
Solitons of Nonlinear Scalar Electrodynamics in General
Relativity∗

Yu. P. Rybakov and G. N. Shikin
Department of Theoretical Physics

Peoples’ Friendship University of Russia
6, Miklukho-Maklay str., 117198 Moscow, Russia

e-mail: rybakov@udn.msk.su
B. Saha

Laboratory of Theoretical Physics
Joint Institute for Nuclear Research, Dubna

141980 Dubna, Moscow region, Russia
e-mail: saha@thsun1.jinr.ru

Solitons with spherical and/or cylindrical symmetry to the equations governing
the interacting system of scalar, electromagnetic, and gravitational fields have been
obtained. As a particular case it is shown that the equations of motion admit a special
kind of solution with a sharp boundary, known as droplets. For these solutions, the
physical fields vanish and the space-time is flat outside of the critical sphere or
cylinder. Therefore, the mass and the electric charge of these configurations are
zero.

PACS numbers: 04.20.Jb
Keywords:

I. INTRODUCTION

Since the early history of elementary particle physics, attempts to construct a divergence-
free theory have been undertaken. Mie (1912a,b) proposed a nonlinear modification of
the Maxwell equations, with the nonlinear electric current of the form jµ = (AνA

ν)2Aµ.
Within the scope of this modification there exist regular solutions approximating the electron
structure.

Rosen (1939) considered a system of interacting electromagnetic and complex scalar fields
that also admitted the existence of localized particle-like solutions. Nevertheless, these two
models suffered the same defect: the mass of the localized object turned out to be negative.
Recently it was shown that this defect of nonlinear electrodynamics can be corrected within
the framework of general relativity (Chugunov et al., 1996).

The aim of this paper is to consider a self-consistent system of fields to obtain particle-
like configurations in the framework of general relativity. We show that in the case of an
electromagnetic, scalar, and gravitational field system with specific type of interactions there
exist droplet-like solutions having zero electric charge and mass. It is noteworthy that the
effective potentials in this case possess confining property, i.e., create a strong repulsion on
certain surfaces in configuration space.
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II. FUNDAMENTAL EQUATIONS

As is known, there do not exist regular static spherically or cylindrically symmetric configu-
rations within the framework of gauge-invariant nonlinear electrodynamics (Bronnikov and
Shikin, 1985). One possible way to overcome this difficulty is the nonlinear generalization
of electrodynamics, with the use of a Lagrangian explicitly containing the 4-potential Aµ,
µ = 0, 1, 2, 3, thus breaking the gauge invariance inside a small critical sphere or cylin-
der. The introduction of terms depending explicitly on potentials in the electromagnetic
equations presents the possibility to give an alternative explanation of such phenomena as
inelastic photon-photon interactions (Novello and Salim, 1979), galactic redshift anomalies
(Schiff, 1969; Peckev et al., 1972; Goldhaber and Nieto, 1971), electric screening at low
temperature in the limit of indirect interaction of photons with the thermal neutrino back-
ground (Woloshyn, 1983), the excess of high-energy photons in the isotropic flux (Ljubicic
et al., 1979), avoidance of the Big Bang singularity (Novello and Heintzmann, 1983) and the
origin of self-focused beam in the effective nonlinear vector field theory (Bisshop, 1972). The
corresponding terms appear in our scheme due to the interaction between the electromag-
netic and scalar fields. This interaction being negligible at large distances, the Maxwellian
structure of the electromagnetic equations (and therefore the gauge invariance) is reinstated
far from the center of the system.
We choose the Lagrangian in the form (Bronnikov and Shikin, 1985)

L =
R

2κ
− 1

16π
Fαβ Fαβ +

1

8π
ϕ,α ϕ,α Ψ(I), (2.1)

where κ = 8πG is the Einstein gravitational constant and the function Ψ(I) of the invariant
I = Aµ Aµ characterizes the interaction between the scalar ϕ and electromagnetic Aµ fields.
In the sequel the function Ψ(I) will be viewed as arbitrary; thus the Lagrangian (2.1)
defines the class of models parametrized by Ψ(I). Schwinger (1951) used a special method
to compute the effective coupling between a zero-spin neutral meson and the electromagnetic
field using some functions of the electromagnetic field. Thus our approach to generate an
effective Lagrangian generalizes the one proposed by Schwinnger. The particular choice of
Ψ(I) will be made to obtain droplet-like configurations.
The field equations corresponding to the Lagrangian (2.1) read

Gν
µ = −κT ν

µ , (2.2)

1√−g

∂

∂xα

(√−g gαβ ϕ,β Ψ
)

= 0, (2.3)

1√−g

∂

∂xβ

(√−g Fαβ
) − (

ϕ,β ϕ,β
)
ΨI Aα = 0, (2.4)

where ΨI = dΨ/dI and Gν
µ = Rν

µ − δν
µ R/2 is the Einstein tensor. One can write the

energy-momentum tensor of the interacting matter fields in the form

T ν
µ = (1/4π)

[
ϕ,µ ϕ,ν Ψ(I) − Fµα F να + ϕ,α ϕ,α ΨI Aµ Aν

]

− δν
µ

[ 1

8π
ϕ,β ϕ,β Ψ(I) − 1

16π
Fαβ Fαβ

]
. (2.5)
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III. CONFIGURATIONS WITH SPHERICAL SYMMETRY

Searching for the static, spherically symmetric solutions to the system of equations (2.2) -
(2.4) , we consider the metric in the form (Bronnikov and Kovalchuk, 1980)

ds2 = e2γ dt2 − e2α dξ2 − e2β
[
dθ2 + sin2θ dφ2

]
(3.1)

with ξ being the radial variable. Let us now formulate the requirements to be fulfilled by
particle-like solutions (PLS). These are (Bronnikov et al., 1993):
(a) Stationarity [applied to the metric (3.1)], i.e.,

α = α(ξ), β = β(ξ), γ = γ(ξ)

(b) Regularity of the metric and the matter fields in the whole space-time.
(c) Asymptotically Schwarzschild metric and corresponding behavior of the field functions.
In view of requirement (a), it is convenient to choose the harmonic ξ coordinate (¤ξ = 0)
in (3.1) to satisfy the subsidiary condition (Bronnikov et al., 1979)

α = 2 β + γ (3.2)

The corresponding coordinate in flat space-time is just ξ = 1/r. With the constraint (3.2)
the system of Einstein equations (2.2) reads

e−2α (2β′′ − U) − e−2β = −κT 0
0 (3.3)

e−2α U − e−2β = −κT 1
1 (3.4)

e−2α (β′′ + γ′′ − U) = −κT 2
2 = −κT 3

3 (3.5)

where U = β′2 + 2 β′ γ′, and prime denotes differentiation with respect to ξ. Note that the
field functions, as well as the components of the metric tensor, depend on the single spatial
variable ξ. Assuming the electromagnetic field to be determined by the time component
A0 = A(ξ) of the 4-potential, one finds the unique nontrivial component of the field tensor
F10 = A′, and the invariant I reduces to I = e−2γ A2(ξ).

One can write the nonzero components of the energy-momentum tensor (2.5) as follows:

T 0
0 = (1/8π) e−2α

[
A′2 e−2γ + ϕ′2

(
Ψ − 2 A2 e−2γ ΨI

)]
(3.6)

T 1
1 = −T 2

2 = −T 3
3 = (1/8π) e−2α

[
A′2 e−2γ − ϕ′2 Ψ

]
(3.7)

Adding equations (3.4) and (3.5) and using the property T 1
1 + T 2

2 = 0, one obtains the
differential equation

β′′ + γ′′ − e2(β + γ) = 0

with the solution (Bronnikov, 1973)

e−(β + γ) = S(k, ξ) =





k−1 sh kξ, k > 0
ξ, k = 0

k−1 sin kξ, k < 0
(3.8)

depending on the constant k. Notice that another constant of integration is trivial, so that
ξ = 0 corresponds to the spatial infinity, where eγ = 1 and eβ = ∞. Without loss of
generality one can choose ξ > 0.
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The scalar field equation (2.3) has the evident solution

ϕ′ = CP (I) (3.9)

where P (I) = 1/Ψ(I) and C is the integration constant. Putting (3.9) into (2.4) one gets
the equation for the electromagnetic field

(
e−2γ A′)′ − C2 PI e−2γ A = 0 (3.10)

where the second term could be naturally interpreted as the induced nonlinearity. In view
of (3.9) one rewrites the Einstein equation (3.4) and the result of adding the equations (3.3)
and (3.4) as follows:

γ′2 = −G
(
C2 P − A′2 e−2γ

)
+ K, K = k2 signk (3.11)

γ′′ = Ge−2γ
(
A′2 + C2 A2 PI

)
(3.12)

One can easily check that equation (3.11) is the first integral of equations (3.10) and (3.12).
Eliminating the term (PI A) between (3.10) and (3.12) one gets the equation

γ′′ = G
(
AA′ e−2γ

)′
(3.13)

with the evident first integral

γ′ = GA A′ e−2γ + C1, C1 = const (3.14)

Let us consider the simple case C1 = 0. Then from (3.14) we get

e2γ = GA2 + H, H = const (3.15)

Substituting γ′ and e2γ from (3.14) and (3.15) into (3.10), we find for A(ξ) the differential
equation

A′2 (G A2 + H)−2 = (GC2 P − K)/GH (3.16)

which can be solved by quadrature:

∫
dA

(GA2 + H)
√

GC2 P − K
= ± (1/

√
GH) (ξ − ξ0), ξ0 = const (3.17)

It is clear that the configuration obtained has a center if and only if eβ = 0 at some ξ = ξc.
One can show (Bronnikov et al., 1979) that the conditions for the center ξc = ∞ to be
regular imply K = 0 and the following behavior of the field quantities in the vicinity of the
point ξc = ∞:

γ′ = O (ξ−2), A → Ac 6= ∞, A′ → 0

ξ4 P (I) → 0, | ξ4 I PI |< ∞ (3.18)

In view of (3.18) we deduce from (3.14) that C1 = 0 in accordance with the earlier suppo-
sition.
Now we can write the boundary conditions on the surface of the critical sphere ξ = ξ0:

T ν
µ = A = A′ = 0, eγ = 1, eβ = 1/ξ0 > 0 (3.19)
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Due to (3.19) and (3.15) we infer that H = 1. The condition K = 0 leads to k = 0 in (3.8)
and the space-time (3.1) that fulfills the regularity conditions (3.18) takes the form

ds2 = (GA2 + 1)dt2 − 1

ξ2 (GA2 + 1)

(dξ2

ξ2
+ [dθ2 + sin2θdφ2]

)
(3.20)

We can finally write A and ϕ as follows:

∫
dA

(GA2 + 1)
√

P
= ±C (ξ − ξ0) (3.21)

ϕ = C

∫
Pdξ =

∫ √
Pe−2γdA =

∫ √
PdA

GA2 + 1
(3.22)

Let us now calculate the matter-field energy density:

T 0
0 = (C2/ 8 π) e−2α

[
P (1 + e2γ) + 2 I PI(I)

]
(3.23)

One can readily derive from (3.23) the energy Ef of the matter fields:

Ef =

∫
d3x

√
−3 g T 0

0 = (C/2)

A(ξ→∞)∫

A(ξ=0)

dA e−3γ
[√

P (1 + e2γ) + 4 I (
√

P )I

]
. (3.24)

Thus the equations for the scalar and electromagnetic fields are completely integrated. As
one sees, to write the scalar (ϕ) and vector (A) functions as well as the energy density (T 0

0 )
and energy of the material fields (Ef ) explicitly, one has to give P (I) in explicit form. Here
we will give a detailed analysis for some concrete forms of P (I).
I. Let us consider P (I) in the form

P (I) = P0(λI −N)s R(λI), 2 ≤ s ≤ 3 (3.25)

where R(λI) is some arbitrary, continuous, positive-definite function, having nontrivial value
at the center; λ is the coupling parameter; N > 0 is some dimensionless constant that is
equal to the value of λI at the center. The other constant P0 is defined from the condition
P = 1 at spatial infinity, ξ = 0. For R = const one gets the simplest form of P (I) that leads
to regular solutions. In this case the energy density is positive if λI ≥ N.

a) Choosing P (I) in the form

P (I) = P0(λI −N)2 (3.26)

we get

A(ξ) =

√
N

λ−GN
cthΛ(ξ + ξ1) (3.27)

where Λ =
√

C2NP0(λ−GN), the integration constant ξ1 is defined from A(0) = m/q with
m and q being the mass and the charge of the system. In this case we get

P0 =
(
λm2/q2 −N

)−2
, λm2/q2 > N
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Inasmuch
√

λm/|q| > √
N , then δ =

√
Gm/|q| >

√
GN/λ = σ. Taking δ < 1 and σ < 1 we

get the inequality
0 < σ < δ < 1

Now we can rewrite P0 in the form

P0 =
G2

λ2
(δ2 − σ2)−2

The metric function e2γ, electric field, and the total energy of the material field system can
be written as

e2γ = GA2 + 1 =
C2

q2

[ σ2

1− σ2
cth2Λ(ξ + ξ1) + 1

]
(3.28)

|E| = (−F10F
10)1/2 =

Λ
√

N√
λ(1− σ2)

ξ2

sh2Λ(ξ + ξ1)
(3.29)

Ef =
q

2
√

G

[δ − σ

δ + σ

δ + 2σ

3
+

4(δ2 + δσ + σ2)− 3

3(δ + σ)

+
1− σ2

2(δ2 − σ2)
ln

(1 + δ)(1− σ)

(1− δ)(1 + σ)

]
(3.30)

As one sees,

Ef |δ→σ → qδ√
G

= m, Ef |δ→1 →∞

The infinite value of Ef can be interpreted as the physical reason for the existence of the
limitation δ < 1.
b) Let us consider the case with Ic = 0, choosing

P (I) = λI (3.31)

On the spatial infinity, where I = I0 = m2/q2, we have P = 1, which leads to λ = q2/m2,
i.e., the coupling constant is connected with mass and charge. In this case we get

A(ξ) =
1√

Gsh m(ξ + ξ1)
(3.32)

where, as in the previous case, ξ1 is defined from A(0) = m/q. The metric function e2γ,
electric field, and the total energy of the material field system can be written as

e2γ =
C2

q2
cth2 [mC(ξ + ξ1)/q] (3.33)

|E| = mC2

q2
√

G

ξ2ch [mC(ξ + ξ1)/q]

sh2 [mC(ξ + ξ1)/q
] (3.34)

Ef =
q

4
√

G

[
3δ

1

δ
ln (1− δ2)

]
(3.35)
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Thus one sees that
Ef |δ¿1 ≈ m, Ef |δ→1 →∞

II. A specific type of solution to the nonlinear field equations in flat space-time was obtained
in a series of interesting articles (Werle, 1977, 1980, 1981,1988). These solutions are known
as droplet-like solutions or simply droplets. The distinguishing property of these solutions
is the availability of some sharp boundary defining the space domain in which the material
field happens to be located, i.e., the field is zero beyond this area. It was found that the
solutions mentioned exist in field theory with specific interactions that can be considered
as effective, generated by initial interactions of unknown origin. In contrast to the widely
known soliton-like solutions, with field functions and energy density asymptotically tending
to zero at spatial infinity, the solutions in question vanish at a finite distance from the center
of the system (in the case of spherical symmetry) or from the axis (in the case of cylindrical
symmetry). Thus, there exists a sphere or cylinder with critical radius r0 outside of which
the fields disappear. Therefore the field configurations have a droplet-like structure (Werle,
1977; Bronnikov et al., 1991; Rybakov et al., 1994a).
Let us now choose the function P (I) as follows (Rybakov et al., 1994b) (see Fig. 2):

P (J) = J (1− 2/σ)
[
(1 − J)1/σ − J1/σ

]2
(1 − J) (3.36)

where J = GI, σ = 2n + 1, n = 1, 2, 3 · · · . Then on account of K = 0 and H = 1
we get from (3.17) the following expression for A(ξ) (see Fig. 1):

A(ξ ≤ ξ0) = 0, A(ξ ≥ ξ0) = (1/
√

G)
[
1 − exp

(−2 C
√

G

σ
(ξ − ξ0)

)]σ/2
(3.37)

As one can see from (3.37), the conditions (3.18) for the center to be regular and the matching
conditions (3.19) on the surface of the critical sphere are fulfilled if σ > 2. It is also obvious
from (3.37) that for ξ < ξ0 the value of the square bracket turns out to be negative and
A(ξ) becomes imaginary, since σ is an odd number. Since we are interested in real A(ξ)
only, without loss of generality we may assume the value of A(ξ) to be zero for ξ ≤ ξ0, the
matching at ξ = ξ0 being smooth.
Recalling that J = GA2/ (GA2 + 1), we get from (3.37) that J(∞) = 1/2 and J(ξ0) = 0,
thus implying

P (I) |ξ =∞ = P (I) |ξ = ξ0 = 0 (3.38)

This means that at ξ = ξc = ∞ and ξ = ξ0, the interaction function Ψ(I) = 1/P (I) is
singular. It turns out nevertheless that the energy density T 0

0 is regular at these points due
to the fact that it contains Ψ(I) as a multiplier in the form

e−2α ϕ′2 Ψ = C2 e−2α P (I) (3.39)

which tends to zero as ξ → ξc or ξ → ξ0. As follows from (3.37), for the limiting case
ξ0 = 0, when the critical sphere goes to the spatial infinity and the solution in question is
defined at 0 ≤ ξ ≤ ∞, it appears that at spatial infinity (ξ = 0) A = 0 and P (I) = 0.
In this case we obtain the usual soliton-like configuration not possessing any sharp boundary.
It should be emphasized that at spatial infinity (ξ = 0) one can compare the metric found
with the Schwarzschild one and the electric field with the Coulomb one, thus determining
the total mass m and the charge q of the system:

Gm = − γ′(0), q = −A′(0)
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Taking into account that e2γ = GA2 + 1, one can find through the use of (3.37) that
for ξ0 = 0, A′(0) = −q = 0 and γ′(0) = −Gm = 0. Therefore, the total energy
of the soliton-like system, defined as the sum of the material field energy and that of the
gravitational field, vanishes. If now one chooses the integration constant ξ0 > 0, then the
field configuration with the sharp boundary (droplet) appears. In this case for ξ ≤ ξ0

one obtains A(ξ) = 0 and e2γ = 1, i.e., outside of the droplet the gravitational and
electromagnetic fields disappear, which implies the vanishing of the total mass and the
charge of the system. This unusual property makes the droplet-like object poorly visible for
the outer observer.
It should be emphasized that the field energy is localized in the region (ξ0 ≤ ξ < ∞),

T 0
0 (ξ) |ξ→∞→ 0, T 0

0 (ξ) |ξ→ξ0 → 0 (3.40)

namely, inside the critical sphere with the radius

R =

∞∫

0

dξ eα(ξ) =

∞∫

0

dξ /ξ2
{[

1− e−2C
√

G(ξ−ξ0)/σ
]σ

+ 1
}1/2

< ∞

Taking into account that e2γ = 1/(1 − J) and e−3γ dA = dJ/2
√

GJ, we rewrite the total
energy of the material fields in terms of J :

Ef = (C/4
√

G)

1/2∫

0

{
4
d
√

J P

dJ
+

√
P J

1− J

}
dJ

The contribution of the first term of this equality is trivial for the choice of P (I) in the form
(3.36), as in this case P (I)|0 = P (I)|λ/2 = 0. As P (I) is positive and J lies in the interval
(0, 1/2), one estimates

Ef =
C

4
√

G

1/2∫

0

√
P J

1− J
dJ > 0

Note that we consider the constant C to be positive. Since we know that the total energy
of the droplet-like object is zero, this inequality implies the negativity of its gravitational
energy. Thus the droplet-like configuration of the fields obtained is totally regular with zero
total energy (including the energy of the proper gravitational field) and null electric charge
and remains unobservable to one located outside the sphere with radius R (Rybakov et al.,
1992 1994b). In order to clarify the fact that the role of the gravitational field in forming the
droplet-like configuration is not decisive, it is worthwhile to compare the solution obtained
with that in the flat space-time, described by the interval

ds2 = dt2 − dr2 − r2 [dθ2 + sin2θ dφ2]

In the latter case equation (2.3) admits the solution

ϕ′(r) = −C P (I)/r2 (3.41)
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Substituting (3.41) into (2.4), one finds that the equation for the electromagnetic field can
be solved by quadrature:

∫
dA/

√
P = ±C

(1

r
− 1

r0

)
, r0 = const (3.42)

Note that the droplet-like configuration A(r) will be similar to (3.37) if one chooses a function
P (I) simpler than (3.36):

P (I) = J1− 2/σ (1 − J1/σ)2, J = λ I (3.43)

where λ = const, σ = 2 n + 1, n = 1, 2, 3, · · · . Then substituting (3.43) into (3.42),
one gets the solution

A(r) = (1/
√

λ)
[
1 − exp

(−2 C λ

σ
(
1

r
− 1

r0

)
)]σ/2

(3.44)

One can see from (3.44) that A(r) = 0 as r ≥ r0, i.e., the charge of the flat space-time
droplet configuration also vanishes. For this solution the regularity conditions at the center
r = 0 and on the surface of the critical sphere r = r0 are evidently fulfilled. It similarly
appears that for r = ∞ one finds the usual soliton-like structure with field vanishing as
r →∞. The field energy Ef is defined as follows:

Ef = C

A(0)∫

A(r0)

dA (
√

P + I PI/
√

P ) = C
√

P I |A(0)
A(r0) . (3.45)

Considering that P I = 0 both at r = 0 and r = r0, we arrive through (3.45) at Ef = 0.
Thus in the flat space-time as well as for the self-gravitating system, the total energy and
charge of the droplet-like configuration vanish.

IV. CONFIGURATIONS WITH CYLINDRICAL SYMMETRY

Obviously, from the viewpoint of physics, the most interesting case is the spherically symmet-
ric one; nevertheless, in some cases it is necessary to study the two-dimensional, cylindrically
symmetric regular solutions in the vicinity of the symmetry axis [vortex (Nielsen and Olesen,
1973), string-like solutions (Terletsky, 1977)]. These solutions can describe realistic objects
such as fluxions (Abrikosov, 1957), light-beam (Zakharov et al., 1971) and can serve as the
logical approximation to objects with toroidal structure (de Vega, 1978). Let us now search
for static, cylindrically symmetric solutions to equations (2.2)-(2.4). In this case the metric
can be chosen as follows (Bronnikov, 1979; Shikin 1984):

ds2 = e2γ dt2 − e2α dx2 − e2β dφ2 − e2µ dz2. (4.1)

The requirements to be fulfilled by soliton-like solutions in this case are (Shikin, 1995):
(a) Stationarity [applied to the metric (4.1)], i.e.,

α = α(x), β = β(x), γ = γ(x), µ = µ(x)



10 Yu.P.Rybakov, B. Saha and G.N. Shikin

FIG. 1: View of droplet-like solution. The configurations are plotted
for λ = 1, x0 = 2 and σ takes the values 3, 5, 7, 9.

FIG. 2: view of the inverse function to the interaction one (i.e. P (I))
that provides us with the droplet-like configurations (Fig. 1). As is
seen from Fig. 1, the stronger the interaction the more localized the
corresponding droplet-like configuration.

This means for (4.1) that all the components of the metric tensor depend on the single
spatial coordinate x ∈ [x0, xa], where xa is the value of x on the axis of symmetry, defined
by the condition exp[β(xa)] = 0, and x0 is the value of x on the surface of the critical
cylinder. The coordinates z and φ take their standard values: z ∈ [−∞, ∞], φ ∈ [0, 2π].
(b) Regularity of the metric and the matter fields in the whole space-time.
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(c) Localized in space-time (with finite field energy)

Ef =

∫
T 0

0

√
−3g dV < ∞

Requirement (c) assumes the rapid decreasing of the energy density of material field at
spatial infinity, which together with (b) guarantees the finiteness of Ef . Let us note that Ef

may be finite even for singular solutions on the axis. Requirement (b) means the regularity
of material fields as well as the regularity of metric functions, which entails the demand of
finiteness of the energy-momentum tensor of material fields all over the space. If the system
considered contains scalar ϕ and electric E (or magnetic H) fields, the regularity conditions
on x = xa take the form (Bronnikov, 1979)

eβ = 0; |γ| < ∞; |µ| < ∞; e2(β−α)(β′)2 = 1; e−2α(γ′)2 = 0

{|E| = 0; |H‖| < ∞; |H⊥| = 0}; |T ν
µ | < ∞ (4.2)

where H‖ and H⊥ are the longitudinal and transverse magnetic fields, respectively, defined
as chronometric invariants (Mitskevich, 1969). In view of requirement (a) it is convenient
to choose the coordinate x in (4.1) to satisfy the subsidiary condition (Shikin, 1984)

α = β + γ + µ

which enables us permits to present the system of the Einstein equations in the form

µ′′ + β′′ − V = −κT 0
0 e2α (4.3)

µ′ β′ + β′ γ′ + γ′ µ′ = V = −κT 1
1 e2α (4.4)

γ′′ + β′′ − V = −κT 2
2 e2α (4.5)

µ′′ + γ′′ − V = −κT 3
3 e2α (4.6)

As in the preceding section, the electromagnetic field is described by the time component
of the 4-potential A0(x) = A(x) and by the component F1 0 = dA/dx = A′ of the field
strength tensor, and the energy-momentum tensor of interacting fields is defined by equations
(3.6), (3.7).
Adding equations (4.4) and (4.5) and using (3.7), one obtains the simple equation

γ′′ + β′′ = 0 (4.7)

with the solution
β(x) + γ(x) = C2 x, C2 = const (4.8)

Notice that the second integration constant in (4.8) can be taken as trivial, since it deter-
mines only the choice of scale.
In a similar way, the addition of equations (4.4) and (4.6) leads to the equation

γ′′ + µ′′ = 0 (4.9)

with the solution
µ(x) + γ(x) = C3 x, C3 = const (4.10)
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whereas the subtraction of (4.5) and (4.6) gives

β′′ − µ′′ = 0 (4.11)

with the solution
β(x) − µ(x) = C4 x, C4 = const (4.12)

Solving equation (2.2) in the metric (4.1), one gets the same result as in (3.9), i.e.,

ϕ′(x) = C P (I) (4.13)

Substituting (4.13) into (2.4), one finds an equation for the electromagnetic field identical
to (3.10), i.e., (

e−2γ A′)′ − C2 PI e−2γ A = 0 (4.14)

where the second term could be naturally interpreted as the induced nonlinearity. Now, as
in the previous case, we use equation (4.4) and sum of equations (4.3) and (4.4), which in
view of (4.8) and (4.10), take the form

γ′2 − C2 C3 = −G
(
C2 P − A′2 e−2γ

)
(4.15)

γ′′ = Ge−2γ
(
A′2 + C2 A2 PI

)
(4.16)

Elimination of PI A between equations (4.14) and (4.16) gives the equation

γ′′ = G
(
AA′ e−2γ

)′
(4.17)

with the evident first integral

γ′ = GA A′ e−2γ + C1, C1 = const (4.18)

Integrating (4.18) under the choice C1 = 0, one again obtains

e2γ = GA2 + H, H = const (4.19)

Finally, substituting γ′ from (4.18) and e2γ from (4.19) into (4.15), one gets the equation
for A(x) :

A′2 (GA2 + H)−2 = (GC2 P − C2 C3)/G H (4.20)

Equation (4.20) can be solved by quadrature:

∫
dA

(GA2 + H)
√

G C2 P − C2 C3

= ± (1/
√

GH) (x − x0) (4.21)

Let us formulate regularity conditions to be satisfied by the solutions to equations (2.2)-(2.4)
on the axis of symmetry defined by the value x = xa, where exp[β(xa)] = 0. Since according
to the regularity conditions formulated earlier, |γ(xa)| < ∞ and |β(xa)| < ∞, from (4.8) and
(4.12) one gets β(x) ≈ C2x → −∞ (whereas xa = −∞ if C2 > 0 and xa = +∞ if C2 < 0);
β(x) ≈ C4x → −∞ (whereas xa = −∞ if C4 > 0 and xa = +∞ if C4 < 0). This leads to
C2 = C4, γ(x) ≡ −µ(x) and α(x) ≡ β(x). As one sees, from γ(x) ≡ −µ(x) it follows that
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C3 = 0. The regularity conditions are similar to (3.18) for the case of spherical symmetry,
implying that the following relations hold as x → xa = ∞ :

γ′ → 0, A → Ac 6= ∞, A′ → 0

e2|C2|x P (I) → 0, e2|C2|x | I PI |< ∞ (4.22)

Boundary conditions on the surface of the critical cylinder x = xa can be written as follows:

T ν
µ = A = A′ = 0, eγ = 1, eβ = e−|C2|x > 0 (4.23)

The conditions (4.23) together with the relations e2γ = GA2 + H, imply that H = 1.
Therefore the metric (4.1) that satisfies the regularity conditions reads:

ds2 = (GA2 + 1)dt2 − 1

(GA2 + 1)

[
e2C2x

{
dx2 + dφ2

}
+ dz2

]
(4.24)

As in the previous case, we will study the system for different P (I).
I. Note that some class of regular solutions can be obtained by choosing P (I) in the form

P (I) = P0(λI −N)s Q(λI) (4.25)

where Q(λI) is some arbitrary, continuous, positive-definite function having nontrivial value
at the center; λ is the coupling parameter; N > 0 is some dimensionless constant that is
equal to the value of λI at the center. The other constant, P0, is defined from the condition
P = 1 at spatial infinity, x = ±∞. For Q(λI) = const one gets the simplest form of P (I)
that leads to regular soltions. As in the spherically symmetric case, for the regular solutions,
λ ≥ GN.
a) Choosing P (I) in the form

P (I) = P0(λI −N)2 (4.26)

we get

A(x) =

√
N

λ−GN
th bx (4.27)

where b =
√

C2NP0(λ−GN), the integration constant x1 is taken to be trivial. The
regularity condition implies b ≥ 1. The metric function e2γ, radial electric field, and the
total energy of the material field system can be written as

e2γ =
λ

λ−GN

[
1− GN

λch2bx

]
(4.28)

|E| = |C|eγ−β
√

P (I) (4.29)

Ef =
λC

2G
√

G

[ σ√
1− σ2

−
√

1− σ2

2
ln

1 + σ

1− σ

]
(4.30)

where σ2 = GN/λ < 1. As one sees, |E| → 0 as x → ±∞. The solution obtained satisfies all
the regularity conditions and is a solitonian one. The density of mass ρm and the density of
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effective charge ρe are

ρm|x→−∞ →
{

const, b = 1
0, b > 1

ρm|x→+∞ → 0, b ≥ 1

ρe|x→−∞ →
{

2C2
√

G(1− σ2)/πσ, b = 1
0, b > 1

ρe|x→+∞ → 0, b ≥ 1

The total charge of the system is equal to zero.
b) Let us consider the case with Ic = 0, choosing

P (I) = λI (4.31)

In this case we get

A(x) =
1√

Gsh (
√

λCx)
(4.32)

The metric function e2γ in this case reads

e2γ = cth2 (
√

λCx) (4.33)

which gives
e2γ|x → ±∞→ 1, e2γ|x → ±0 →∞.

Inasmuch as e2β = e−2γ+2C2x, x = x1 = −∞ corresponds to one of the axes of the field
configurations. This axis is regular if

√
λC > 1 and A(x1) = 0 and e2γ(x1) = 1. So for

e2γ|x → ±0 → ∞, one gets e2β|x → ±0 → 0, i.e. x = x2 = 0 corresponds to the second,
singular axis. In this case the solution obtained is defined on −∞ ≤ x ≤ 0. At x → +∞,
e2β →∞ and A(x) → 0. This means that x = +∞ defines the spatial infinity. In this case
the solution is defined on 0 ≤ x ≤ ∞ and possesses one singular axis corresponding x = 0.
II. Let us now obtain the droplet-like configuration. Choosing P (I) in the form (see Fig 2)

P (J) = J1− 2/σ
[
(1 − J)1/σ − J1/σ

]2
(1 − J) (4.34)

where J = GI, σ = 2n + 1, n = 1, 2, 3 · · · , one can find an expression for A(x) which
is similar to the one in spherically symmetrical case (see Fig. 1):

A(x) = (1/
√

G)
[
1 − exp

(−2 C
√

G

σ
(x − x0)

)]σ/2
(4.35)

As one can readily see from (4.35), the conditions (4.22) and (4.23) are fulfilled if | C2 |
≤ C

√
G/σ. It is noteworthy that at x ≤ x0, A(x) ≡ 0 and the space-time is flat, the

gravitational field being absent (Rybakov et al., 1993).
There is a significant difference between solutions (3.37) and (4.35). For the case of spherical
symmetry the droplet-like solution can be transformed to the soliton-like one if the boundary
ξ0 is removed by putting ξ0 = 0 (as in this case exp[β(ξ0)] = 1/ξ0 = ∞). On the contrary,
for the case of cylindrical symmetry the removal of the boundary is equivalent to putting
x0 = −∞, as in this case exp[β(x0)] = exp(− | C2 | x0) = ∞. Under this last choice the

solution (4.35) takes constant value A(x) = 1/
√

G and the soliton structure disappears.
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For the considered case, as well as for that of spherical symmetry, the density of the field
energy is given by equation (3.23) and the linear density of energy is similar to (3.24):

Ef = (C/4)

1/
√

G∫

0

dA e−3γ
[√

P (1 + e2γ) + 4 I (
√

P )I

]
(4.36)

Substituting P (I) from (4.34) into (4.36), one can find that Ef is finite and the total energy
Ef + Eg turns out to be zero.
Let us now define the effective charge density ρe and total charge Q corresponding to the
unit length on the z-axis. In generally from (2.4) one gets (Shikin, 1995)

jα =
1

4π

(
ϕ,β ϕ,β

)
ΨI Aα (4.37)

which for a static radial electric field leads to

j0 =
C2

4π
e−2(α+γ) PI A (4.38)

Then for a chronometric invariant electric charge density ρe we have

ρe =
j0

√
g00

=
C2

4π
e−(2α+γ) PI A (4.39)

The total charge is defined from the equality

Q = 2π

x∞∫

xa

ρe

√
−3g dx (4.40)

Putting the corresponding quantities into the foregoing equality, we obtain after some simple
calculations

Q =
1

2
e−2γ A′ |x∞xa

= 0 (4.41)

Now it is worthwhile to make again the comparison with the flat-space solutions of equations
(2.3) and (2.4), using the interval

ds2 = dt2 − dρ2 − ρ2 dφ2 − dz2

In this case the scalar field equation (2.3) admits the solution

ϕ′(ρ) = C P (I)/ρ, P (I) = 1/Ψ(I), C = const (4.42)

Inserting (4.42) into (2.4), one can find the electromagnetic field equation, which admits
solution in quadratures:

∫
dA√
P (I)

= ±C ln
ρ

ρ0

, ρ0 = const (4.43)
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Substituting P (I) from (4.34) in (4.43), one gets the solution of the droplet-like form:

A(ρ) = (1/
√

λ)
[
1 − ( ρ

ρ0

)2 C
√

λ/σ]σ/2
(4.44)

One concludes from (4.44) that A(ρ ≥ ρ0) ≡ 0. This means that the electric charge of the
system is zero. For the solution (4.34) the regularity conditions both on the axis ρ = 0 and

on the surface of the critical cylinder ρ = ρ0 are fulfilled if C
√

λ ≥ σ. It is noteworthy that
in the case of cylindrical symmetry, both in flat space-time and with account of the proper
gravitational field, there do not exist any soliton-like solutions, as for the choice ρ0 = ∞
the solution (4.44) degenerates into a constant: A(ρ) = 1/

√
λ. The linear density of the

field energy in flat space-time can be found from an expression similar to (3.23), and, as in
the case of spherical symmetry, it is equal to zero:

Ef =
C

2

√
P I |A(0)

A(ρ0) = 0

as expected.

V. DISCUSSION

Exact regular static spherically and/or cylindrically symmetrical particle-like solutions to
the equations of scalar nonlinear electrodynamics in general relativity have been obtained.
As a particular case, we found a class of regular solutions with sharp boundary (droplet-
like solutions or simply droplets). It was shown that outside the droplet, gravitational
and electromagnetic fields remain absent, i.e., the total energy and total charge of the
configuration are zero. We underline once more the significant difference between the droplet-
like solutions with spherical symmetry and those with cylindrical symmetry. In the first case
there exists the possibility of continuous transformation of the droplet-like configuration into
the solitonian one by transporting the sharp boundary to infinity. There is no such possibility
for the second case, and the soliton-like configuration disappears when the boundary is
smoothed tending to infinity. We intend to study further the interaction processes of droplets
with external electromagnetic and gravitational fields and also the scattering of photons and
electrons on droplets.
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