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Abstract. A self-consistent system of interacting nonlinear spinor and scalar fields
within the scope of a Bianchi type-I cosmological model filled with perfect fluid is considered.
Exact self-consistent solutions to the corresponding field equations are obtained. The role of
spinor field in the evolution of the Universe is studied. It is shown that the spinor field gives
rise to an accelerated mode of expansion of the Universe. At the early stage of evolution the
spinor field nonlinearity generates the acceleration while at the later stage it is done by the
nonzero spinor mass.
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1 INTRODUCTION

The accelerated mode of expansion of the present day Universe encourages
many researchers to introduce different kind of sources that is able to explain
this. Among them most popular is the dark energy given by a Λ term [1, 2, 3],
quintessence [4, 5, 6, 7], Chaplygin gas [8, 9]. Recently cosmological models
with spinor field have been extensively studied by a number of authors in a
series of papers [11, 10, 12, 13, 14, 15]. The principal motive of the papers
[11, 10, 12, 13, 14] was to find out the regular solutions of the corresponding
field equations. In some special cases, namely with a cosmological constant
(Λ term) that plays the role of an additional gravitation field, we indeed find
singularity-free solutions. It was also found that the introduction of nonlinear
spinor field results in a rapid growth of the Universe. This allows us to consider
the spinor field as a possible candidate to explain the accelerated mode of
expansion. Note that similar attempt is made in a recent paper by Kremer
et. al. [16]. In this paper we study the role of a spinor field in generating an
accelerated mode of expansion of the Universe. Since similar systems, though
from different aspects were thoroughly studied in [13, 14], to avoid lengthy
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calculations regarding spinor and scalar fields, we mainly confine ourselves to
the study of master equation describing the evolution of BI Universe. We
here give the solutions to the spinor and scalar field equations, details of these
solutions can be found in [13, 14].

2 BASIC EQUATIONS: A BRIEF JOURNEY

We consider a self consistent system of nonlinear spinor and scalar fields within
the scope of a Bianchi type-I gravitational field filled with a perfect fluid. The
spinor and the scalar field is given by the Lagrangian

L =
i

2

[

ψ̄γµ∇µψ −∇µψ̄γ
µψ

]

−mψ̄ψ + F +
1

2
(1 + λ1F1)ϕ,αϕ

,α, (1)

where λ1 is the coupling constant and F and F1 are some arbitrary functions
of invariants generated from the real bilinear forms of a spinor field. Here we
assume F = F (I, J) and F1 = F1(I, J) with I = S2, S = ψ̄ψ, J = P 2 and
P = iψ̄γ5ψ.

The gravitational field is chosen in the form

ds2 = dt2 − a2
1dx

2
1 − a2

2dx
2
2 − a2

3dx
2
3, (2)

where ai are the functions of t only and the speed of light is taken to be unity.
We also define

τ = a1a2a3. (3)

We consider the spinor and scalar field to be space independent. In
that case for the spinor and the scalar fields and metric functions we find the
following expressions [14].

For F = F (I) we find S = C0/τ with C0 being an integration constant.
The components of the spinor field in this case read

ψ1,2(t) = (C1,2/
√
τ)e−iβ, ψ3,4(t) = (C3,4/

√
τ)eiβ , (4)

with the integration constants obeying C0 as C0 = C2
1 + C2

2 − C2
3 − C2

4 . Here
β =

∫

(m−D)dt with D = dF/dS + (λ1ϕ̇
2/2)dF1/dS.

For F = F (J) in case of massless spinor field we find P = D0/τ . The
corresponding components of the spinor field in this case read: with

ψ1,2 = (D1,2e
iσ + iD3,4e

−iσ)/
√
τ ,

(5)

ψ3,4 = (iD1,2e
iσ +D3,4e

−iσ)/
√
τ ,

with D0 = 2 (D2
1 + D2

2 − D2
3 − D2

4). Here σ =
∫

Gdt with G = dF/dP +
(λ1ϕ̇

2/2)dF1/dP .
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For the scalar field we find

ϕ = C

∫

dt

τ(1 + λ1F1)
+ C1, (6)

where C and C1 are the integration constants.
Solving the Einstein equation for the metric functions we find

ai(t) = Ai[τ(t)]
1/3 exp[Xi

∫

[τ(t′)]−1dt′], (7)

with the integration constants Ai and Xi obeying A1A2A3 = 1 and X1 +X2 +
X3 = 0. Note that to evaluate the metric functions at any given time t̃ we
should first integrate

∫

dt
τ , and only then substitute t by t̃.

The theoretical arguments [17] and recent experimental data which sup-
port the existence of an anisotropic phase that approaches an isotropic one,
led us to consider the models of Universe with anisotropic background. On
the other hand the isotropy of the present-day Universe lead us to study how
the initially anisotropic BI space-time can evolve into an isotropic Friedman-
Robertson-Walker (FRW) one. Since for the FRW Universe a1(t) = a2(t) =
a3(t), for the BI universe to evolve into a FRW one we should set D1 = D2 =
D3 = 1. Moreover, the isotropic nature of the present Universe leads to the
fact that the three other constants Xi should be close to zero as well, i.e.,
|Xi| << 1, (i = 1, 2, 3), so that Xi

∫

[τ(t)]−1dt → 0 for t < ∞ (for τ(t) = tn

with n > 1 the integral tends to zero as t→ ∞ for any Xi). The rapid growth
of the Universe due to the introduction of the nonlinear spinor field to the
system results in the earlier isotropization.

As is seen from eqs. (4), (5), (6) and (7), the spinor, scalar and metric
functions are in some functional dependence of τ . It should be noted that
besides these, other physical quantities such as spin-current, charge etc. and
invariant of space-time are too expressed via τ [13, 14]. It should be noted
that at any space-time points where τ = 0 the spinor, scalar and gravitational
fields become infinity, hence the space-time becomes singular at this point [14].
So it is very important to study the equation for τ (which can be viewed as
master equation) in details, exactly what we shall do in the section to follow.
In doing so we analyze the role of spinor field in the character of evolution.

3 EVOLUTION OF BI UNIVERSE AND ROLE

OF SPINOR FIELD

In this section we study the role of spinor field in the evolution of the Universe.
But first of all let me qualitatively show the differences that occur at the later
stage of expansion depending on how the sources of the gravitational field were
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introduced in the system. In doing so we write the Einstein equation in the
following form:

ä2

a2

+
ä3

a3

+
ȧ2

a2

ȧ3

a3

= κT 1
1 + Λ, (8)

ä3

a3

+
ä1

a1

+
ȧ3

a3

ȧ1

a1

= κT 2
2 + Λ, (9)

ä1

a1

+
ä2

a2

+
ȧ1

a1

ȧ2

a2

= κT 3
3 + Λ, (10)

ȧ1

a1

ȧ2

a2

+
ȧ2

a2

ȧ3

a3

+
ȧ3

a3

ȧ1

a1

= κT 0
0 + Λ. (11)

Here Λ is the cosmological constant, T ν
µ is the energy-momentum tensor of the

source field. The Eq. (11) is thoroughly studied in [13]. After a little manip-
ulation from (11) one finds the equation for τ which is indeed the acceleration
equation and has the following general form:

τ̈

τ
=

3

2
κ
(

T 1
1 + T 0

0

)

+ 3Λ, (12)

Note also that here a positive Λ corresponds to the universal repulsive force
which is often considered as a form of dark energy, while a negative one gives
an additional gravitational force.

The Bianchi identity Gν
µ;ν = 0 in our case gives

Ṫ 0
0 = − τ̇

τ
(T 0

0 − T 1
1 ). (13)

After a little manipulation from (12) and (13) one finds the following expres-
sion for T 0

0 :

κT 0
0 = 3H2 − Λ − C00/τ

2, (14)

where the definition of the generalized Hubble constant H as

3H =
τ̇

τ
=
ȧ1

a1

+
ȧ2

a2

+
ȧ3

a3

= H1 +H2 +H3. (15)

Let us analyze the relation (14) in details. Consider the case when Λ = 0.
At the moment when the expansion rate is zero (it might be at a time prior
to the ”Big Bang”, or sometimes in the far future when the universe cease
to expand we have H = 0.) the nonnegativity of T 0

0 suggests that C00 ≤ 0.
Before considering the case for large τ we should like to study the Eq. (13) in
detail. For the spinor and scalar fields chosen in this paper they are identically
fulfilled. If this is not the case, an additional equation, know as equation of
state, is applied to connect pressure (T 1

1 ) with energy density (T 0
0 ). In the
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long run from (13) one finds something like (T 0
0 )bτ = const., where b is some

constant (in case of perfect fluid b = 1 + ζ). Thus we see that the energy
density of the source field introduced into the system as above decreases with
the growth of τ . Now if we consider the case when τ is big enough for T 0

0 to
be neglected, from (14) we find

3H2 − Λ → 0. (16)

On account of (15) from (16) one finds

τ → exp [
√

3Λ t]. (17)

From (16) and (17) it follows that for τ to be infinitely large, Λ ≥ 0. In case
of Λ = 0 we find that beginning from some value of τ the rate of expansion
of the Universe becomes trivial, that is the universe does not expand with
time. Whereas, for Λ > 0 the expansion process continues forever. As far as
negative Λ is concerned, its presence imposes some restriction on τ , namely,
there exists some upper limit for τ (note that τ is essentially nonnegative, i.e.
bound from below). Thus we see that a negative Λ, depending on the choice
of parameters can give rise to an oscillatory mode of expansion [13]. Thus we
can conclude the following :

Let T ν
µ be the source of the Einstein field equation; T 0

0 is the energy
density and T 1

1 , T
2
2 , T

3
3 are the principal pressure and T 1

1 = T 2
2 = T 3

3 . An ever-
expanding BI Universe may be obtained if and only if the Λ term is positive
(describes a repulsive force and can be viewed as a form of dark energy) and
is introduced into the system as in (11) or if the source field introduced as a
part of energy-momentum tensor behaves like a Λ term as τ → ∞.

It should be noted that the sources of the gravitational field such as
spinor, scalar and electromagnetic fields, perfect or imperfect fluids, as well as
dark energy such as quintessence, Chaplygin gas are introduced into the sys-
tem as parts of the total energy-momentum tensor T ν

µ . It is also known that
the dark energy was introduced into the system to explain the late time accel-
eration of the Universe. To show that though the dark energy is introduced
into the system as a part of total energy-momentum tensor, it still behaves
like a Λ term as τ → ∞, we write them explicitly. The quintessence and
Chaplygin gas are given by the following equation of states:

pq = wεq, w ∈ [−1, 0], (18)

pc = −A/εc, A > 0. (19)

Note that the energy densities of the quintessence and Chaplygin gas are
related to τ as [9]

εq = ε0q/τ
1+w, w ∈ [−1, 0], (20)

εc =
√

ε0c/τ2 +A, A > 0. (21)
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From (21) and (19) follows that εc →
√
A and pc → −

√
A as τ → ∞. In case

of a quintessence, for w > −1, both energy density and pressure tend to zero
as τ tends to infinity. But for w = −1 (sometimes known as phantom matter)
we have εq → ε0q and pq → −ε0q as τ → ∞. It means a quintessence with
w = −1 and Chaplygin gas behave like a λ term when τ → ∞ and hence can
give rise to an ever expanding Universe.

Before solving the equation for τ we have to write the components of the
energy-momentum tensor of the source fields in details:

T 0
0 = mS − F +

1

2
(1 + λ1F1)ϕ̇

2 + εpf ,

(22)

T 1
1 = T 2

2 = T 3
3 = DS + GP − F − 1

2
(1 + λ1F1)ϕ̇

2 − ppf ,

where, D = 2SdF/dI + λ1Sϕ̇
2dF1/dI and G = 2PdF/dJ + λ1Pϕ̇

2dF1/dJ.
In (22) εpf and ppf are the energy density and pressure of the perfect fluid,
respectively and related by the equation of state

ppf = ζεpf , ζ ∈ [0, 1]. (23)

Let us now study the equation for τ in details and clarify the role of
material field in the evolution of the Universe. For simplicity we consider the
case when both F and F1 are the functions of I (S) only. We also set C = 1
and C0 = 1. Thanks to the spinor field equations and those for the invariants
of the bilinear spinor form, the energy-momentum conservation law for the
spinor field satisfied identically [13]. As a result the Eq. (13) now reads [13]

ε̇+
τ̇

τ
(ε+ p) = 0. (24)

In view of (23) from (24) for the energy density and pressure of the perfect
fluid one finds

εpf =
ε0
τ1+ζ

, ppf =
ζ0ε0
τ1+ζ

.

Further we set ε0 = 1. Assume that F = λSq and F1 = Sr where λ is the
self-coupling constant. As it was shown in [13], the spinor field equation, more
precisely the equations for bilinear spinor forms, in this case gives S = C0/τ .
Then setting C0 = 1 for the energy density and the pressure from (22) we find

T 0
0 =

m

τ
− λ

τ q
+

τ r−2

2(λ1 + τ r)
+

1

τ1+ζ
≡ ε

(25)

T 1
1 =

(q − 1)λ

τ q
− [(1 − r)λ1 + τ r]τ r−2

2(λ1 + τ r)2
− ζ

τ1+ζ
≡ p.
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Taking into account that T 0
0 and T 1

1 are the functions of τ only, the Eq.
(12) can now be presented as

τ̈ = F(q1, τ), (26)

where we define

F(q1, τ) = (3/2)κ
(

m+λ(q−2)τ1−q +λ1rτ
r−1/2(λ1 +τ r)2+(1−ζ)/τ ζ

)

, (27)

where q1 = {κ,m, λ, λ1, q, r, ζ} is the set of problem parameters. The En. (26)
allows the following first integral:

τ̇ =
√

2[E − U(q1, τ)] (28)

where we denote

U(q1, τ) = −3

2

[

κ
(

mτ − λ/τ q−2 − λ1/2(λ1 + τ r) + τ1−ζ
)]

. (29)

From a mechanical point of view Eq. (26) can be interpreted as an equation of
motion of a single particle with unit mass under the force F(q1, τ). In (28) E
is the integration constant which can be treated as energy level, and U(q1, τ)
is the potential of the force F(q1, τ). We solve the Eq. (26) numerically using
Runge-Kutta method. The initial value of τ is taken to be a reasonably small
one, while the corresponding first derivative τ̇ is evaluated from (28) for a
given E.

Let us go back to the Eq. (26). In view of (27) one sees, τ̈ → (3/2)κm > 0
as τ → ∞, i.e., if τ̈ is considered to be the acceleration of the BI Universe,
then the massive spinor field essentially can be viewed as a source for ever
lasting acceleration. Note that it does not contradicts our previous statement
about the role of energy-momentum tensor on ever expanding Universe, since
the spinor field satisfies the Bianchi identity identically.

Now a few words about considering τ̈ as acceleration. The Einstein
equations for the FRW model read

2
ä

a
+

( ȧ

a

)2
= κT 1

1 , (30)

3
( ȧ

a

)2
= κT 0

0 . (31)

From (31) one finds
ä

a
= −κ

6
(T 0

0 − 3T 1
1 ), (32)

The equation (32) is known as the acceleration equation. In analogy for the
BI Universe from (11) we can write

ä1

a1

+
ä2

a2

+
ä3

a3

= −κ
2
(T 0

0 − 3T 1
1 ), (33)

7



and declare it as acceleration equation. Though setting a1 = a2 = a3 we
recover the original definition, hardly it will be helpful in our case. So in BI
Universe we assume τ̈ be the acceleration and Eq. (12) be the acceleration
equation.

Let us now define the deceleration parameter. In FRW cosmology the
deceleration parameter has the form

dfrw = −aä
ȧ2

= −
[

1 +
Ḣfrw

Hfrw

]

=
d

dt
(

1

Hfrw

) − 1, (34)

where Hfrw = ȧ/a is the Hubble parameter for FRW model. In analogy
we can define a deceleration parameter as well. If we define the generalized
deceleration parameter in the following way:

d = −
[

1 +
Ḣ1 + Ḣ2 + Ḣ3

H2
1 +H2

2 +H2
3

]

, (35)

where Hi = ȧi/ai, then the standard deceleration parameter is recovered at
a1 = a2 = a3. But is this case the definition for acceleration adopted here is
no longer valid. So we switch to the second choice and following Belinchon
and Harko et. al. [18, 19] define the generalized deceleration parameter as

d =
d

dt
(

1

3H
) − 1 = −τ τ̈

τ̇2
. (36)

After a little manipulation in view of (11) and (14) the deceleration parameter
can be presented as

d = −κ
2

(T 1
1 + T 0

0 )τ2

κT 0
0 τ

2 + C00

(37)

Let us now go back to the equations (26), (27), (28) and (29). As one
sees, the positivity of the radical imposes some restriction on the value of τ ,
namely in case of λ > 0 and q ≥ 2 the value of τ cannot be too close to
zero at any space-time point. It is clearly seen from the graphical view of the
potential [cf. Fig. 1]. Thus we can conclude that for some special choice of
problem parameters the introduction of nonlinear spinor field given by a self-
action provides singularity-free solutions. As it was shown in [13] the regular
solution is obtained only at the expense of broken dominant-energy condition
in the Hawking-Penrose theorem.

If, in an eigentetrad of Tµν , ε denotes the energy density and p1, p2, p3

denote the three principal pressure, then the dominant energy condition can be
written as [20]:

ε+
∑

α

pα ≥ 0; (38)

ε+ pα ≥ 0, α = 1, 2, 3. (39)
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The dominant energy condition for the BI metric can be written in the form:

T 0
0 ≥ T 1

1 a
2
1 + T 2

2 a
2
2 + T 3

3 a
2
3, (40)

T 0
0 ≥ T 1

1 a
2
1, (41)

T 0
0 ≥ T 2

2 a
2
2, (42)

T 0
0 ≥ T 3

3 a
2
3. (43)

In Fig. 2 we plot the potential for a negative λ. As one sees, in the
vicinity of τ = 0 there exists a bottomless potential hole. As one sees, if in
case of a self-action the initial value of τ is too close to zero and the constant
E is less than Umax (the maximum value of the potential in presence of a
self-action), the Universe will never come out of the hole.

For numerical solutions we set κ = 1, spinor mass m = 1, the power of
nonlinearity we choose as q = 4, r = 4 and for perfect fluid we set ζ = 1/3
that corresponds to a radiation. We also set C00 = −0.001 and E = 10. The
initial value of τ is taken to be τ0 = 0.4. The coupling constant is chosen to
be λ1 = 0.5, while the self coupling constant is taken to be either λ = 0.5 or
λ = −0.5. Here, in the figures we use the following notations:
1 corresponds to the case with self-action and interaction;
2 corresponds to the case with self-action only;
3 corresponds to the case with interaction only.

Figure 1: View of the potential
U(τ) for λ > 0.

Figure 2: View of the potential
U(τ) for a negative λ.

As one sees from Fig. 1, in presence of a self-action of the spinor field
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with a positive λ, there occurs an infinitely high barrier as τ → 0, it means
that in the case considered here τ cannot be trivial [if treated classically,
the Universe cannot approach to a point unless it stays at an infinitely high
energy level]. Thus, the nonlinearity of the spinor field provided by the self-
action generates singularity-free evolution of the Universe. But, as was already
mentioned, this regularity can be achieved only at the expense of dominant
energy condition in Hawking-Penrose theorem. It is also clear that if the
nonlinearity is induced by a scalar field, τ may be trivial as well, thus giving
rise to space-time singularity. Note that cases in presence of a Λ term are
thoroughly studied in [13, 14]. It was shown that introduction of a positive
Λ just accelerates the speed of expansion, whereas, a negative Λ depending of
the choice of E generates oscillatory or non-periodic mode of evolution. Note
also that the regular solution obtained my means of a negative Λ in case of
interaction does not result in broken dominant energy condition [14].

In the Figs. 3 and 4 we illustrate the acceleration of the Universe for
positive and negative λ, respectively. As one sees, in both cases we have
decreasing acceleration that tends to (3/2)κm as τ → ∞.

Figure 3: Acceleration of the Uni-
verse corresponding to a positive λ.

Figure 4: Acceleration of the Uni-
verse in case of a negative λ.

The Figs. 3 and 4 show the accelerated mode of expansion of the Uni-
verse. As one sees, the acceleration is decreasing with time. Depending of the
choice of nonlinearity it undergoes an initial deceleration phase. It is also seen
that the nonlinear term plays proactive role at the initial stage while at the
later stage spinor mass is crucial for the accelerated mode of expansion.
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4 CONCLUSION

We considered a system of interaction nonlinear spinor and scalar fields within
the scope of a BI cosmological model filled with perfect fluid. The spinor field
nonlinearity gives rise to an effective negative pressure in the course of evolu-
tion. Comparison of the effective pressure of the nonlinear spinor field with
that of a dark energy given by a quintessence or Chaplygin gas leads us to
conclude that the spinor field can be seen as an alternative to the dark energy
able to explain the acceleration of the Universe. It was shown that the nonlin-
ear spinor term is proactive at the early stage of the evolution and essentially
accelerates the process of evolution, while at the later stage of evolution the
spinor mass holds the key. Given the fact that neutrino is described by the
spinor field equation and it too possesses mass (though too small but nonzero),
the presence of huge number of neutrino in the Universe can be seen as one
of the possible factor of the late time acceleration of the Universe. It was also
shown that for some specific choice of parameters it is possible to construct
singularity-free model of the Universe, but this regularity results in the broken
dominant energy condition of the Hawking-Penrose theorem.

References

[1] Padmanabhan, T., Phys. Rep. 380 (2003) 235.

[2] Sahni, V., Dark Matter and Dark Energy astro-ph/0403324.

[3] Saha, Bijan, Anisotropic cosmological models with a perfect fluid and a Λ
term (accepted for publication in Astrophys. Space Sci.)

[4] Cladwell, R.R., Dave, R., and Steinhardt, P.J., Phys. Rev. Lett. 80 (1998)
1582.

[5] Sahni, V. and Starobinsky, A.A., Int. J. Mod. Phys. D 9 (2000) 373.

[6] Zlatev, I., Wang, L., and Steinhardt, P.J., Phys. Rev. Lett. 82 (1999)
896.

[7] Saha, Bijan, Anisotropic cosmological models with perfect fluid and dark
energy reexamined (accepted for publication in Int. J. Theor. Phys.)

[8] Kamenshchik, A.Yu., Moschella, U., and Pasquier, V., Phys. Lett. B. 511
(2001) 265.

[9] Saha, Bijan, Chinese J. Phys. 43 (2005),

[10] Saha, B. and Shikin, G.N., J. Math. Phys. 38 (1997)

11



[11] Saha, B. and Shikin, G.N., Gen. Relativ. Gravit. 29 (1997)

[12] Saha, Bijan, Mod. Phys. Lett. A 16 (2001),

[13] Saha, Bijan, Phys. Rev. D 64 (2001)

[14] Saha, Bijan and Boyadjiev, T., Phys. Rev. D 69 (2004)
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