR. Here we mention only three.
I. By analogy with the tensor (10) which may be written as

Tµν = FµαFα
ν + ∗Fµα ∗ Fα

ν , (16)

the BR tensor is defined as [11]:

Bµναβ = Rρ σ
µ αRρνσβ + ∗Rρ σ

µ α ∗Rρνσβ. (17)

Here the dual curvature is ∗Rµν
λσ ≡ (1/2) εµν

αβRαβ
λσ. It should be noted that this definition is

adequate only in 4 dimensions and in vacuum. Otherwise this tensor cannot satisfy the so called
dominant energy property [24] and therefore this expression should not be used in other dimensions
or in non-Ricci-flat spacetimes.

Using the definition of dual curvature, from (17) we find

Bµναβ = Rρ σ
µ αRρνσβ + Rρ σ

µ βRρνσα − 1
2
gµνR

ρστ
α Rβρστ . (18)

The properties (13) and (14) follow immediately from (17) thanks to the symmetry property of
Riemann tensor. The property (15) is straightforward from (17), but for (18) it requires

gµνR
ρστ

α Rβρστ = gαβR ρστ
µ Rνρστ . (19)

II. The restriction that arises above is due to the fact that in defining the BR tensor we used the
dual term with the duality operator acting only on the left pair of indices. To avoid this restrictions
the BR tensor can be defined by [13, 25]

2Bµναβ = Rρ σ
µ αRρνσβ + ∗Rρ σ

µ α ∗Rρνσβ

+ R ∗ρ σ
µ α R ∗ρνσβ + ∗R ∗ρ σ

µ α ∗R∗ρνσβ, (20)

where the duality operator acts on the left or on the right pair of indices according to its position.
Nowadays this is known as the Bel tensor and was introduced by Bel [6] in a slightly different form.

III. Here we give another definition that gives rise to BR tensor, that is trace-less and totally
symmetric. It can be achieved by constructing BR by means of Weyl tensor [14, 26].
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Bµναβ = Cρ σ
µ αCρνσβ + ∗Cρ σ

µ α ∗ Cρνσβ. (21)

It can be shown that this BR is totally symmetric, i.e.,

Bijkl = B(ijkl), (22)

Moreover, the BR defined through Weyl tensor is trace-free, i.e.,

gjlBijkl ≡ 0. (23)

Let us study this case in detail. Using the properties of Levi-Civita tensor we first rewrite 21 in
the form

Bµναβ = Cρ σ
µ αCρνσβ + Cρ σ

µ βCρνσα − 1
2
gµνC

ρστ
α Cβρστ . (24)

In what follows we write the expressions for the components of the BR tensor for a BI metric.

4 BR in BI cosmology

Let us now write the components of BR for a BI metric. In doing so we first write the nontrivial
components of Riemann and Weyl tensor corresponding to the BI metric (1) in an orthonormal basis.

The nontrivial components of the Riemann tensor in the orthonormal basis take the form:

R0i0i =
äi

ai
, Rijij = − ȧi

ai

ȧj

aj
, i 6= j = 1, 2, 3.

For the nontrivial components of the Weyl tensor in the orthonormal basis we find:

Cjkjk = −C0i0i = −2äiajak − äjakai − äkaiaj − ȧiȧjak − ȧkȧiaj + 2ȧj ȧk

6aiajak
,

i 6= j 6= k = 1, 2, 3.

Once we have the components of Riemann and Weyl tensor, we can now write the components for
the BR. In what follows we write the nontrivial components of the BR tensor. In doing so we use all
the three definitions mentioned above. Here we note that the sub-scripts i, j, k run from 1 to 3 and
they are different, i.e., i, j, k = 1, 2, 3, and i 6= j 6= k.

I. From (18) we now write

Biijj =
ȧ2

j

a2
j

[ ȧ2
i

a2
i

− ȧ2
k

a2
k

]
− ä2

j

a2
j

, (25)

Bjjjj =
ȧ2

j

a2
j

[ ȧ2
i

a2
i

+
ȧ2

k

a2
k

]
+

ä2
j

a2
j

, (26)

Bijij =
ȧi

ai

ȧj

aj

ȧ2
k

a2
k

+
äi

ai

äj

aj
, (27)

B00jj =
ȧ2

j

a2
j

[ ȧ2
i

a2
i

+
ȧ2

k

a2
k

]
− ä2

j

a2
j

, (28)

Bjj00 = − ä2
j

a2
j

+
ä2

k

a2
k

+
ä2

i

a2
i

, (29)

Bj0j0 = − ȧj

aj

[ ȧk

ak

äk

ak
+

ȧi

ai

äi

ai

]
, (30)

B0000 =
3∑

j=1

ä2
j

a2
j

. (31)
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Comparing these expressions with those of [19] one sees that the use of the orthonormal basis in this
case does not at all simplify them. As in that case, here too we get the following restrictions on metric
functions, that reads

( äi

ai

)2
±

( äj

aj

)2
=

( ȧk

ak

)2[( ȧj

aj

)2
±

( äi

ai

)2]
. (32)

It was shown in [19] that that if one defines BR tensor as (17) or (18), it correspond to the Einstein
equations with the source field given by a vacuum.

II. Let us write the nontrivial components of BR defined as (20).

B0000 = Biiii =
1
2

[ ä2
i

a2
i

+
ä2

j

a2
j

+
ä2

k

a2
k

+
ȧ2

i

a2
i

ȧ2
j

a2
j

+
ȧ2

j

a2
j

ȧ2
k

a2
k

+
ȧ2

k

a2
k

ȧ2
i

a2
i

]
, (33)

B00kk = −Biijj =
1
2

[ ä2
i

a2
i

+
ä2

j

a2
j

− ä2
k

a2
k

− ȧ2
i

a2
i

ȧ2
j

a2
j

+
ȧ2

j

a2
j

ȧ2
k

a2
k

+
ȧ2

k

a2
k

ȧ2
i

a2
i

]
, (34)

Bijij =
äi

ai

äj

aj
+

ȧi

ai

äj

aj

ȧ2
k

a2
k

, (35)

B0i0i = − ȧi

ai

[ ȧj

aj

äj

aj
+

ȧk

ak

äk

ak

]
. (36)

Comparing those expression with those given in [19] we find that the new basis simplifies our task. In
this case we have B00kk = −Biijj which was not the case in an ordinary basis.

III. Let us now write the components of BR defined in (21).

B0000 = Biiii =
1
6

[ ä2
i

a2
i

+
ä2

j

a2
j

+
ä2

k

a2
k

+
ȧi

ai

ȧj

aj

ȧk

ak

( ȧi

ai
+

ȧj

aj
+

ȧk

ak

)

− ȧi

ai

ȧj

aj

( äi

ai
+

äj

aj

)
− ȧj

aj

ȧk

ak

( äj

aj
+

äk

ak

)
− ȧk

ak

ȧi

ai

( äk

ak
+

äi

ai

)

+
ȧ2

i

a2
i

ȧ2
j

a2
j

+
ȧ2

j

a2
j

ȧ2
k

a2
k

+
ȧ2

k

a2
k

ȧ2
i

a2
i

− äi

ai

äj

aj
− äj

aj

äk

ak
− äk

ak

äi

ai

+ 2
( äi

ai

ȧj

aj

ȧk

ak
+

äj

aj

ȧk

ak

ȧi

ai
+

äk

ak

ȧi

ai

ȧj

aj

)]
, (37)

B00kk = −Biijj = − 1
18

( ȧi

ai

ȧj

aj
− 2

ȧj

aj

ȧk

ak
+

ȧk

ak

ȧi

ai
− 2

äi

ai
+

äj

aj
+

äk

ak

)

×
( ȧi

ai

ȧj

aj
+

ȧj

aj

ȧk

ak
− 2

ȧk

ak

ȧi

ai
+

äi

ai
− 2

äj

aj
+

äk

ak

)
= −Bijij . (38)

In this case though the expressions for the components of BR does not undergo any radical changes,
as it was shown in [19], the dominant energy property of the BR now fulfills.

5 Conclusions and further questions

In view of the importance of the BI model in the study of the present day Universe we considered
the most simple model with a perfect fluid as a source field. We have investigated the Bel-Robinson
tensor for the BI spacetime using the orthonormal basis. Comparing the expressions with those found
in [19] we see at least for two cases the new basis significantly simplifies the expression and gives clear
idea about the dominant property of BR.

The averaging problem in general relativity is an important issue with many implications in cos-
mology and in the understanding of the recent expansion history of the visible Universe. We must
remind that the averaging methods are far from unique and the problem of defining a suitable aver-
aging scheme remains open [28]. The effects of spatial anisotropies on cosmologies by looking at the
average properties of BI models deserve further studies.
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As it is known, in curved spacetimes, there is an ambiguity in the construction of a vacuum
state, Fock space for quantum fields. In some cases, there may exist coordinates associated with the
Killing vectors in analogy with the rectangular coordinates in Minkowski space. However, even if such
privileged coordinates do exist, there are problems in the quantization of the fields [29]. That is the
case of the quantum fields in BI spacetimes and the evaluation of the Bogolubov coefficients is of
interest.

Acknowledgments

Part of the present work was done with the financial support from a grant afforded by the Representa-
tive of Romanian Government to JINR-Dubna within the Hulubei-Meshcheryakov Program on 2006.
M. V. has been partially supported by a grant CNCSIS, Romania. We would also like to thank J. M.
M. Senovilla for valuable remarks. M. V. would like to acknowledge the Organizing Committee of the
5-th International School and Workshop on QFT and Hamiltonian Systems, Călimăneşti-Căciulata,
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