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Abstract

The nature of cosmological solutions for a homogeneous, anisotropic Universe given by a Bianchi type-I (BI) model in the presence of a
cosmological constant Λ is investigated by taking into account dissipative process due to viscosity. The system in question is thoroughly studied
both analytically and numerically. It is shown that the viscosity, as well as the Λ term, exhibit essential influence on the nature of the solutions.
In particular a positive Λ gives rise to an ever-expanding Universe, whereas a suitable choice of initial conditions plus a negative Λ can result in
a singularity-free oscillatory mode of expansion. For some special cases it is possible to obtain oscillations in the exponential mode of expansion
of the BI model even with a positive Λ, where oscillations arise by virtue of viscosity.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we study the evolution of an anisotropic
Bianchi type-I (hereafter BI) cosmological model filled with
viscous fluid in the presence of a cosmological constant which
is also known as the Λ term. In doing so we notice that the
investigation of relativistic cosmological models usually has
the energy–momentum tensor of matter generated by a perfect
fluid. To consider more realistic models one must take into
account the viscosity mechanisms, which have already attracted
the attention of many researchers. Misner [1,2] suggested
that strong dissipation due to the neutrino viscosity may
considerably reduce the anisotropy of the black-body radiation.
The viscosity mechanism in cosmology can explain the
anomalously high entropy per baryon in the present universe [3,
4]. Bulk viscosity associated with the grand-unified-theory
phase transition [5] may lead to an inflationary scenario [6–8].

A uniform cosmological model filled with fluid which
possesses pressure and second (bulk) viscosity was developed
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by Murphy [9]. The solutions that he found exhibit an
interesting feature that the big bang type singularity appears in
the infinite past. It should be noted that the present cosmology
is based largely on Friedmann’s solutions of the Einstein
gravitational equations. The main feature of these solutions is
their non-stationarity. Another important feature of the isotropic
model is the presence of a singular point with respect to time in
its space–time metric. The presence of such a singular point
means that the time is restricted [10]. So the solutions obtained
by Murphy with the singular point appearing in the infinite
past presents definite interest. However it was soon shown that
the effect obtained by Murphy is instable and vanishes if the
more general models such as the anisotropic one are taken
into consideration [11,12]. Exact solutions of the isotropic
homogeneous cosmology for open, closed and flat universes
have been found by Santos et al. [13], with the bulk viscosity
being a power law of energy density.

The nature of cosmological solutions for the homogeneous
Bianchi type I (BI) model was investigated by Belinskii and
Khalatnikov [11] by taking into account the dissipative process
due to viscosity. They showed that viscosity cannot remove
the cosmological singularity but results in a qualitatively new
behavior of the solutions near singularity. They found the
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remarkable property that during the time of the big bang matter
is created by the gravitational field. BI solutions in the case
of stiff matter with a shear viscosity being the power law of
energy density were obtained by Banerjee [14], whereas BI
models with bulk viscosity (η) that is a power law of energy
density ε and when the universe is filled with stiff matter
were studied by Huang [15]. The effect of bulk viscosity, with
a time varying bulk viscous coefficient, on the evolution of
isotropic FRW models was investigated in the context of an
open thermodynamics system was studied by Desikan [16].
This study was further developed by Krori and Mukherjee [17]
for anisotropic Bianchi models. Cosmological solutions with
nonlinear bulk viscosity were obtained in [18]. Models with
both shear and bulk viscosity were investigated in [19,20].

We studied a self-consistent system of the nonlinear spinor
and/or scalar fields in a BI space–time in the presence of a
perfect fluid and a Λ term [21,22] in order to clarify whether
the presence of a singular point is an inherent property of the
relativistic cosmological models or is it only a consequence
of specific simplifying assumptions underlying these models?
Recently we have considered a system of nonlinear spinor fields
in a BI universe filled with viscous fluid [23]. Since the viscous
fluid itself presents a growing interest, we have studied the
influence of viscous fluid and Λ term in the evolution of the BI
universe [24]. In that paper we consider only some special cases
which allow exact solutions. In this paper along with those
special cases we study some general cases, giving a qualitative
analysis of the system of equations. We also perform some
numerical calculations and compare the results obtained with
those given in some pioneering papers in this field, e.g. [11].

2. Derivation of basic equations

Using the variational principle in this section we derive the
fundamental equations for the gravitational field from the action
(2.1):

S (g; ε) =

∫
L

√
−gdΩ (2.1)

with

L = Lgrav. + Lvf. (2.2)

The gravitational part of the Lagrangian (2.2) Lgrav. is given
by a Bianchi type-I metric, whereas the term Lvf describes a
viscous fluid.

We also write the expressions for the metric functions
explicitly in terms of the volume scale τ defined below (2.18).
Defining the Hubble constant (2.28) in analogy with a flat
Friedmann–Robertson–Walker (FRW) universe, we also derive
the system of equations for τ , H and ε, with ε being the energy
density of the viscous fluid, which plays the central role here.

2.1. The gravitational field

As a gravitational field we consider the Bianchi type I (BI)
cosmological model. It is the simplest model of anisotropic
universe that describes a homogeneous and spatially flat
space–time and if filled with perfect fluid with the equation
of state p = ζε, ζ < 1, it eventually evolves into a FRW
universe [25]. The isotropy of the present-day universe makes
the BI model a prime candidate for studying the possible effects
of an anisotropy in the early universe on modern-day data
observations. In view of what has been mentioned above we
choose the gravitational part of the Lagrangian (2.2) in the form

Lgrav. =
R

2κ
, (2.3)

where R is the scalar curvature, κ = 8πG being Einstein’s
gravitational constant. The gravitational field in our case is
given by a Bianchi type I (BI) metric

ds2
= dt2

− a2dx2
− b2dy2

− c2dz2, (2.4)

with a, b, c being the functions of time t only. Here the speed
of light is taken to be unity.

2.2. Viscous fluid

The influence of the viscous fluid in the evolution of the
Universe is performed by means of its energy–momentum
tensor, which acts as the source of the corresponding
gravitational field. The reason for writing Lvf in (2.2) is to
underline that we are dealing with a self-consistent system. The
energy–momentum tensor of a viscous field has the form

T ν
µ = (ε + p′)uµuν

− p′δν
µ + ηgνβ

× [uµ;β + uβ:µ − uµuαuβ;α − uβuαuµ;α], (2.5)

where

p′
= p −

(
ξ −

2
3
η

)
uµ

;µ
. (2.6)

Here ε is the energy density, p is pressure, η and ξ are the
coefficients of shear and bulk viscosity, respectively. Note that
the bulk and shear viscosities, η and ξ , are both positively
definite, i.e.,

η > 0, ξ > 0. (2.7)

They may be either constant or a function of time or energy,
such as:

η = |A|εα, ξ = |B|εβ . (2.8)

The pressure p is connected to the energy density by means of
a equation of state. In this report we consider the one describing
a perfect fluid :

p = ζε, ζ ∈ (0, 1]. (2.9)

Note that here ζ 6= 0, since for dust pressure, hence temperature
is zero, that results in vanishing viscosity.

In a comoving system of reference such that uµ
=

(1, 0, 0, 0) we have

T 0
0 = ε, (2.10a)

T 1
1 = −p′

+ 2η
ȧ

a
, (2.10b)
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T 2
2 = −p′

+ 2η
ḃ

b
, (2.10c)

T 3
3 = −p′

+ 2η
ċ

c
. (2.10d)

Let us introduce the dynamical scalars such as the expansion
and the shear scalar as usual

θ = uµ

;µ
, σ 2

=
1
2
σµνσ

µν, (2.11)

where

σµν =
1
2

(
uµ;α Pα

ν + uν;α Pα
µ

)
−

1
3
θ Pµν . (2.12)

Here P is the projection operator obeying

P2
= P. (2.13)

For the space–time with signature (+, −, −, −) it has the form

Pµν = gµν − uµuν, Pµ
ν = δµ

ν − uµuν . (2.14)

For the BI metric the dynamical scalar has the form

θ =
ȧ

a
+

ḃ

b
+

ċ

c
=

τ̇

τ
, (2.15)

and

2σ 2
=

ȧ2

a2 +
ḃ2

b2 +
ċ2

c2 −
1
3
θ2. (2.16)

2.3. Field equations and their solutions

Variation of (2.1) with respect to metric tensor gµν gives
Einstein’s field equation. On account of the Λ term for the BI
space–time (2.4) this system of equations can be rewritten as

b̈

b
+

c̈

c
+

ḃ

b

ċ

c
= κT 1

1 + Λ, (2.17a)

c̈

c
+

ä

a
+

ċ

c

ȧ

a
= κT 2

2 + Λ, (2.17b)

ä

a
+

b̈

b
+

ȧ

a

ḃ

b
= κT 3

3 + Λ, (2.17c)

ȧ

a

ḃ

b
+

ḃ

b

ċ

c
+

ċ

c

ȧ

a
= κT 0

0 + Λ, (2.17d)

where the overdot means differentiation with respect to t and
T µ

ν is the energy–momentum tensor of a viscous fluid given
above (2.10). Note that to allow a steady state cosmological
solution to the gravitational field equations Einstein [26,27]
introduced a fundamental constant, known as the cosmological
constant or Λ term, into the system. Soon after E. Hubble
had experimentally established that the Universe is expanding,
Einstein returned to the original form of his equations citing his
temporary modification of them as the biggest blunder of his
life. The Λ term made a temporary comeback in the late 60’s.
Finally after the pioneering paper by Guth [8] on inflationary
cosmology researchers began to study the models with Λ terms
with growing interest [an excellent review on the cosmological
constant can be found in [28]]. In this paper a positive Λ
corresponds to the universal repulsive force, while a negative
one gives an additional gravitational force. Note that a positive
Λ is often considered to be one of the forms of dark energy. We
would also like to note that the Λ term is also connected with
the so-called cosmic no hair conjecture which reads: all initially
expanding universes with positive cosmological constant Λ
approach the de Sitter space–time asymptotically. Here we
would like to mention some papers on the cosmic no hair
theorem [29–37].

2.3.1. Expressions for the metric functions
To write the metric functions explicitly, we define a new time

dependent function τ(t)

τ = abc =
√

−g, (2.18)

which is indeed the volume scale of the BI space–time.
Let us now solve the Einstein equations. On account

of (2.10) from (2.17a) to (2.17c) one finds the following
expressions for the metric functions explicitly [24]

a(t) = X1τ
1/3 exp

[
(Y1/3)

∫
e−2κ

∫
ηdt

τ
dt

]
, (2.19a)

b(t) = X2τ
1/3 exp

[
(Y2/3)

∫
e−2κ

∫
ηdt

τ
dt

]
, (2.19b)

c(t) = X3τ
1/3 exp

[
(Y3/3)

∫
e−2κ

∫
ηdt

τ
dt

]
, (2.19c)

where the constants X i ’s and Yi ’s obey the following relations

X1 X2 X3 = 1,

Y1 + Y2 + Y3 = 0.

Thus, the metric functions are found explicitly in terms of τ and
viscosity.

As one sees from (2.19a) to (2.19c), for τ = tn with n > 1
the exponent tends to unity at large t , and the anisotropic model
becomes an isotropic one.

2.3.2. Singularity analysis
Let us now investigate the existence of singularity (singular

point) of the gravitational case, which can be done by
investigating the invariant characteristics of the space–time.
In general relativity these invariants are composed from the
curvature tensor and the metric one. In a 4D Riemann
space–time there are 14 independent invariants. Instead of
analyzing all 14 invariants, one can confine this study only to
3, namely the scalar curvature I1 = R, I2 = Rµν Rµν , and the
Kretschmann scalar I3 = Rαβµν Rαβµν [38,39]. At any regular
space–time point, these three invariants I1, I2, I3 should be
finite. Let us rewrite these invariants in detail.

For the Bianchi I metric one finds the scalar curvature

I1 = R = −2
(

ä

a
+

b̈

b
+

c̈

c
+

ȧ

a

ḃ

b
+

ḃ

b

ċ

c
+

ċ

c

ȧ

a

)
. (2.20)
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Since the Ricci tensor for the BI metric is diagonal, the invariant
I2 = Rµν Rµν

≡ Rν
µ Rµ

ν is a sum of squares of diagonal
components of a Ricci tensor, i.e.,

I2 =

[(
R0

0

)2
+

(
R1

1

)2
+

(
R2

2

)2
+

(
R3

3

)2
]

. (2.21)

Analogously, for the Kretschmann scalar in this case we
have I3 = Rµν

αβ Rαβ
µν , a sum of squared components of all

nontrivial Rµν
µν , which can be written as

I3 = 4
[(

R01
01

)2
+

(
R02

02

)2
+

(
R03

03

)2

+

(
R12

12

)2
+

(
R23

23

)2
+

(
R31

31

)2
]

= 4

[(
ä

a

)2

+

(
b̈

b

)2

+

(
c̈

c

)2

+

(
ȧ

a

ḃ

b

)2

+

(
ḃ

b

ċ

c

)2

+

(
ċ

c

ȧ

a

)2
]

. (2.22)

Let us now express the foregoing invariants in terms of τ . From
Eqs. (2.19) we have

ai = X iτ
1/3 exp

(
(Yi/3)

∫
e−2κ

∫
ηdt

τ(t)
dt

)
, (2.23a)

ȧi

ai
=

τ̇ + Yi e−2κ
∫

ηdt

3τ
(i = 1, 2, 3, ), (2.23b)

äi
ai

=
3τ τ̈−2τ̇ 2

−τ̇Yi e−2κ
∫

ηdt
−6κητYi e−2κ

∫
ηdt

+Y 2
i e−4κ

∫
ηdt

9τ 2 ,

(2.23c)

i.e., the metric functions a, b, c and their derivatives are in
functional dependence with τ . From Eqs. (2.23) one can easily
verify that [24]

I1 ∝
1

τ 2 , I2 ∝
1

τ 4 , I3 ∝
1

τ 4 .

Thus we see that at any space–time point, where τ = 0 the
invariants I1, I2, and I3 become infinity, hence the space–time
becomes singular at this point.

2.4. Equations for determining τ

In the foregoing subsection we wrote the corresponding
metric functions in terms of volume scale τ . In what follows,
we write the equation for τ and study it in detail.

Summation of Einstein Eqs. (2.17a)–(2.17c) and 3 times
(2.17d) gives

τ̈ −
3
2
κξ τ̇ =

3
2
κ(ε − p)τ + 3Λτ. (2.24)

For the right-hand side of (2.24) to be a function of τ only, the
solution to this equation is well-known [40].

The energy–momentum conservation law, i.e.,

T ν
µ;ν = T ν

µ,ν + Γ ν
ρνT ρ

µ − Γ ρ
µνT ν

ρ = 0, (2.25)
in our case gives the following equation for ε:

ε̇ +
τ̇

τ
ω −

(
ξ +

4
3
η

)
τ̇ 2

τ 2 + 4η(κT 0
0 + Λ) = 0, (2.26)

where

ω = ε + p, (2.27)

is the thermal function.
Defining a generalized Hubble constant H :

τ̇

τ
=

ȧ

a
+

ḃ

b
+

ċ

c
= 3H, (2.28)

Eqs. (2.24) and (2.26) in account of (2.10) can be rewritten as

Ḣ =
κ

2
(3ξ H − ω) − (3H2

− κε − Λ), (2.29a)

ε̇ = 3H(3ξ H − ω) + 4η(3H2
− κε − Λ). (2.29b)

In terms of dynamical scalars θ and σ the system (2.29) takes a
very simple form

θ̇ =
3κ

2
(ξθ − ω) − 3σ 2, (2.30a)

ε̇ = θ (ξθ − ω) + 4ησ 2. (2.30b)

Note that Eqs. (2.30) coincide with the ones given in [14].

3. Qualitative analysis and some special solutions

In this subsection we simultaneously solve the system of
equations for τ , H , and ε. It is convenient to rewrite Eqs. (2.28)
and (2.29) as a single system:

τ̇ = 3Hτ, (3.1a)

Ḣ =
κ

2
(3ξ H − ω) − (3H2

− κε − Λ), (3.1b)

ε̇ = 3H(3ξ H − ω) + 4η(3H2
− κε − Λ). (3.1c)

On account of (2.27), (2.8) and (2.9) Eqs. (3.1) now can be
rewritten as

τ̇ = 3Hτ, (3.2a)

Ḣ =
κ

2
(3Bεβ H − (1 + ζ )ε) − (3H2

− κε − Λ), (3.2b)

ε̇ = 3H(3Bεβ H − (1 + ζ )ε) + 4Aεα(3H2
− κε − Λ).

(3.2c)

The system (3.1) have been extensively studied in the
literature either partially [9,14,15] or in general [11]. In what
follows, we consider the system (3.1) for some special choices
of the parameters.

3.1. Qualitative analysis

Following Belinskii and Khalatnikov [11] let us now study
the characters of the solutions of the dynamical system (3.1) or
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(3.2). We first rewrite the system (3.1), namely (3.1b) and (3.1c)
in the matrix form:(

Ḣ
ε̇

)
=

(
κ/2 −1
3H 4η

)(
3ξ H − ω

3H2
− κε − Λ

)
. (3.3)

Note that unlike the system studied by Belinskii and Khalat-
nikov the system in consideration contains a cosmological con-
stant Λ.

3.1.1. General properties of the system
It is easy to note that the solutions cannot intersect the axis

ε = 0, since ε̇|ε=0 = 0, as well as the parabola

3H2
− κε − Λ = 0, (3.4)

as far as (3.4) is itself the integral curve. Thus, starting from
the point (H, ε) = (+∞, 0), the solutions cannot enter into
the “prohibited region” inside the parabola (3.4). Whether they
may achieve H < 0 depends on the value of Λ.

3.1.2. Critical points of the dynamical system
(a) By virtue of linear independence of the columns of the

matrix of Eq. (3.3) the critical points are the solutions of the
equations

3ξ H − ω = 0, (3.5a)

3H2
− κε − Λ = 0. (3.5b)

i.e., they necessarily lie on the parabola (3.4). Solutions to the
system (3.5) will be the roots of the equation

3κ B2ε1+2β
− (1 + ζ )2ε2

+ 3ΛB2ε2β
= 0, (3.6a)

H =
1 + ζ

3B
ε1−β . (3.6b)

The quantity of the positive roots of Eq. (3.6) according to
Cartesian law is equal to the number of changes of sign of the
coefficients of equations or less than that by an even number.
So, for

Λ > 0 and 1/2 < β < 1 (Figs. 2, 3)

or

Λ < 0 and β < 1/2 (Figs. 5, 6)

the number of roots is either 2 or zero. For the remaining cases

Λ > 0 and β > 1 (Fig. 1),

Λ > 0 and β < 1/2 (Fig. 4),

Λ < 0 and β > 1/2 (Fig. 7)

there exists only one root. The corresponding pictures of the
phase curves are given in the figures cited above. The critical
points are denoted by small circles. Note that here we consider
the case with η = 0, i.e., A = 0. In the case if η 6= 0, with
the increase of A the separatrix of the saddle tilts (inclines)
to the left. Since the overall picture for A 6= 0 remains
qualitatively unaltered, we only show the corresponding phase
portrait for two cases, namely Fig. 8 corresponds to Fig. 1, Fig.
9 corresponds to Fig. 4. Note that for numerical calculations we
Fig. 1. Phase diagram on H–ε plane for β = 1.5, Λ = .933, B = .720.

Fig. 2. Phase diagram on H–ε plane for β = .75, Λ = .707, B = .589.

Fig. 3. Phase diagram on H–ε plane for β = .75, Λ = .707, B = .667.

set κ = 1, ζ = 0.333 (if not mentioned otherwise). In Figs. 1–7
η is taken to be zero.

Since the equation for ε only contains η, the energy density
for nontrivial η undergoes essential changes, whereas H and τ

remain virtually unchanged.
The types of critical points lying on the integral curve

alternate: . . . saddle, attracting knot, saddle . . .. So it is
sufficient to consider the case with maximum number of roots.
Taking into account Eqs. (3.1c) and (3.4) let us now calculate

lim
ε→+∞

ε̇

3Hε
= lim

ε→+∞

√
3Bεβ

√
κε + Λ − ε(1 + ζ )

ε
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Fig. 4. Phase diagram on H–ε plane for β = .05, Λ = .785, B = .451.

Fig. 5. Phase diagram on H–ε plane for β = .05, Λ = −.317, B = 0.933.

Fig. 6. Phase diagram on H–ε plane for β = .05, Λ = −.317, B = .667.

Fig. 7. Phase diagram on H–ε plane for β = .75, Λ = −.337, B = 1.169.
Fig. 8. Phase diagram on H–ε plane for β = 1.5, Λ = .933, B = .720,
A = 1, α = 1.

Fig. 9. Phase diagram on H–ε plane for β = .05, Λ = .785, B = .451,
A = 1, α = 1, κ = 1.

=
√

3B
√

κε(2β−1) + Λε−2 − (1 + ζ )

=


−(1 + ζ ) < 0, β < 1/2,

B
√

3κ − (1 + ζ ), β = 1/2,

+∞ > 0, β > 1/2.

(3.7)

So, the latest critical point for β < 1/2 is attracting knot and
for β > 1/2 is saddle. In case of β = 1/2 we have saddle if
B

√
3κ − (1 + ζ ) > 0 and attracting knot otherwise.

(b) It is obvious that if Λ ≥ 0 the points of intersection of
the boundary are the critical points

H = ±
√

Λ/3, (3.8a)

ε = 0. (3.8b)

(c) For H < 0 there may exist critical points, if the columns
of the matrix of (3.3) are linearly dependent. In that case the
critical points are the roots of the equation

3κ(ζ − 1)ε + 6κ2 ABεα+β
+ 8κ2 A2ε2α

− 6Λ = 0, (3.9)

and

H = −
2
3
κ Aεα. (3.10)

In the case of η = 0 the roots of the characteristic equation∣∣∣∣ D(Ḣ , ε̇)

D(H, ε)
− µ

∣∣∣∣ = 0, (3.11)
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Fig. 10. Phase diagram on H–ε plane for Λ = −3, ζ = 0.333, C2 = 1,

C3 = 1.

Fig. 11. Phase diagram on H–ε plane for β = 0.5,Λ = 0, B = 0.589, A = 0,

are

µ1,2 =
3κξ ±

√
9κ2ξ2 + 48Λ(1 + ζ )

4
. (3.12)

The critical point (H, ε) = (0, 2Λ/[κ(ζ − 1)]) is of type
divergent focus if Λ > −9κ2ξ2/[48(1 + ζ )] or divergent knot
if Λ < −9κ2ξ2/[48(1 + ζ )].

In the cases illustrated in Figs. 5 and 7, H → ∞ and ε → ∞

as t → ∞, whereas for the cases given in Fig. 6 one observes
increasing oscillation bounded by the attracting parabola (3.4).

3.1.3. Integral curves
For Λ ≥ 0 the solutions starting from the upper half-plane

H > 0 cannot enter into the lower one. For Λ < 0 some of
the solutions may enter into the lower half-plane through the
segment H = 0 and Λ ≤ 0 ≤ ε and never returns back, since
Ḣ |H=0 < 0.

3.2. Numerical solutions

In this subsection solutions to the system of equations
(3.1) has been obtained numerically. Evolution of the Hubble
constant H , energy density ε and volume scale τ corresponding
to the cases studied above with different B, β and Λ has
been illustrated in Figs. 1–15. As one sees, for a positive
Λ the volume scale τ expands exponentially, whereas, for a
Fig. 12. Phase diagram on H–ε plane for β = 0.5, Λ = 0, B = 0.856.

Fig. 13. Phase diagram on H–ε plane for β = 0.05, Λ = 0, B = 0.71, A = 0.

Fig. 14. Phase diagram on H–ε plane for β = 0.75, Λ = 0, B = 0.71, A = 0.

negative Λ there exist solutions where τ initially expands and
after reaching some maximum begins to contract and finally
collapses into a point, thus giving rise to space–time singularity.
Beside this, as one sees from Fig. 15, a suitable choice of initial
conditions gives rise to a singularity-free oscillatory mode of
expansion of the Universe.
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Table 1
Evolution of BI universe depending on the parameters

0 < β < 0.5 β = 0.5 0.5 < β < 1.0 β = 1 β > 1
ϕ1 < ϕ3 ϕ1 > ϕ3 ϕ2 < ϕ3 ϕ2 > ϕ3

Λ < 0 Figs. 5, 6 Fig. 6 Fig. 7

Λ = 0 Fig. 13 Fig. 12 Fig. 11 Fig. 14

Λ > 0 Fig. 4 Fig. 3 Figs. 2, 3 Fig. 1 Fig. 3 Fig. 1

Here we use the notations ϕ1 := 3κ B2, ϕ2 := 3ΛB2 and ϕ3 := (1 + ζ )2.
Fig. 15. Evolution of the BI universe corresponding to the phase diagram given
in Fig. 10. As one sees, the BI universe in this case undergoes an oscillatory
mode of expansion.

3.3. Exact solutions

In this subsection we consider some special cases allowing
exact solutions. Since the system was thoroughly studied by
one of the authors (B.S.) in a recent paper [24], here we only
point out the main results leaving the details aside. Note that in
[24] the Λ term has the opposite sign, i.e., in that case positive
Λ corresponds to an additional gravitational force, while the
negative one acts as a repulsive force. In this paper we use the
conventional sign.

3.3.1. Case with bulk viscosity
In this case Eq. (3.1c) takes the form

ε̇ = 3H(3ξ H − ω). (3.13)

In view of (3.13) the system (3.1) admits the following first
integral

τ 2(κε − 3H2
+ Λ) = C1, C1 = const. (3.14)

It can be shown that in the presence of a positive Λ the evolution
of the Universe never comes to a halt, it either expands further
or begin to contract depending on the sign of H = ±

√
Λ/3,

Λ > 0. Taking into account that 3H = τ̇ /τ in this case we find
τ ∼ exp[±

√
3Λ t]. Choosing the positive root we see that the

initially expanding Universe approaches de Sitter space–time
asymptotically, i.e., in this case the cosmic no hair conjecture
takes place.
If the bulk viscosity is chosen to be inversely proportional to
expansion, i.e., ξθ = C2 where C2 is some constant Eq. (2.24)
admits the solution in quadrature:∫

dτ√
C2

2 + C0
0τ 2 + C1

1τ 1−ζ

= t + t0, (3.15)

where C2
2 and t0 are some constants. Here, C0

0 = 3κC2/(1 +

ζ )+3Λ and C1
1 = 3κC3/(1+ζ ). It can be shown that a suitable

choice of C2
2 and τ0 (the initial value of τ ) can give rise to an

oscillatory mode of expansion with τ being always positive,
i.e., a singularity free evolution of the Universe. The phase
portrait of the (H, ε) plane and the evolution of the BI universe
corresponding to this portrait allowing oscillatory solutions are
given in Figs. 10 and 15. If the value of ζ is taken to be
unity which corresponds to a stiff matter the BI universe first
expands, reaches its maximum and then contracts into a point,
thus giving rise to space–time singularity. The classification
of the type of evolution of the BI universe depending on the
problem parameters are given in Table 1.

3.3.2. Case with shear and bulk viscosity
Consider the case when the bulk viscosity ξ is a constant and

the shear viscosity η is proportional to the expansion, i.e.,

ξ = const., η ∝ θ = 3H. (3.16)

In this case the system allows non-periodic or exponential
expansion of τ both for positive and negative Λ [24].

4. Conclusion

We investigated the cosmological solutions to the equations
of General Relativity for the homogeneous anisotropic Bianchi
type I model by taking into account dissipative processes due
to viscosity and cosmological constant (Λ term). A detailed
analysis showed that the viscosity, as well as the Λ term,
exhibit an essential influence on the nature of the solutions.
The classification of the solutions was pursued for the viscosity
being some power law of energy density, namely, η = Aεα and
ξ = Bεβ . It was noticed that for Λ > 0 the Universe expands
forever with a logarithmic velocity H , which, depending on the
viscosity either becomes constant or increases infinitely. In the
process behavior of the energy density ε is analogous to that
of H except in the case when ε → 0. For Λ < 0, beside the
variants mentioned above, there exists a few other possibilities
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depending on some special choices: contraction of the Universe
into a point, thus giving rise to a space–time singularity; a
regime of increasing oscillation by virtue of suitable initial
conditions; or a singularity-free oscillatory mode of expansion.
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