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A modified system of equations of electrodynamics of continuous media has been
obtained. Beside the Lagrangian one an alternative gauge-like formalism has been
developed to introduce the toroid moment contributions in the equations obtained.
The two potential formalism that was worked out by us earlier has been developed
further where along with the two vector potentials we introduce two scalar potentials
thus taking into account all the four basic equations of electromagnetism.
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1. INTRODUCTION

Ya. Zel’dovich [1] was the first to introduce anapole in connection with the global elec-
tromagnetic properties of a toroid coil that are impossible to ascribe within the charge or
magnetic dipole moments in spite of explicit axial symmetry of the toroid coil. Further,
by 1974 Dubovik and Cheskov [2] finally defined the toroid moment in the framework of
classical electrodynamics. As it came out, namely it (toroid moment) corresponds to the
point-like toroidal solenoid, whereas anapole contains, additional to the toroid moment, a
linear element of direct current centered to it [2, 3]. Toroid polarization is made evident
in different condensed matter by a large number of investigations. For magnetic media, we
note the recent measurement of toroid moment in Ga2−xFexO3 [4] and Cr2O3 [5].

Moreover, a principally new property of media known as aromagnetism was observed in
a class of organic substances, suspended either in water or in other liquids [6]. Later, it was
shown that this phenomena of aromagnetism cannot be explained in a standard way, e.g.,
by ferromagnetism, since the organic molecules do not possess magnetic moments of either
orbital or spin origin. It was also shown that the origin of aromagnetism is the interaction
of vortex electric field induced by alternative magnetic one with the axial toroid moments
of the fragment C6 in aromatic elements [7].

These experimental results force to introduce toroid polarizations in the framework of
electrodynamics continuous media that in its part inevitably leads to the modification of
the basic equations. Recently we introduced toroid moments in Maxwell and Schrödinger
equations exploiting Lagrangian formalism [8]. Here we give a brief description of this
formalism. Beside this we elaborate an alternative method to introduce toroid moments in
the equation of electromagnetism. Further we develop two potential formalism suggested by
us earlier [8–10].
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2. INTRODUCTION OF TOROID POLARIZATIONS INTO THE EQUATIONS
OF ELECTROMAGNETISM

In this section we give two alternative description of introduction of toroid polarizations
into the equations of electromagnetism. The first one is based on the Lagrangian formalism,
whereas we call the second method as a gauge-like one.

A. Lagrangian Formalism

As a starting point we consider the interacting system of electromagnetic field and non-
relativistic charged particles given by the Lagrangian density [11]

L = Lpar + Lrad + Lint (2.1)

Lpar =
1

2

∑
α

mα q̇2
α − 1

2

∑
α 6=β

eα eβ

|qα − qβ|

Lrad =
1

8π

∫ [Ȧ2

c2
− (∇× A)2

]
dr

Lint =
1

c

∫
J(r) ·A(r) dr =

∑
α

eα

c
q̇α ·A(qα, t).

Here Lpar is the Lagrangian appropriate to a system of charged particles interacting solely
through instantaneous Coulomb force; it has the simple form of ”kinetic energy minus po-
tential energy”. Lrad is the Lagrangian for an external radiation field far removed from the
charges and currents, and has the form of ”electric field energy minus magnetic field energy”.
The interaction Lagrangian Lint couples the particle variables to the field ones. It can be
easily verified that variation with respect to the particle coordinates gives the second law of
Newton with the Lorentz force

mα q̈α = eα E(qα, t) +
eα

c
q̇α ×B(qα, t). (2.2)

Variation of the Lagrangian (2.1) with respect to field variables gives the equation of motion
for the vector potential

∇× ∇× A +
1

c2

∂2A

∂t2
= − 4π

c
J (2.3)

Defining B = ∇× A and E = −Ȧ/c one obtains

∇× B =
1

c

∂E

∂t
+

4π

c
J (2.4)

It should be emphasized that E in (2.2) and (2.4) is the transverse part of the total electric
field. The longitudinal electric field in question is entirely electrostatic.
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The Hamiltonian, corresponding to the Lagrangian (2.1) reads

H[Π,A; p, q] =
∑

α

pα · q̇α +

∫
Π · Ȧdr − L

=
∑

α

1

2mα

[
pα − eα

c
A(q, t)

]2
+

1

2

∑
α 6=β

eα eβ

|qα − qβ|
(2.5)

+
1

8π

∫ [
(4π cΠ)2 + (∇× A)2

]
dr,

where the corresponding conjugate momenta are

pα = m q̇α + (eα/c)A(q, t), Π(r) = (4πc2)−1Ȧ.

It is well known that in classical dynamics the addition of a total time derivative to a
Lagrangian leads to a new Lagrangian with the equations of motion unaltered. Lagrangians
obtained in this manner are treated to be equivalent. In general, the Hamiltonians following
from the equivalent Lagrangians are different. Even the relationship between the conjugate
and the kinetic momenta may be changed [12]. Moreover, let us notice that the basic equa-
tions of any new theory cannot be introduced strictly deductively. Usually, either they are
postulated in differential form based on the partial integral conservation laws or transfor-
mations of basic dynamical variables, whose initial definitions usually have some analog in
mechanics. Furthermore, we need to do so not only by inertia of thinking but also because
of the fact that most of our measurements have its objects as individual particles or use
them as test one. The situation is the same in electromagnetism and in gravitation. In gen-
eral geometrical interpretation of dynamical variables plays the crucial role. An equivalent
Lagrangian to that of (2.1) is [8]

Lequiv = L − 1

c

d

dt

[∫
{P(r) + ∇× Te(r)} ·A(r) dV

]
, (2.6)

where the toroid contribution has been taken into account. Here Te is axial toroid polariza-
tion (ATM) is electrical by nature (corresponding to a distribution of toroid dipole moments
of electric type). The field conjugate to the vector potential A is now

4πcΠ = −(4πc)−1
(
E + 4π(P + ∇× Te)

)
Since only the free field E is generated due to the change of magnetic field B one writes

∇× D = −1

c
Ḃ + 4π(∇× P + ∇× ∇× Te), (2.7)

under ∇× E = −Ḃ/c. Here we define

D = D + 4π∇× Te, E = E + 4π∇× Te, D = E + 4πP (2.8)

The new Lagrangian is a function of the variables qα, q̇α and a functional of the field
variables A, Ȧ, and the equations of motion follow from the variational principle applied to
the latter. As a result, the Euler-Lagrange equations of motion has the form [8]

∇× B =
1

c
Ḋ +

4π

c
jfree + 4π

(
∇× M + ∇× ∇× Tm)

)
(2.9)
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Here the currents were divided into free and bound state (due to electric polarization and
magnetization) one as [13]

J(r) = jfree + c ∇× M(r) + Ṗ(r) (2.10)

and an additional local condition on Te is imposed:

∇× Tm,e ≡ ±1

c
Ṫ

e,m
(2.11)

where Tm is the toroid dipole polarization vector of magnetic type. The relation (2.11)
demands some comments. Both Te and Tm represent the closed isolated lines of electric
and magnetic fields. So their dynamics at point may be reexpressed by the usual differential
relations similar to the free Maxwell equations for free electric and magnetic fields [14, 15]).
However, remark that signs here are opposite to the corresponding one in Maxwell equations
because the direction of electric dipole is usually accepted to be chosen opposite to its inner
electric field [16].

Defining the auxiliary field H in the following way

H = H− 4π∇× Tm, B = B− 4π∇× Tm, H = B− 4πM (2.12)

then it deduces to

∇× H =
1

c
Ḋ +

4π

c
jfree

But the latter formula is unsatisfactory from the physical point of view. It is easy to image
the situation when B and M are absent, because the medium may be composed from isolated
aligned dipoles Tm [17–19] and each Tm is the source of free-field (transverse-longitudinal)
potential but not B [20]. So the transition to the description by means of potentials is
inevitable.

The Hamiltonian, corresponding to the equivalent Lagrangian in this case reads

Hequiv[Π,A; p, q] =
∑

α

1

2mα

[
pα −

eα

c
A(q, t)

]2
+

1

2

∑
α 6=β

eα eβ

|qα − qβ|

+
1

8π

∫ {
[4π(P + ∇× Te)−D]2 + (∇× A)2

}
dr (2.13)

+
1

c

∫
J ·Adr−

∫
M ·Bdr−

∫
B ·∇× Tmdr.

B. Gauge-like Transformation

The Maxwell equations for electromagnetic fields in media can be written as

∇× H− 1

c

∂D

∂t
=

4π

c
jfree (2.14)

∇ · D = 4πρ (2.15)

∇× E +
1

c

∂B

∂t
= 0 (2.16)

∇ · B = 0 (2.17)
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where

D = E + 4πP (2.18)

H = B− 4πM (2.19)

In the previous subsection we have introduced toroid polarizations into Maxwell equation
through Lagrangian formalism. In doing so we first constructed an equivalent Lagrangian.
Here we are going to do the same using in an alternative way which looks rather a gauge
transformation. To this end we introduce two vectors Tm and Te of toroid dipole polariza-
tions of the vector (magnetic) and axial (electric) types, respectively such that

P =⇒ P + ∇× Te (2.20)

M =⇒ M + ∇× Tm (2.21)

It can be easily shown that the system (2B) is invariant under the transformation (2B) if
we impose the additional condition (2.11), i.e.,

∇× Te,m ≡ ±1

c

∂Tm,e

∂t
(2.22)

In account of both (2B) and (2.22) we obtain the complete system (2B) as

∇× H =
1

c

∂D
∂t

+
4π

c
jfree (2.23)

∇ · D = 4πρ (2.24)

∇× E = −1

c

∂B
∂t

(2.25)

∇ · B = 0 (2.26)

As is seen the equations (2.23) and (2.25) of the system (2B) completely coincide with (2.9)
and (2.7) of the previous subsection. Thus we introduced toroid polarizations in Maxwell
equations using two different formalisms. However, there are some fine circumstances
where the toroid sources generate the free-field potential (Franz’s, Ederly-Sidhu’s, Bohm-
Aharonov’s ones) that is also known as longitudinal-transverse vector potential (LTVP) [21–
23]. In the last form of the equations they are omitted since the equations (2.23) and (2.24)
take into account the contributions of ∇×Tm,e 6= 0 only. Therefore, we need in transition
to potential formulation of the basic equations ultimately.

3. TWO POTENTIAL FORMALISM

It is commonly believed that the divergence equations of the Maxwell system are ”redun-
dant”. Recently Krivsky a.o. [24] claimed that to describe the free electromagnetic field it is
sufficient to consider the curl-subsystem of Maxwell equations since the equalities ∇ · E = 0
and ∇ · B = 0 are fulfilled identically. Contrary to this statement, Jiang and Co [25] proved
that the divergence equations are not redundant and that neglecting these equations is at
the origin of spurious solutions in computational electromagnetics immediately. Here we
construct generalized formulation of Maxwell equations including both curl and divergence
subsystems. In this section we develop two potential formalism (a similar formalism was
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developed by us earlier with the curl-subsystem taken into account only). Note that in the
ordinary one potential formalism (A, ϕ) the second set of Maxwell equations are fulfilled
identically. So that all the four Maxwell equations bring their contribution individually, in
our view, one has to rewrite the Maxwell equation in terms of two vector and two scalar
potentials.

Because of introduction of toroid polarizations now the original B and D supplemented
by ∇×Tm and ∇×Te respectively, hence should be reinterpreted. It means the deduction
of the equation of evolution by inserting B = ∇ × A and E = −Ȧ/c is valid no longer
and we have to introduce some new potential that could explain the new B and D. To this
end we introduce so-called double potential [8–10]. As was mentioned, due to introduction
of toroid polarizations the vectors B and D should be redefined. We denote these new
quantities as β and δ, respectively. In account of it, the system (2B) should be rewritten
as

∇× B =
1

c

∂E
∂t

+
4π

c

(
jfree +

∂P

∂t
+ c ∇× M

)
(3.1)

∇ · E = 4π(ρ−∇ · P) (3.2)

∇× E = −1

c

∂B
∂t

(3.3)

∇ · B = 0 (3.4)

Before developing the two potential formalism we first rewrite system (2B) with H and D
replaced by B and E, respectively, in terms of vector and scalar potentials A, φ such that
B = ∇× A, E = −∇φ− (1/c)(∂A/∂t). Following any text book we can write

�A = −4π

c
jtot = −4π

c

[
jfree +

∂P

∂t
+ c ∇× M

]
(3.5)

�φ = −4π
[
ρ−∇ · P

]
(3.6)

under Lorentz gauge, i.e., ∇·A+(1/c)(∂φ/∂t) = 0. Here � = ∇2−(1/c2)(∂2/∂t2). Note that
to obtain (3) it is sufficient to consider (2.14) and (2.15) with H and D replaced by B and E
respectively, while the two others, i.e., (2.16) and (2.17), are fulfilled identically. Let us now
develop two potential formalism. Two potential formalism was first introduced in [9] and
further developed in [8, 10]. In both papers we introduce only two vector potentials αm, αe

and use only the curl-subsystem of the Maxwell equations with the additional condition
∇ · αm,e = 0. Thus, in our view our previous version of two potential formalism lack of
completeness. In the present paper together with the vector potentials αm, αe we introduce
two scalar potentials ϕm and ϕe such that

B = ∇× αm +
1

c

∂αe

∂t
+∇ϕm, (3.7)

E = ∇× αe − 1

c

∂αm

∂t
−∇ϕe (3.8)

Inserting (3) into the system of equations (3) we find

�αm = −4π

c

(
jfree +

∂P

∂t
+ c ∇× M

)
(3.9)

�ϕm = 0 (3.10)

�αe = 0 (3.11)

�ϕe = −4π (ρ−∇ · P) (3.12)
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under ∇ · αm,e + (1/c)(∂ϕe,m/∂t) = 0. The general solutions to the systems (3) can be
written as (see for example [8, 26]):

F (r, t) = − 1

4π

∫
all space

f(r′, t′)dr′

|r− r′|

∣∣∣∣∣
t′=t−|r−r′|/c

(3.13)

where F (r, t) stands for the unknowns αe, ϕe, αm, ϕm, whereas f is the right hand side of
the equations (3).

Here we would also like to note that in our previous works [8–10] we introduced two-
potentials in the following way

B = ∇× αm +
1

c

∂αe

∂t
, (3.14)

D = ∇× αe − 1

c

∂αm

∂t
(3.15)

As was mentioned earlier the scalar parts ϕm,e has not been taken into account. Since
we are dealing with moving media and want the equations of electromagnetism with toroid
polarizations to be Lorentz covariant, we should consider the pair (B, E) as in one-potential
case rather than the pair (B, D).

It is necessary to emphasize that the potential descriptions electrotoroidic and magne-
totoroidic media are completely separated. The properties of the magnetic and electric
potentials αm and αe under the temporal and spatial inversions are opposite [14]. The
potential αe (αm) is related to the toroidness of the medium Te (Tm) as B (D) to M (P).

Note that if ∇ · δ 6= 0 and there does exist free current in the medium we have to use
the direct method for finding all constrains in the theory suggested by Dirac. Dirac applied
his method to electrodynamics and found that electromagnetic potentials have only two
degrees of freedom described by transverse components of vector potential. This method
was developed by Dubovik and Shabanov [23], where classical and quantum dynamics of a
system of non-relativistic charged particles were considered.

4. CONCLUSION

The modified equations of electrodynamics containing the contribution toroid polariza-
tions have been obtained. The two-potential formalism for these equations has been de-
veloped further. Note that introduction of free magnetic current jmfree and magnetic charge
ρm in the equations (3.3) and (3.4) respectively leads to the equations obtained by Single-
ton [27, 28].
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