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Quite a lot of works are devoted to the problems given in the title of the paper but
the complete solution of them has not been found yet. We propose our treatment of
this problem including toroid contributions into consideration.

I. INTRODUCTION

Let us remind a known thing that says ”it is impossible to introduce electrodynamics of matter
in general” (E. A. Turov, 1983). For example, different types of crystalline structures of
matter lead to the alignment of one or other type of polarizations in the matter considered.
So the necessity to introduce in the equations of high tensor polarization is arose. But the
most intricate case is the toroid polarization one. The fact is that the ideal static toroid
moments do not interact with each other. So the dynamic alignment of toroid moments is
impossible thanks to electric and magnetic interactions. But this takes place for example in
perovskites [1, 2] and have to be explained. The other case when the local toroid moments
can align is connected with their proper oscillations that permit them interact with each
other [3] through electric and magnetic fields.

It is noteworthy to remark that toroid moments are the multipole sources of field-free
vector potentials. Therefore, electromagnetotoroidic equations we are forced to express
in terms of vector potentials. The first part of our report is devoted to introduction of
the equations mentioned in Lagrangian formalism. In the second part we introduce toroid
moments in Schrödinger equations.

II. TOROID MOMENTS IN LAGRANGIAN FORMALISM

A. Canonical formulation of electrodynamics

We begin with usual canonical formulation of electrodynamics (e.g. [4]). The interacting
system of electromagnetic field and non-relativistic charged particles is specified partly by
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a discrete set of variables, namely the coordinates of the charged particles, and partly by a
continuous set, which we take to be the values of the vector potential in the Coulomb gauge.
The Lagrangian L will thus be a functional of A and Ȧ if the particle coordinates and their
velocities are fixed, and a function of the qα and q̇α if the vector potential and its time
derivative are fixed. We write L = L[A, Ȧ; q q̇]. In the application of Hamilton’s principle,
the particle and the field coordinates are to be varied independently. The Lagrangian must
then be chosen so that variation with respect to the particle coordinates gives Newton’s law
and variation with respect to the field coordinates (subject to the Coulomb gauge condition)
gives the equation of motion for the vector potential. A suitable Lagrangian is obtained by
setting (see e.g. [4])

L =
1

2

∑
α

mα q̇2
α −

1

2

∑

α6=β

eα eβ

|qα − qβ|
+

1

8π

∫ [Ȧ2

c2
− (curlA)2

]
dV +

+ (
1

c

∫
J(r) ·A(r) dV =

∑
α

eα

c
q̇α ·A(qα, t)). (II.1)

Here Lpar is the Lagrangian appropriate to a system of charged particles interacting solely
through instantaneous Coulomb force; it has the simple form of ”kinetic energy minus po-
tential energy”. Lrad is the Lagrangian for a radiation field far removed from the charges
and currents, and has the form of ”electric field energy minus magnetic field energy”. The
interaction Lagrangian Lint couples the particle variables to the field variables. Since the
Coulomb gauge condition is being used as a constraint, the transverse current density J⊥

has been substituted for the total current density J without affecting the Lagrangian.
To verify that L given by Equation (2.1) is indeed a suitable Lagrangian, we write down

the Euler-Lagrange equations, beginning with those for the particle coordinates. Using the
expressions B = curlA and E‖ = −gradφ E⊥ = −(1/c)Ȧ with φ(r, t) =

∑
α

eα

|qα−r|
for the transverse fields in terms of the vector potentials, we find the second law of Newton
with the Lorentz force.

To obtain the field equations, the functional derivatives of L must first be calculated
from the Lagrangian density. The Euler–Lagrange field equations in this case give the usual
evolution equation for the vector potential in the Coulomb gauge:

curl curlA + (1/c2) Ä = (4π/c)J⊥. (II.2)

The conjugate momenta corresponding to the Lagrangian (2.1) are defined in the usual way
as

pα = ∂L/∂q̇α = m q̇α + (eα/c)A(q, t), (II.3)

Π(r) = ∂L/∂Ȧ(r) = Ȧ(r)/4π c2 = −E(r)/4π c. (II.4)

Proceeding in the conventional way we get

H[Π,A; p, q] =
∑

α

pα · q̇α +

∫
Π · ȦdV − L =

∑
α

1

2mα

[
pα −

eα

c
A(q, t)

]2
+

+
1

2

∑

α6=β

eα eβ

|qα − qβ|
+

1

8π

∫ [
(4π cΠ)2 + (curlA)2

]
dV (II.5)
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B. Formation of an equivalent Lagrangian

It is well known that in classical dynamics the addition of a total time derivative to a
Lagrangian leads to a new Lagrangian with the equations of motion unaltered. Lagrangians
obtained in this manner are said to be equivalent. In general, the Hamiltonians following
from the equivalent Lagrangians are different. Even the relationship between the conjugate
and the kinetic momenta may be changed.

An equivalent Lagrangian to that of (2.1) is [5]

Lnew = L − 1

c

d

dt

[∫
P(r) ·A(r) dV

]
. (II.6)

Taking into account the Coulomb gauge condition divA = 0 and toroid contribution we
may substitute

P =⇒ P⊥ + P‖ + curlTe, (II.7)

with the contribution of P‖ being vanished.
Thus we have the following equivalent Lagrangian

Lnew = L − 1

c

d

dt

[∫
(P⊥(r) + curlTe(r)) ·A(r) dV

]
. (II.8)

The field conjugate to the vector potential A is now

Π(r) = − E⊥(r) + 4π (P⊥(r) + curlTe(r))

4π c
=: −D(r)/4π c. (II.9)

Thus the introduction of additional material field leads to the modification of the first
Maxwell equation as

curlD(r) = − 1

c
Ḃ(r) + 4π (curlP(r) + curl curlTe(r)). (II.10)

The new Lagrangian is a function of the variables qα, q̇α and a functional of the field
variables A, Ȧ, and the equations of motion follow from the variational principle. Applying
the Euler-Lagrange equations of motion we obtain

curlB(r) =
1

c
Ḋ(r) + 4π

(
curlM⊥(r) + curl curlTm(r)

)
(II.11)

where the relation c curlM⊥(r) = J⊥(r) − Ṗ
⊥
(r) is used and the following re-notations are

introduced
1

c
Ṫ

e,m |Ω =⇒ ∓ curlTm,e |Ω (II.12)

The relation (2.12) demands some comments. Both Te and Tm represent themselves in
essence closed isolated lines of electric and magnetic fields. So they have to obey the usual
differential relations similar to the free Maxwell equations (see in [2] and [6]). However,
remark that signs in (2.12) are inverse in comparison with the corresponding Maxwell equa-
tions because the direction of electric dipole is accepted to be chosen opposite to its inner
electric field [7].
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If we define the auxiliary field H to be H(r) = B(r) − 4π (M⊥(r) + curlTm(r)), then
it deduces to

curlH = (1/c)Ḋ. (II.13)

But the latter formula is unsatisfactory from the physical point of view. It is easy to
image the situation when B and M⊥ are absent, because the medium may be composed
from isolated aligned dipoles Tm [1, 2] and each Tm is the source of free-field (transverse-
longitudinal) potential but not B [3]. The same is justified with respect to (2.10). So the
transition to the description by means of potentials, as the entities more inherent than the
field strengths more close to Newtonian force conception, is inevitable.

C. Formal deduction of equations of electromagnetotoroidics.

Let us suppose that in an electromagnetic medium there are no free charges and currents.
So we may rewrite usual Maxwell equation in the following symmetrical form:

curlB =
1

c
Ḋ + 4π curlM, B = H + 4πM in the whole <3,

curlD = −1

c
Ḃ + 4π curlP, D = E + 4πP in the whole <3, (II.14)

being of these equations interchange to each other as before through the self-reciprocal
exchanges B → ∓D, D → ±B, M → ∓P, P → ±M and the conditions divB = 0
and divD = 0 are fulfilled. Hence is valid the following changes [8]

B =⇒ curl αm + α̇e, D =⇒ curl αe − α̇m,

curlM =⇒ curlM + curl curlTm curlP =⇒ curlP + curl curlTe (II.15)

As a result we obtain for basic equations

curl curl αm + α̈m = 4π (curlM + curl curlTm) (II.16)

curl curl αe + α̈e = 4π (curlP + curl curlTe) (II.17)

It is necessary to emphasize that the potential descriptions electrotoroidic and magneto-
toroidic media are completely separated. The properties of the magnetic and electric po-
tentials αm and αe under the temporal and spatial inversions are opposite [2]. We also see
that the substitutions (2.15) in (2.14) produce (2.16) and (2.17) as well.

If divD 6= 0 and in the medium there does exist free current we have to remember
Dirac’s approach to the constrained systems and use along for instance [9] its application to
electrodynamics of continuous media.

D. Solution to the electromagnetotoroidic equations

Let us solve the equation (2.16). Adding − (4π/c2) T̈
m

in the both sides of the equation
(2.16) for a we get the wave equation for am = αm + 4π Tm

curl curlam +
1

c2
äm = 4π curlM⊥(r) − 4π

c2
T̈

m
(r) (II.18)
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The solution to this equation can be written as [10]

am = − 1

4π

∫

all space

[−∇′(∇′ ·Tm ′) − 4π∇′ ×M′) + (4π/c2)T̈
m ′]

|r − r′| dV ′ (II.19)

here M′ denotes M(r′). One can obtain the solution to the equation (2.17) inserting ae, P
and Te instead of am,M and Tm. Under the Coulomb gauge the substitution div am,e =
−4π divTm,e is valid. The brackets [ ] in the above equations are the ”retardation symbol”.
This symbol indicates a special space and time dependence of the quantities to which it is
applied and is defined by the identity

[f ] ≡ f(x′, y′, z′, t− r/c).

III. INTRODUCING OF MULTIPOLAR INTERACTIONS INTO
SCHRöDINGER EQUATIONS

A large number of works have been devoted to this problem. Unfortunately most of them
are confusing. We demonstrate it on the basis of detail but incorrect paper by K. Haller
and R. B. Sohn [11]. The matter is that they begin with the expression independent of
the scalar-longitudinal contributions (ρ, divj) and after the integrations by parts in the final
expression restore them. It is a very common methodical error.

A. Description of non-relativistic interaction of electrons and photons

Here we proceed and set the problem in terms used in [11]. The Hamiltonian that describes
the interaction between photons and non-relativistic Schrödinger electrons is given by

Hc = H0 −
∫

J(r) ·AT (r) dr +
e

2m

∫
ρ(r)AT (r) ·AT (r) dr +

+

∫
ρ(r)ρ(r′)

8π|r − r′| dr dr′, (III.1)

where AT is the transverse vector potential with divAT = 0. H0 is the Hamiltonian
for noninteracting electrons and photons that can be represented by H0 = H0(e) + H0(γ),
where

H0(e) =

∫
ψ+(r)[−(2m)−1∇2 + V (r)]ψ(r)dr (III.2)

with V (r) representing an external short-range potential (for example, the shielded Coulomb
potential of a static nucleus). H0(γ) is the Hamiltonian for free transverse photons and is
given by

H0(γ) =
1

2

∫
[ET (r)2 + B(r)2]dr, (III.3)
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where ET (r) and B(r) represent the transverse electric and magnetic field, respectively. In
equation (3.1) ρ(r) and J(r) are the standard quantum mechnical charge and current and
hold the usual quantum mechanical commutation rules. The current J(r) is conserved under
the time dependence provided by the Hamiltonian so that

divJ(r) = −i[H0, ρ(r)]. (III.4)

The current j(r) = J(r) − (e/m) ρ(r)AT (r) is conserved under the time dependence pro-
vided by the Hamiltonian so that

div j(r) = −i[Hc, ρ(r)]. (III.5)

Now Hc may be expressed by (3.1) substituting J(r) → J(r) + j(r).

B. Introduction of toroid moments

A formal procedure was first proposed by E. G. P. Rowe [12] permits to obtain the complete
solution to the problem of multipole expansion of electromagnetic current [3], which consists
of the replacing of some vector function of current by the three (in general unlimited) series
of multipole parameters. The multipole parametrization of interaction Hamiltonian of an
arbitrary system with external fields under the Coulomb gauge has the form [3]

Hc = −
∞∑

l=1

l∑

m=−l

∞∑
n=0

(2l + 1)!!

2n n!(2l + 2n + 1)!!

√
2l + 1

4π
×

× {l−1M
(2n)
lm (t)Ylm(∇)4n(r ·B)|r=0 + (III.6)

+ l−1[Q̇lm(t)δn,04−1 − T 2n
lm (t)]Ylm(∇)4n[(1/c)r · Ḋ + (4π/c)r · j]r=0}.

where Q̇lm(t), connected with Coulomb multipole moments of the charge distribution of the
system are

Q̇lm(t) =
√

4πl

∫
rl−1 Y ∗

l l−1 m(r̂) j(r, t) dr, (III.7)

M
(2n)
lm (t) are the magnetic multipole moments or their radii

M
(2n)
lm (t) =

−i

c

√
l

l + 1

√
4π

2l + 1

∫
rl Y ∗

llm(r̂) j(r, t) dr, (III.8)

and T
(2n)
lm (t) are third family of multipole moments [13], the toroid moments and their radii,

namely

T
(2n)
lm (t) = −

√
πl

c(2l + 1)

∫
rl+2n+1[Y ∗

l l−1 m(r̂) +
2
√

l/l + 1

2l + 3
Y ∗

l l+1 m(r̂)] · j(r, t) dr, (III.9)

In the case considered by Haller and Sohn [11] we have to substitute into (3.15)

Q̇lm(t) ≡ ∂ Qlm

∂t
= i[Hc, Qlm] and j = J − eρA, (III.10)

in the formulas (3.6), (3.7), (3.8) and (3.9). In this approach there does not appear any
longitudinal contributions that are fictitious (mutually cancelled out) in the expression,
deduced by Haller and Sohn. The formulas (3.7 - 3.9) obtained by us give correct multipole
parametrization for the interaction energy transverse degrees of freedom of a non-relativistic
system with radiation field.
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C. Toroid moments in Schrödinger equation

Now suppose that we consider some electron involved in the molecular structure. We
may introduce a coordinate system [see Fig.1] such that the Schrödinger equation for this
electron interacting with external sources of electromagnetic fields has the following form
[14]

i~φ̇(q) =
[
− ~

2

2m
(∇(q))2 + V (q) + e2

∫
φ̄(q′)φ(q′)
|q − q′| dq −

∫
P(r, q) · E⊥(r) dr −

−
∫

M(r, q) ·B⊥(r) dr +
1

2mc2

[∫
n(r, q)×B(r) dr

]2
]
φ(q), (III.11)

with n(r, q) = − e
2
(q − R) δ(r − R).

There are two ways to introduce here the toroid contributions. The first one is straight-
forward to use the substitution (2.16) Then we obtain

∫
P·E⊥ dr =⇒

∫
P·E⊥ dr +

∫
curlTe·E⊥ dr =

∫
P·E⊥ dr +

∫
Te·curlE⊥ dr, (III.12)

∫
M ·B dr =⇒

∫
M ·B dr +

∫
Tm · curlB dr. (III.13)

More reasonable approach is developed in [2]. It goes back to the classic multipolar de-
scription of quasimolecular structure [9, 15]. According to it we may use immediately the
multipole expansion of the densities P(r, q) and M(r, q) as follows [2]:

W e = −
∫

d(r, q) · E⊥(r) dr = −Q · E⊥ − Te · curlE−

−P̂
e · curl curlE − 1

2
Qij(∇iE

⊥
j + ∇jE

⊥
i ) − T e

ij∇i(curlE⊥)i − · · · (III.14)

where Q =
∫

d(r) dr is the conventional total electric dipole moment of the system, Te =
1
2

∫
r× d(r) dr is the axial toroid moment and (see [14])

P(r, q) = −e
{

(q − R) − 1

2
(q×R) −

−e

2

[
(q − R)i (q − R)j − 2

3
(q − R)2 δij

]
+ · · ·

}
δ(r − R). (III.15)

Analogically for M(r, q).
Let us now define the axial toroid moment. From the classical point of view on the origin
of electric dipoles we see that the multipole expansion of the distribution density P(r, t)
contents generally three kinds of dipole moments (see Formula (3.14)). Working within
the scope of classical framework after Power a. o. [5] we see that Te = 0 for a separate
”atom”. Really, all the electric dipoles are characterized by its space vectors, with the
origins lying in the origin of the coordinate system (center mass of the system considered)
and the endpoints in the electron coordinates. The sum of these vectors characterizes the
total electric dipole moment of the system. To demonostrate the forementioned conclusion
we consider the following example.
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Let us have a system containing N atoms where each j-atom itself forms a subsystem [see
Fig.2]. Let ”O” be the center-mass of the system as a whole. If the system contains only
one atom, say ”A”, which on his part consists of one nuclei and n electrons, the electric
dipole moment of this system relating to the point ”O” can be written as

Q = −e

n∑
i=1

(R− qi), d = Q δ(r−R). (III.16)

Then the axial toroid moment of the such a system with respect to its proper center-mass is

T(d) =
1

2

∫
d× r dr =

e

2

n∑
i=1

(R− qi)× (R− qi) = 0, (III.17)

as ri = R − qi and R is fixed. If the molecule contains N atoms then we define the total
toroid moment of the molecule T(d) as a whole [16] with respect to its center-mass by the
following formula

T(d) =
e

2

N∑
j=1

n∑
i=1

(Rj − qij)×Rj =
e

2

N∑
j=1

n∑
i=1

[qij ×Rj] 6= 0, (III.18)

although the axial toroid moment T
(d)
j for each separate j-atom with respect to its proper

center-mass is equal to zero as before.

R

q i

R -q i

e i

r

O

R j

A
q ij

FIG. 1: FIG. 2:

As a particular example where electromagnetic properties of molecules are described by
the axial toroid moment, we point out the phenomenon of ”aromagnetism” [17, 18]. The
molecular orbitals ψE2g and ψE1u with this symmetry are built [18]. The molecules in this
state are shown to have axial toroid moment.

IV. CONCLUSION

Now let us remember that there are two electric fields those differ by properties [9]. That,
which appears in transverse part, is radiation field, unlike the longitudinal part that can be
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connected with the evolution of scalar one in Lorentz gauge divA = −(1/c) ϕ̇. In connection
with this we should notice the terminological ambiguity. In the framework of electrodynamics
of continuous media, where may be realized the situation when divj = 0, the moments Q̇lm

are the functions, independent to Coulomb moments Qlm, because there is no free charges
in the system considered. So Q̇lm cannot be restored as a result of the measurement of
Coulomb moments by means of permanent electric field. We will illustrate it doing inverse
transformation, i.e. adding in the current part of multipole expansion the transverse and
longitudinal contributions, for simplicity Q̇1m:

l−1
[
Q̇lm4−1Ylm(rḊ) − Q̇lmYlm(∇)4n−1divA

]
l=1,n=0

=⇒

=⇒ Q̇4−1
(1

c
Ḋ−∇divA

)
= Q̇4−1

(
curl curlA − ∇divA

)
=

= −Q̇4−14A = −Q̇A = QȦ− d

dt
QA =⇒ −QE (IV.1)

Here we take into account that 1
c
Ė = curlB = curl curlA. Naturally, these expressions

are nonzero and can be justified only if the system is described but by a charge density and
Q̇ =

∫
j dr (see e.g. [9]). Note that in quantum mechanics of atoms and moluclues there

are always isolated charges and the moments Q̇lm and Qlm are connected by the evolution
equation (3.10) i.e. Q̇lm = i[Hc, Qlm].

The Coulomb gauge is generally not applied if a system in consideration contains some
free charges. Therefore we give the multipole expansion of ρ(r, t) for the completeness of
consideration [3, 11]

ρ(r, t) =
∑

l,m,n=0

(2l + 1)!!

2nn!(2l + 2n + 1)!!

√
4π

2l + 1
Q

(2n)
lm (t)4nδlm(r), (IV.2)

Qlm(t) =

√
4π

2l + 1

∫
rl+2nY ∗

lm(r̂)ρ(r, t) dr. (IV.3)

Naturally, the Coulomb dipole moments, inherent to (4.1–4.3), interact with electric field
as usual H = −QE. Had we used the Dirac’s analysis of constrained Hamiltonian system
developed within the scope of our problem in [19, 20] we would have been in need of the
fixation of Coulomb gauge [21] (see also [9]).
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