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Exact particle-like solutions to the interacting system of scalar and electromagnetic
field equations within the scope of external Freedman-Robertson-Walker (FRW)
space-time have been obtained. In particular, static, spherically symmetric droplet-
like configurations have been found and their linearized stability has been proved.
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1. INTRODUCTION

Development of general relativity (GR) and quantum field theory (QFT) leads to the
increasing interest to study the role of gravitational field in elementary particle physics. To
obtain and study the properties of regular localized solutions to the nonlinear classical field
equations is motivated mainly by a hope to create a consistent, divergence-free theory. These
solutions, as was remarked by Rajaraman [1] give us one of the ways of modeling elementary
particles as extended objects with complicated spatial structure. In such attempts it is
natural to treat the field nonlinearity not only as a tool for avoiding the theoretical difficulties
(such as singularities) but also as a reflection of real properties of physical system. It should
be also emphasized that the complete description of elementary particles with all their
physical characteristics (e.g., magnetic momentum) can be given only in the framework of
interacting field theory [2].

In this paper we present some regular particle-like solutions within the scope of general
relativity for an interacting system of scalar and electromagnetic fields, confining ourselves
to static, spherically symmetric configurations.

2. FUNDAMENTAL EQUATIONS AND THEIR SOLUTIONS

As an external homogenous and isotropic gravitational field we choose the FRW space-
time. This Universe is very important as the corresponding cosmological models coincides
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with observation. The interval in the FRW Universe in general takes the form [3, 4]

ds2 = dt2 −R2(t)

[
dr2

1− kr2
+ r2

{
dϑ2 + sin2ϑdφ2

}]
(2.1)

Here R(t) defines the size of the Universe, and k takes the values 0 and ±1. We consider
the simple most case putting R(t) = R = constant, which corresponds to the static FRW
Universe. In static case k = 0 corresponds to usual Minkowski space, k = +1 describes
the close Einstein Universe [5] and k = −1 corresponds to the space-time with hyperbolic
spatial cross-section. Note that the velocity of light c has been taken to be unity.

We consider a system with the Lagrangian

L =
R

2κ
+

1

2
ϕ,αϕ,α − 1

16π
FαβFαβΨ(ϕ) (2.2)

where the first term describes the Einstein gravitational field (R is the scalar curvature,
κ = 8πG is the gravitational constant) and Ψ(ϕ) is some arbitrary function characterizing
interaction between the scalar (ϕ) and electromagnetic (Fµν) fields. This kind of interaction
has been thoroughly discussed in [6]. The nongravitational part of the Lagrangian( 2.2)
describes a system with a positive-definite energy if and only if Ψ ≥ 0.

The scalar and electromagnetic field equations and the energy-momentum tensor corre-
sponding to the Lagrangian( 2.2)

1√
−g

∂

∂xν

(
√
−ggνµ ∂ϕ

∂xµ

)
+

1

16π
FαβFαβΨϕ = 0, Ψϕ =

∂Ψ

∂ϕ
(2.3)

1√
−g

∂

∂xν

(
√
−gF νµ

)
= 0 (2.4)

T ν
µ = ϕ,µϕ

,ν − 1

4π
FµβF νβΨ(ϕ)− δν

µ

[1
2
ϕ,αϕ,α − 1

16π
FαβFαβΨ(ϕ)

]
(2.5)

As was mentioned earlier, we seek the static, spherically symmetric solutions to the
equations ( 2.3) and ( 2.4). To this end we assume that the scalar is the function of r only,
i.e. ϕ = ϕ(r) and the electromagnetic possesses only one component F10 = ∂A0/∂r = A′.

Under the assumption made above, the solution to the equation ( 2.4) reads

F 01 = q̄P (ϕ)

√
1− kr2

R3r2
(2.6)

where q̄ is the constant of integration and P (ϕ) = 1/Ψ(ϕ).
Putting ( 2.6) into ( 2.3) for the scalar field we obtain the equation with ”induced non-

linearity” [7]

(1− kr2)ϕ′′ +
2− 3kr2

r
ϕ′ − 2q2

R2r4
Pϕ = 0 (2.7)

Substituting z =
√

1/r2 − k we rewrite this equation as

∂2ϕ

∂z2
− 2q2

R2
Pϕ = 0 (2.8)
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The first integral of ( 2.8) gives
∂ϕ

∂z
=

2q

R

√
P + C0 (2.9)

Here C0 is the constant of integration, which under the regularity condition of T 0
0 at the

center turns to be trivial, i.e., C0 = 0. Finally we write the solution to the scalar field
equation in quadrature ∫

∂ϕ√
P

=
2q

R
(z − z0) (2.10)

Thus we obtain the general solutions for the scalar and electromagnetic fields.
In accord with ( 2.6) and ( 2.9) from ( 2.5) we find the energy density and the total

energy of the field system

T 0
0 =

4q2P

R4r4
(2.11)

Ef =

∫
T 0

0

√
−3gd3x = −8πq

∫ √
Pdϕ (2.12)

As, one sees that the energy density T 0
0 and total energy Ef of the configurations obtained

do not depend on the conventional values of the parameter k.
Thus the equations for the scalar and electromagnetic fields are completely integrated.

As one sees, to write the scalar (ϕ) and vector (A) functions as well as the energy density
(T 0

0 ) and energy of the material fields (Ef ) explicitly, one has to give P (ϕ) in explicit form.
Here we will give a detailed analysis for some concrete forms of P (ϕ).

Choosing P (ϕ) in the form

P (ϕ) = P0cos2
(λϕ

2

)
(2.13)

with λ being the interaction parameter, from ( 2.8) we get the sin-Gordon type equation

∂2ϕ

∂z2
+

λq2P0

4R2
sin(λϕ) = 0 (2.14)

The solution to this equation takes the form [8]

ϕ(z) =
2

λ
arcsin th[b(z + z1)], b =

λq
√

P0

R
, z1 = const (2.15)

Note that for z1 = 0 we get ϕ = 0 and P = 1 at spatial infinity.
A specific type of solution to the nonlinear field equations in flat space-time was obtained

in a series of interesting articles [9]. These solutions are known as droplet-like solutions or
simply droplets. The distinguishing property of these solutions is the availability of some
sharp boundary defining the space domain in which the material field happens to be located,
i.e., the field is zero beyond this area. It was found that the solutions mentioned exist in
field theory with specific interactions that can be considered as effective, generated by initial
interactions of unknown origin. In contrast to the widely known soliton-like solutions, with
field functions and energy density asymptotically tending to zero at spatial infinity, the
solutions in question vanish at a finite distance from the center of the system (in the case
of spherical symmetry) or from the axis (in the case of cylindrical symmetry). Thus, there
exists a sphere or cylinder with critical radius r0 outside of which the fields disappear.
Therefore the field configurations have a droplet-like structure [9, 10].
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Choosing P (ϕ) in the form

P (ϕ) = J2−4/σ

(
1− J2/σ

)2

, (2.16)

where J = λϕ, σ = 2n + 1, n = 1, 2 · · · , for ϕ one gets:

ϕ(z) =
1

λ

[
1− exp

(
−4qλ

Rσ

(
z − z0

))]σ/2

(2.17)

from which it is obvious that at r → 0, i.e., at z →∞ the scalar field ϕ → 1/λ and at r → rc

which corresponds to z → z0, the scalar field function becomes trivial, i.e., ϕ(rc) → 0.

3. STABILITY PROBLEM

To study the stability of the configurations obtained we write the linearized equations for
the radial perturbations of scalar field assuming that

ϕ(r, t) = ϕ(r) + ξ(r, t), ξ � ϕ (3.1)

Putting ( 3.1) into ( 2.3) in view of ( 2.7) we get the equation for ξ(r, t)

ξ̈ + 3
Ṙ

R
ξ̇ − 1− kr2

R2
ξ′′ − 2− 3kr2

rR2
ξ′ +

q2Pϕϕ

R4r4
ξ = 0 (3.2)

The second term in ( 3.2) is zero since we assume the FRW space-time to be static one
putting R = constant. Assuming that

ξ(r, t) ≈ v(r)exp(−iΩt), Ω = ω/R (3.3)

from ( 3.2) we obtain

(1− kr2)v′′ − 2− 3kr2

r
v′ +

[
ω2 − q2Pϕϕ

R2r4

]
v = 0 (3.4)

The substitution

η(ζ) = r · v(r), ζ =
1√
k
arcsin(

√
kr) (3.5)

leads the equation ( 3.4) to the Liouville one [11]

ηζζ +
(
ω2 − V (ϕ)

)
η = 0, V (ϕ) = −k +

q2k2Pϕϕ

R2
cosec4(

√
kζ) (3.6)

Let us analyze the cases with different P (ϕ).
For P (ϕ) chosen as ( 2.13) we get

Pϕϕ =
λ2P0

2

[
2th2[b(z + z1)]− 1

]
(3.7)

We find that for trigonometric nonlinearity the sign of potential V (ϕ) is not uniquely defined,
therefore some of the configurations can be unstable. Nevertheless, for some cases, the
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constant z1 could be chosen such that V (ϕ) ≥ 0. Thus for ( 3.7) we get, Pϕϕ ≥ 0 for

chbz1 ≥
√

2. Hence we can conclude that equations with the interacting term type ( 2.13)
contains stable solutions [8].

Let us consider the droplet-like configurations. It can be shown that for the interacting
term P (ϕ) given by ( 2.16), the potential

V (ϕ) = −k +
q2k2Pϕϕ

R2
cosec4(

√
kζ) → +∞, as r → 0, or r → rc (3.8)

beginning with σ ≥ 5. It means that the droplet-like configurations ( 2.17) with σ ≥ 5 are
stable for the class of perturbation, vanishing at r = 0 and r = rc.

4. CONCLUSION

Regular, static, particle-like solutions to the scalar field equation with induced nonlin-
earity have been obtained. It is shown that the energy density and the total energy of the
system do not depend on the conventional value of k. In case of trigonometrical nonlinearity
we found the soliton-like solutions that can be stable for some special choice of constant. In
particular, a special type of regular solution, known as droplet, has been found. Contrary to
the usual soliton, droplet possesses sharp boundary. It should be underlined that droplets of
different linear sizes up to the soliton with rc → ∞ share one and the same total energy. It
is also noteworthy to notice that at rc → ∞ for k = 0 droplet transfers to usual solitonian
solution, while in case of k = ±1 this type of transition remains absent. It should also be
emphasized that introduction of gravitational field enforce the stability of the configurations
obtained.
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