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Abstract. We consider a system of nonlinear spinor and a Bianchi type I gravitational fields in
presence of viscous fluid. The nonlinear term in the spinor field Lagrangian is chosen to be λF, with
λ being the self-coupling constant and F being a function of the invariants I an J constructed from
bilinear spinor forms S and P. We consider the cases when F is the power law of its arguments.
Self-consistent solutions to the spinor and BI gravitational field equations are obtained in terms of τ,
where τ is the volume scale of BI universe. System of equations for τ and ε, where ε is the energy of
the viscous fluid, is deduced. This system is solved for some special cases.
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I. INTRODUCTION

The investigation of relativistic cosmological models usually has the energy
momentum tensor of matter generated by a perfect fluid. To consider more realistic
models one must take into account the viscosity mechanisms, which have already
attracted the attention of many researchers. Misner [1, 2] suggested that strong
dissipative due to the neutrino viscosity may considerably reduce the anisotropy of
the black-body radiation. Viscosity mechanism in cosmology can explain the
anomalously high entropy per baryon in the present universe [3, 4]. Bulk viscosity
associated with the grand-unified-theory phase transition [5] may lead to an
inflationary scenario [6, 7, 8].

A uniform cosmological model filled with fluid which possesses pressure and
second (bulk) viscosity was developed by Murphy [9]. The solutions that he found
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exhibit an interesting feature that the big bang type singularity appears in the
infinite past. Exact solutions of the isotropic homogeneous cosmology for open,
closed and flat universe have been found by Santos et al. [10], with the bulk
viscosity being a power function of energy density.

The nature of cosmological solutions for homogeneous Bianchi type I (BI)
model was investigated by Belinsky and Khalatnikov [11] by taking into account
dissipative process due to viscosity. They showed that viscosity cannot remove the
cosmological singularity but results in a qualitatively new behavior of the solutions
near singularity. They found the remarkable property that during the time of the big
bang matter is created by the gravitational field. BI solutions in case of stiff matter
with a shear viscosity being the power function of of energy density were obtained
by Banerjee [12], whereas BI models with bulk viscosity (η) that is a power
function of energy density ε  and when the universe is filled with stiff matter were
studied by Huang [13]. The effect of bulk viscosity, with a time varying bulk
viscous coefficient, on the evolution of isotropic FRW models investigated in the
context of open thermodynamics system was studied by Desikan [14]. This study
was further developed by Krori and Mukherjee [15] for anisotropic Bianchi models.
Cosmological solutions with nonlinear bulk viscosity were obtained in [16].
Models with both shear and bulk viscosity were investigated in [17, 18].

Though Murphy [9] claimed that the introduction of bulk viscosity can avoid
the initial singularity at finite past, results obtained in [19] show that, it is, in
general, not valid, since for some cases big bang singularity occurs in finite past.
To eliminate the initial singularities a self-consistent system of nonlinear spinor
and BI gravitational field was considered by us in a series of papers [20, 21, 22, 23].
For some cases we were able to find field (both matter and gravitational)
configurations that were always regular. In the papers mentioned above we
considered the system of interacting nonlinear spinor and/or scalar fields in a BI
universe filled with perfect fluid. We also study the above system in the presence
of the cosmological constant Λ (both constant and time varying [23]). A nonlinear
spinor field, suggested by the symmetric coupling between nucleons, muons, and
leptons, has been investigated by Finkelstein et al. [24] in the classical
approximation. Although the existence of spin-1/2 fermion is both theoretically and
experimentally undisputed, these are described by quantum spinor fields. Possible
justifications for the existence of classical spinors has been addressed in [25]. In
view of what has been mentioned above, it would be interesting to study the
influence of viscous fluid to the system of material (say spinor and/or scalar) and
BI gravitational fields in the presence of a Λ-term as well. In this report we study
the system of nonlinear spinor field in a BI universe filled with viscous fluid. We
write the corresponding system of equations in general and present some solutions
for some special cases. We plan to study the system for more general cases in some
of our future papers.
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II. DERIVATION  OF  BASIC  EQUATIONS

In this section we derive the fundamental equations for the interacting spinor,
scalar and gravitational fields from the action and write their solutions in term of
the volume scale τ defined below (2.23). We also derive the equation for τ which
plays the central role here.

We consider a system of nonlinear spinor, scalar and BI gravitational field in
the presence of perfect fluid given by the action

( ) dg g;ψ,ψ = − Ω∫S L (2.1)

with

g sp m= + + .L L L L (2.2)

The gravitational part of the Lagrangian (2.2) is given by a Bianchi type I
(BI hereafter) space-time, whereas the remaining parts are the usual spinor field
Lagrangian with a self-coupling and a viscous fluid as well.

A. MATERIAL  FIELD  LAGRANGIAN

For a spinor field ψ, symmetry between ψ and ψ  appears to demand that one
should choose the symmetrized Lagrangian [26]. Keep it in mind we choose the
spinor field Lagrangian as

[ ]
2sp
i m Fµ µ

µ µ= ψ γ ∇ ψ −∇ ψγ ψ − ψψ + λ ,L (2.3)

Here m is the spinor mass, λ is the self-coupling constant and F is some arbitrary
functions of invariants generated from the real bilinear forms of a spinor field with
the form

(scalar)S = ψψ , (2.4a)

5 (pseudoscalar)P i= ψγ ψ , (2.4b)

( ) (vector)vµ µ= ψγ ψ , (2.4.c)

5( ) (pseudovector)Aµ µ= ψγ γ ψ , (2.4.d)

( ) (antisymmetric tensor)Qµν µν= ψσ ψ , (2.4.e)

where ( 2)[ ]iµν µ ν ν µσ = / γ γ − γ γ . Invariants, corresponding to the bilinear forms, are

2I S= , (2.5.a)
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2J P= , (2.5.b)

( ) ( )vI v v gµ µ ν
µ µν= = ψγ ψ ψγ ψ , (2.5.c)

5 5( ) ( )AI A A gµ µ ν
µ µν= = ψγ γ ψ ψγ γ ψ , (2.5.d)

( ) ( )QI Q Q g gµν µν αβ
µν µα νβ= = ψσ ψ ψσ ψ . (2.5.e)

According to the Pauli-Fierz theorem [27] among the five invariants only I
and J are independent as all the other can be expressed by them: V AI I I J= − = +
and QI I J= − .  Therefore, we choose ( ),F F I J= ,  thus claiming that it describes

the nonlinearity in the most general of its form [21]. Note that setting 0λ =  in
(2.3) we come to the case with linear spinor field.

The term mL  describes the Lagrangian density of viscous fluid.

B. THE  GRAVITATIONAL  FIELD

As a gravitational field we consider the Bianchi type I (BI) cosmological
model. It is the simplest model of anisotropic universe that describes a homogeneous
and spatially flat space-time and if filled with perfect fluid with the equation of
state ,p = ζε  ζ < 1, it eventually evolves into a FRW universe [28]. The isotropy of
the present-day universe makes BI model a prime candidate for studying the
possible effects of an anisotropy in the early universe on modern-day data
observations. In view of what has been mentioned above we choose the
gravitational part of the Lagrangian (2.2) in the form

2g
R= ,
κ

L (2.6)

where R is the scalar curvature, 8 Gκ = π  being Einstein’s gravitational constant.
The gravitational field in our case is given by a Bianchi type I (BI) metric

2 2 2 2 2 2 2 2d d d d ds t a x b y c z= − − − , (2.7)

with a, b, c being the functions of time t only. Here the speed of light is taken to be
unity.

The metric (2.7) has the following non-trivial Christoffel symbols

1 2 3
10 20 30

0 0 0
11 22 33

a b c
a b c
aa bb cc

Γ = , Γ = , Γ =

Γ = , Γ = , Γ = .
(2.8)

The nontrivial components of the Ricci tensors are
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( )0
0

a b cR
a b c

= − + + , (2.9a)

( )1
1

a a b cR
a a b c
⎡ ⎤= − + + ,⎢ ⎥⎣ ⎦

(2.9b)

( )2
2

b b c aR
b b c a
⎡ ⎤= − + + ,⎢ ⎥⎣ ⎦

(2.9c)

( )3
3

c c a bR
c c a b
⎡ ⎤= − + + .⎢ ⎥⎣ ⎦

(2.9d)

From (2.9) one finds the following Ricci scalar for the BI universe

( )2 a b c a b b c c aR
a b c a b b c c a

= − + + + + + . (2.10)

The non-trivial components of Riemann tensors in this case read

01 02 03
01 02 03

12 23 31
12 23 31

a b cR R R
a b c

a b b c c aR R R
a b b c c a

= , = , = ,

= − , = − , = − .
(2.11)

Now having all the non-trivial components of Ricci and Riemann tensors, one can
easily write the invariants of gravitational field which we need to study the space-
time singularity. We return to this study at the end of this section.

C. FIELD  EQUATIONS

Let us now write the field equations corresponding to the action (2.1).
Variation of (2.1) with respect to spinor field ( )ψ ψ  gives spinor field

equations
5 0i m iµ

µγ ∇ ψ − ψ + ψ + γ ψ = ,D G (2.12a)

5 0i m iµ
µ∇ ψγ + ψ − ψ − ψγ = ,D G (2.12b)

where we denote

2 2F FS P
I J

∂ ∂= λ , = λ .
∂ ∂

D G

Variation of (2.1) with respect to metric tensor gµν  which gives Einstein’s

field equation in account of the Λ-term has the form

1
2

G R R Tν ν ν ν ν
µ µ µ µ µ= − δ = κ − δ Λ. (2.13)
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In view of (2.9) and (2.10) for the BI space-time (2.7) we rewrite the Eq. (2.13) as

1
1

b c b c T
b c b c
+ + = κ − Λ, (2.14a)

2
2

c a c a T
c a c a
+ + = κ − Λ, (2.14b)

3
3

a b a b T
a b a b
+ + = κ − Λ, (2.14c)

0
0

a b b c c a T
a b b c c a

+ + = κ − Λ, (2.14d)

where over dot means differentiation with respect to t and Tµ
ν  is the energy-

momentum tensor of the material field given by

sp mT T Tν νν
µ µ µ= + . (2.15)

Here spT ν
µ  is the energy-momentum tensor of the spinor field which with regard to

(2.12) has the form

sp ( )
4

( ( ))

iT g

S P F I J

ρ ρν
µ µ ν ν µ µ ν ν µ

ρ
µ

= ψγ ∇ ψ +ψγ ∇ ψ −∇ ψγ ψ −∇ ψγ ψ +

+δ + − λ , .D G
(2.16)

(m)T ν
µ  is the energy-momentum tensor of a viscous fluid having the form

(m) ( ) [ ]T p u u p g u u u u u u u uν ν ν νβ α α
µ µ µ;β β:µ µ β;α β µ;αµ ′ ′= ε + − δ + η + − − , (2.17)

where

( )2
3

p p uµ;µ′ = − ξ − η . (2.18)

Here ε is the energy density, p – pressure, η and ξ are the coefficients of shear and
bulk viscosity, respectively. In a comoving system of reference such that

(1 0 0 0)uµ = , , ,  we have
0

0(m)T = ε, (2.19a)

1
1(m) 2 aT p

a
′= − + η , (2.19b)

2
2(m) 2 bT p

b
′= − + η , (2.19c)

3
3(m) 2 cT p

c
′= − + η . (2.19d)
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In the Eqs. (2.12) and (2.16) µ∇  is the covariant derivatives acting on a

spinor field as [29,30]

x xµ µ µ µµ µ
∂ψ ∂ψ∇ ψ = −Γ ψ, ∇ ψ = + ψΓ ,
∂ ∂

(2.20)

where µΓ  are the Fock-Ivanenko spinor connection coefficients defined by

1 ( )
4

σ ν
µ µσ ν µ σΓ = γ Γ γ − ∂ γ . (2.21)

For the metric (2.7) one has the following components of the spinor connection
coefficients

1 0 2 0 3 0
0 1 2 3

1 1 10 ( ) ( ) ( )
2 2 2

a t b t c tΓ = , Γ = , Γ = , Γ = .γ γ γ γ γ γ (2.22)

The Dirac matrices ( )xµγ  of curved space-time are connected with those of the
Minkowski one as follows:

0 1 2 30 1 2 3a b cγ = , γ = / , γ = / , γ = /γ γ γ γ
with

0 550 00
0 00

i
i

i

I I

I I

−⎛ ⎞σ⎛ ⎞ ⎛ ⎞
= , = , γ = = ,γ γ γ⎜ ⎟⎜ ⎟ ⎜ ⎟− −−σ⎝ ⎠ ⎝ ⎠⎝ ⎠

where iσ  are the Pauli matrices:

1 2 30 1 0 1 0

1 0 0 0 1

i

i

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
σ = , σ = , σ = .⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Note that the γ  and the σ matrices obey the following properties:

5 5 5 2

2 0 1 2 3

0 ( ) 0 1 2 3

1 2 3

i j j i ij

i i

j k l
jk jkl

i j

I i

i j k l

+ = η , , = , , ,γ γ γ γ

+ = , = , = , , ,γ γ γ γ γ

σ σ = δ + ε σ , , , = , ,

where {1 1 1 1}ijη = ,− ,− ,−  is the diagonal matrix, jkδ  is the Kronekar symbol and

jklε  is the totally antisymmetric matrix with 123 1ε = + .

We study the space-independent solutions to the spinor field equations (2.12)
so that ( )tψ = ψ . Here we define

abc gτ = = − (2.23)
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The spinor field equation (2.12a) in account of (2.20) and (2.22) takes the form

( )0 5 0
2

i m i
t
∂ τ+ ψ − ψ + ψ + γ ψ = .γ ∂ τ

D G (2.24)

Setting ( ) ( )j jV t t= τψ ,  j = 1, 2, 3, 4 from (2.24) one deduces the following

system of equations:

1 1 3( ) 0V i m V V+ − − = ,D G (2.25a)

2 2 4( ) 0V i m V V+ − − = ,D G (2.25b)

3 3 1( ) 0V i m V V− − + = ,D G (2.25c)

4 4 2( ) 0V i m V V− − + = .D G (2.25d)

From (2.12a) we also write the equations for the invariants S, P and
5 0A = ψ ψγ γ

0 02 0S A− = ,G (2.26a)

0 02( ) 0P m A− − = ,D (2.26b)

0 0 02( ) 2 0A m P S+ − + = ,D G (2.26c)

where 0 ,S S= τ  0 ,P P= τ  and 0A A= τ .  The Eq. (2.26) leads to the following relation

2 2 2 2 2 2 constS P A C C+ + = /τ , = . (2.27)

Giving the concrete form of F from (2.25) one writes the components of the
spinor functions explicitly and using the solutions obtained one can write the
components of the spinor current:

jµ µ= ψγ ψ. (2.28)
The component j0

0
1 1 2 2 3 3 4 4

1[ ]j V V V V V V V V∗ ∗ ∗ ∗= + + + ,
τ

(2.29)

defines the charge density of the spinor field that has the following chronometric-
invariant form

0 1 2
0( )j j /ρ = ⋅ . (2.30)

The total charge of the spinor field is defined as

3 d d dQ g x y z
∞

−∞

= ρ − = ρτ ,∫ V (2.31)
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where V  is the volume. From the spin tensor

1 { }
4

Sµν,ε ε µν µν ε= ψ γ σ + σ γ ψ (2.32)

one finds the chronometric invariant spin tensor

0 0 1 2
0ch ( )ij ij

ijS S S, , /
,= , (2.33)

and the projection of the spin vector on k axis

0 03
ch chd d dij ij

kS S g x y z S V
∞

, ,

−∞

= − = τ .∫ (2.34)

Let us now solve the Einstein equations. To do it we first write the expressions
for the components of the energy-momentum tensor explicitly:

0
0 ( )T mS F I J= − λ , + ε, (2.35a)

1
1 ( ) 2 aT S P F I J p

a
′= + − λ , − + η ,D G (2.35b)

2
2 ( ) 2 bT S P F I J p

b
′= + − λ , − + η ,D G (2.35c)

3
3 ( ) 2 cT S P F I J p

c
′= + − λ , − + η .D G (2.35d)

In account of (2.35) subtracting (2.14a) from (2.14b), one finds the following
relation between a and b

2 d

1 1
e dexp

ta tD X
b

− κ η⎛ ⎞
= .⎜ ⎟τ⎝ ⎠

∫
∫ (2.36)

Analogically, one finds

2 d 2 d

2 2 3 3
e d e dexp exp .

t tb t c tD X D X
c a

− κ η − κ η⎛ ⎞ ⎛ ⎞
= , =⎜ ⎟ ⎜ ⎟τ τ⎝ ⎠ ⎝ ⎠

∫ ∫
∫ ∫ (2.37)

Here D1, D2, D3, X1, X2, X3, are integration constants, obeying

1 2 3 1 2 31 0D D D X X X= , + + = . (2.38)

In view of (2.38) from (2.36) and (2.37) we write the metric functions
explicitly [21]

2 d
1 31 3 1 3

1 3
e( ) ( ) exp d

3 ( )

tX X
a t D D t

t

− κ η
/ /

⎡ ⎤−
= / τ ,⎢ ⎥τ⎣ ⎦

∫
∫ (2.39a)
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2 d
1 32 1 3 1 3

1 3
2 e( ) ( ) exp d

3 ( )

tX X
b t D D t

t

− κ η
− / /

⎡ ⎤+
= τ − ,⎢ ⎥τ⎣ ⎦

∫
∫ (2.39b)

2 d
1 32 1 3 1 3

1 3
2 e( ) ( ) exp d

3 ( )

tX X
c t D D t

t

− κ η
/ /

⎡ ⎤+
= τ .⎢ ⎥τ⎣ ⎦

∫
∫ (2.39c)

As one sees from (2.39a), (2.39b) and (2.39c), for ntτ =  with n > 1 the exponent
tends to unity at large t, and the anisotropic model becomes an isotropic one.

Further we will investigate the existence of the singularity (singular point) of
the gravitational case, which can be done by investigating the invariant
characteristics of the space-time. In general relativity these invariants are composed
from the curvature tensor and the metric one. In a 4D Riemann space-time there are
14 independent invariants. Instead of analyzing all 14 invariants, one can confine
this study only in 3, namely the scalar curvature I1 = R, 2 ,RI Rµν= µν  and the

Kretschmann scalar 3 .I R Rαβµν
αβµν=  At any regular space-time point, these three

invariants I1, I2, I3 should be finite. Let us rewrite these invariants in detail.
For the Bianchi I metric one finds the scalar curvature

( )1 2 a b c a b b c c aI R
a b c a b b c c a

= = − + + + + + . (2.40)

Since the Ricci tensor for the BI metric is diagonal, the invariant I2 =

R R R Rµν ν µ
µν µ ν= ≡  is a sum of squares of diagonal components of Ricci tensor, i.e.,

0 2 1 2 2 2 3 2
2 1 20 3[( ) ( ) ( ) ( ) ]I R R R R= + + + , (2.41)

with the components of the Ricci tensor being given by (2.9).
Analogically, for the Kretschmann scalar in this case we have 3 ,I R Rµν αβ

µναβ=

a sum of squared components of all nontrivial Rµν
µν , which in view of (2.11) can be

written as

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

22 2 2 2 201 02 03 12 23 31
3 1201 02 03 23 31

2 2 22 2 2

4

4

I R R R R R R

a b c a b b c c a
a b c a b b c c a

⎡ ⎤= + + + + +⎣ ⎦
⎡ ⎤

= + + + + + .⎢ ⎥⎣ ⎦

(2.42)

Let us now express the foregoing invariants in terms of τ. From Eqs. (2.39)
we have

2 d
1 3 eexp ( 3) d

( )

t

i i ia A Y t
t

− κ η
/

⎛ ⎞
= τ / ,⎜ ⎟τ⎝ ⎠

∫
∫ (2.43a)
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2 de
( 1 2 3)

3

t
i i

i

Ya i
a

− κ ητ +
= = , , ,

τ

∫
(2.43b)

2 d 2 d 4 d2 2

2

3 2 e 6 e e
9

t t t
i i i i

i

Y Y Ya
a

− κ η − κ η − κ ηττ − τ − τ − κητ +
= ,

τ

∫ ∫ ∫
(2.43c)

i.e., the metric functions a, b, c and their derivatives are in functional dependence
with τ. From Eqs. (2.43) one can easily verify that

1 2 32 4 4
1 1 1I I I∝ , ∝ , ∝ .
τ τ τ

Thus we see that at any space-time point, where 0τ =  the invariants I1, I2, I3 as
well as the scalar and spinor fields become infinite, hence the space-time becomes
singular at this point.

In what follows, we write the equation for τ and study it in details.
Summation of Einstein equations (2.14a), (2.14b), (2.14c) and (2.14d)

multiplied by 3 gives

( )3 3 2 ( ) 3
2 2

mS S P F I J pτ − κξτ = κ + + − λ , + ε − τ − Λτ.D G (2.44)

For the right-hand-side of (2.44) to be a function of τ only, the solution to this
equation is well-known [31].

Let us demand the energy-momentum to be conserved, i.e.,

0T T T Tν ν ν ρ ρ ν
µ;ν µ,ν ρν µ µν ρ= + Γ −Γ = , (2.45)

which in our case has the form

0 1 2 3
1 20 3

1 ( ) 0a b cT T T T
a b c

⋅τ − − − = .
τ

(2.46)

In account of

0 0( ) 0m S P− − =D G

which follows from (2.26), after a little manipulation from (2.46) we obtain

( ) 2
0

02
4 4 ( ) 0
3

Tτ τε + ω− ξ + η + η κ − Λ = ,
τ τ

(2.47)

where
pω= ε + , (2.48)

is the thermal function.
Let us now in analogy with the Hubble constant introduce a quantity H, such

that
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3a b c H
a b c

τ = + + = .
τ

(2.49)

Then (2.44) and (2.47) in account of (2.35) can be rewritten as

2(3 ) (3 ) ( 2 ( ))
2 2

H H H mS S P F I Jκ κ= ξ −ω − − κε + + + − λ , − Λ,D G (2.50a)

23 (3 ) 4 (3 ) 4 [ ( ( )) ]H H H mS F I Jε = ξ −ω + η − κε − η κ − λ , − Λ . (2.50b)

Thus, the metric functions are found explicitly in terms of τ and viscosity. To write
τ and the components of the spinor field as well and the scalar one we have to
specify F in intL . In the next section we explicitly solve Eqs. (2.25) and (2.50) for

some concrete value of F.
The Eqs. (2.50) can be written in terms of dynamical scalar as well. For this

purpose let us introduce the dynamical scalars such as the expansion and the shear
scalar as usual

2 1
2

uµ µν
;µ µνθ = , σ = σ σ , (2.51)

where
1 1( )
2 3

u P u P Pα α
µν µ;α ν ν;α µ µνσ = + − θ . (2.52)

Here P is the projection operator obeying

2P P= . (2.53)

For the space-time with signature (+, –, –, –) it has the form

P g u u P u uµ µ µ
µν µν µ ν ν ν ν= − , = δ − . (2.54)

For the BI metric the dynamic scalar has the form

a b c
a b c

τθ = + + = ,
τ

(2.55)

and
22 2

2 2
2 2 2

12
3

a b c
a b c

σ = + + − θ . (2.56)

In account of (2.39) one can also rewrite share scalar as

2 2
4 d1 1 3 32

2
6( )

2 e
9

tX X X X − κ η+ +
σ .

τ
∫ (2.57)

From (2.14d) now yields

2 21 [ ( ) ]
3

mS F I Jθ − σ = κ − λ , + ε − Λ (2.58)
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The Eqs. (2.50) now can be written in terms of θ and σ as follows

23 3( ) ( 2 ( )) 3
2 2

mS S P F I Jκ κθ = ξθ −ω − − − + λ , − σ ,D G (2.59a)

2( ) 4ε = θ ξθ −ω + ησ . (2.59b)

Note that the Eqs. (2.59) without spinor and scalar field contributions coincide with
the ones given in [12].

III. SOME  SPECIAL  SOLUTIONS

In this section we first solve the spinor field equations for some special
choice of F, which will be given in terms of τ. Thereafter, we will study the system
(2.50) in details and give explicit solution for some special cases.

A. SOLUTIONS  TO  THE  SPINOR  FIELD  EQUATIONS

As one sees, introduction of viscous fluid has no direct effect on the system
of spinor field equations (2.25). Viscous fluid has an implicit influence on the
system through τ. A detailed analysis of the system in question can be found in
[21]. Here we just write the final results.

1. Case with F = F(I)

Here we consider the case when the nonlinear spinor field is given by
( )F F I= .  As in the case with minimal coupling from (2.26a) one finds

0
0 const

C
S C= , = .

τ
(3.1)

For the components of spinor field we find [21]

1 2
1 2

3 4
3 4

( ) e ( ) e

( ) e ( ) e

i i

i i

C C
t t

C C
t t

− β − β

β β

ψ = , ψ = ,
τ τ

ψ = , ψ = ,
τ τ

(3.2)

with Ci being the integration constants and are related to C0 as 2 2
0 1 2C C C= + −

2 2
3 4C C− − .  Here ( )d .m tβ = −∫ D

For the components of the spin current from (2.28) we find
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0 2 2 2 2 1
1 2 3 4 1 4 2 3

2 3
1 4 2 3 1 3 2 4

1 2[ ] [ ]cos(2 )

2 2[ ]sin(2 ) [ ]cos(2 )

j C C C C j C C C C
a

j C C C C j C C C C
b c

= + + + , = + β ,
τ τ

= − β , = − β ,
τ τ

whereas, for the projection of spin vectors on the X, Y and Z axis we find

2 2 2 2
1 2 3 4 1 2 3 423 0 31 0 12 00

2
C C C C C C C C

S S S
bc ab

, , ,+ − + −
= , = , = .

τ τ

Total charge of the system in a volume V  in this case is

2 2 2 2
1 2 3 4[ ]Q C C C C= + + + .V (3.3)

Thus, for 0τ ≠  the components of spin current and the projection of spin vectors
are singularity-free and the total charge of the system in a finite volume is always
finite. Note that, setting 0λ = , i.e., mtβ =  in the foregoing expressions one get the
results for the linear spinor field.

2. Case with F = F(J)

Here we consider the case with ( )F F J= .  In this case we assume the spinor
field to be massless. Note that, in the unified nonlinear spinor theory of Heisenberg,
the massive term remains absent, and according to Heisenberg, the particle mass
should be obtained as a result of the quantization of the spinor prematter  [34]. In
the nonlinear generalization of the classical field equations, the massive term does
not possess the significance that it possesses in the linear one, as it by no means
defines the total energy (or mass) of the nonlinear field system. Thus without
losing the generality we can consider the massless spinor field putting m = 0. Then
from (2.26b) one gets

0 0 constP D D= /τ, = . (3.4)

In this case the spinor field components take the form

1 1 3 2 2 4

3 1 3 4 2 4

1 1( e e ) ( e e )

1 1( e e ) ( e e )

i i i i

i i i i

D iD D iD

iD D iD D

σ − σ σ − σ

σ − σ σ − σ

ψ = + , ψ = + ,
τ τ

ψ = + , ψ = + .
τ τ

(3.5)

The integration constants Di are connected to D0 by 2 2 2 2
0 1 2 3 42( )D D D D D= + − − .

Here we set d .tσ = ∫G
For the components of the spin current from (2.28) we find

0 2 2 2 2 1
1 2 3 4 2 3 1 4

2 4[ ] [ ]cos(2 )j D D D D j D D D D
a

= + + + , = + σ ,
τ τ
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2 3
2 3 1 4 1 3 2 4

4 4[ ]sin(2 ) [ ]cos(2 )j D D D D j D D D D
b c

= − σ , = − σ ,
τ τ

whereas, for the projection of spin vectors on the X, Y and Z axis we find

2 2 2 2
1 2 3 4 1 2 3 423 0 31 0 12 02( )

0
2

D D D D D D D D
S S S

bc ab
, , ,+ − + −
= , = , =

τ τ

We see that for any nontrivial τ as in the previous case the components of the spin
current and the projection of the spin vectors are singularity-free and the total
charge of the system in a finite volume is always finite.

B. DETERMINATION  OF  τ

In this subsection we simultaneously solve the system of equations for τ and
ε. For simplicity we set κ = 1. Since setting m = 0 in the equations for ( )F F I=
one comes to the case when ( ),F F J=  we consider the case with F being the

function of I only. Let F be the power function of S , i.e., nF S= . As was
established earlier, in this case 0S C= /τ , or setting 0 1C =  simply 1S = /τ .
Evaluating D  in terms of τ we then come to the following system of equations

1
( 2)3 3 3

2 2 n
nm p−

λ −⎛ ⎞τ = ξτ + + + ε − τ − Λτ,⎜ ⎟τ τ⎝ ⎠
(3.6a)

( ) 2

2
4 4
3 n

mτ λτ ⎡ ⎤ε = − ω+ ξ + η − η − − Λ ,
⎢ ⎥τ ττ τ⎣ ⎦

(3.6b)

or in terms of H

3Hτ = τ, (3.7a)

2
1

( 2)1 1(3 ) (3 )
2 2 n

nmH H H −
λ −⎛ ⎞= ξ −ω − − ε + + − Λ,⎜ ⎟τ τ⎝ ⎠

(3.7b)

23 (3 ) 4 (3 ) 4
n

mH H H λ⎡ ⎤ε = ξ −ω + η − ε − η − − Λ .
⎢ ⎥τ τ⎣ ⎦

(3.7c)

Here η and ξ are the bulk and shear viscosity, respectively and they are both
positively definite, i.e.,

0 0η > , ξ > . (3.8)

They may be either constant or function of time or energy. We consider the case
when

A Bα βη = ε , ξ = ε , (3.9)
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with A and B being some positive quantities. For p we set as in perfect fluid,

(0 1]p = ζε, ζ∈ , . (3.10)

Note that in this case 0,ζ ≠  since for dust pressure, hence temperature is zero, that
results in vanishing viscosity.

In account of (2.48), (3.9) and (3.10) the Eqs. (3.6) and (3.7) now can be
rewritten as

1
( 2)3 3 (1 ) 3

2 2 n
nmB β
−

λ −⎛ ⎞τ = ε τ + + + − ζ ε τ − Λτ,⎜ ⎟τ τ⎝ ⎠
(3.11a)

( ) 2

2
4(1 ) 4
3 n

mB A Aβ α ατ λτ ⎡ ⎤ε = − + ζ ε + ε + ε − ε − − Λ ,
⎢ ⎥τ ττ τ⎣ ⎦

(3.11b)

or in terms of H
3Hτ = τ, (3.12a)

2
1

( 2)1 1(3 (1 ) ) (3 )
2 2 n

nmH B H Hβ
−

λ −⎛ ⎞= ε − + ζ ε − − ε + + − Λ,⎜ ⎟τ τ⎝ ⎠
(3.12b)

23 (3 (1 ) ) 4 (3 ) 4
n

mH B H A Hβ α λ⎡ ⎤ε = ε − + ζ ε + ε − ε − η − − Λ .
⎢ ⎥τ τ⎣ ⎦

(3.12c)

The system (3.7) without spinor field have been extensively studied in the
literature either partially [9,12,13] or as a whole [11]. Here we try to solve the
system (3.6) for some particular choice of parameters.

1. Case with shear viscosity

Let us first consider the case when 0η = . We also demand τ/τ  to be small

enough. Then overlooking 2 2τ /τ  from (3.6b) in view of (3.10) one finds

0
1+ζ
ε

ε = .
τ

(3.13)

In view of (3.9) and (3.13), Eq. (3.6a) now can be written as

1 0( ) ( )f fτ = τ τ + τ , (3.14)
where we set

0
1 (1 )

3( )
2
Bf

β

β +ζ
ε

τ = ,
τ

and

0
0 ( 2)

(1 )( 2)3( ) 3
2 n

n
f m − ζ

− ζ ελ −⎛ ⎞τ = + + − Λτ.⎜ ⎟τ τ⎝ ⎠
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Let us introduce a new function µ such that

( )τ = µ τ . (3.15)

Eqn. (3.14) can then be written as

1 0( ) ( )f fτ′µµ = τ µ + τ , (3.16)

Further setting 1( ) ( ) fµ τ = ν τ +  where 1 1( )df f= τ τ∫  we find

1 0( )f f′
τν + ν = . (3.17)

Finally, for 0 0f ≠  assuming that ( ) ( )ν τ = υ ς  where 0dfς = τ∫  we finally obtain

1( ) 1f ς′υ + υ = . (3.18)

For some special cases Eqn. (3.18) allows solution in quadrature [31].

IV. CONCLUSION

We consider the self consistent system of nonlinear spinor and gravitational
fields within the framework of Bianchi type-I cosmological model filled with
viscous fluid. The spinor filed nonlinearity is taken to be some power law of the
invariants of bilinear spinor forms, namely 2 2( )I S= = ψψ  and 2 5 2( ) .J P i= = ψγ ψ
Solutions to the corresponding equations are given in terms of the volume scale of
the BI space-time, i.e., in terms of τ = abc. The system of equations for determining
τ, energy-density of the viscous fluid ε and Hubble parameter H has been worked
out. Exact solution to the aforementioned system has been given only for the case
of share viscosity. As one sees from (2.50) or (2.59), the system in question is a
multi-parametric one and may have several solutions depending on the choice of
the problem parameters. In the near future we plan to study this system thoroughly
both from analytical and numerical point of views.
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