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Within the frame-work of semiclassical theory two-level approximation in atomic
system has been considered. Model proposed by M.D. Crisp and E.T. Jaynes has
been modified. It is here shown that the time-dependent frequency shift depends on
the higher multipole moments, retained in the Taylor expansion of electromagnetic
field.
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1. INTRODUCTION

A general treatment of the interaction of photon with micro-particles is beyond the scope
of quantum mechanics (QM). It is treated in quantum electrodynamics (QED), invoking
additional principles concerning the laws of occurrence and disappearance of electromagnetic
field. According to QM, an atom should remain in an excited state for long in absence of an
external field, whereas experiments show that an atom transforms into normal state emitting
a photon. It has been suggested that this limitation of QM could be explained taking into
account the fact that the moving electron creates an electromagnetic field which reacts
on the electron. Several authors considered this reverse action of field on electron several
ways. One of these methods was proposed by Jaynes and Cummings [1] in 1963 where they
clarified the relationship between the quantum theory of radiation, where electromagnetic
field-expansion coefficients satisfy commutation relations, and semiclassical theory, where the
electromagnetic field is considered as a definite function of time rather than as an operator.

An improved form of the semiclassical radiation theory was developed by Jaynes and
Stroud [2] which includes the effect of the atom’s radiation field back on the atom. Further
Crisp and Jaynes [3] showed that, in the absence of an applied field, semiclassical theory
predicts that an atom will decay spontaneously from an excited state with an characteristic
time equal to the reciprocal of the Einstein A coefficient for the transition. The semiclassical
radiation theory was also studied and developed by Berman [4], Salmon [5], Bosanac [6],
Boudet [7] and many others.

In classical electrodynamics the radiative process are calculated from the self-energy of
the electron in external fields. In contrast, in QED the self-energy is first thrown away and
one begins with bare particles; then the self-energy is put back in photon by photon, hence
the use of perturbation theory. Recently, Barut and coauthors developed a QED based on
self-energy [8, 9] which gives the Lamb shift in semiclassical theory. Beside developing the
theory by Barut and Van Huele [9] Blaive and Boudet [10, 11] have proposed a new method
of calculation of the Lamb shift.
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Since the radiation of excited atoms is a fundamental process of radiation-matter interac-
tion, which is responsible for important phenomena such as laser radiation, and spontaneous
emission is an ubiquitous, particularly prominent and literally visible phenomenon, the prob-
lem in question has been studied by many authors from many other points of view. Kazaku
and co authors have studied the spontaneous emission in circular cylindrical cavities [12, 13],
while Cavalleri [14] considered a system where electrons are assumed to have the speed of
light and electromagnetic self-reaction perpendicular to the velocity so that they perform a
circular motion (spin or real zitterbewegung) that generates the zero-point field, hence spe-
cial relativity. Cavalleri suggests that there exists zero-point fields in the surrounding space.
The moving electron interacts with it and this explains the doubling of the gyromagnetic
ratio. A QED treatment of radiative corrections in atoms was presented by Ackerhalt and
Eberly [15]. For a detailed study of spontaneous emission from practical point of view one
may consult [16] and references therein.

As we have already mentioned, we confine our study within the scope of semiclassical
theory suggested by Jaynes and Cummings [1] and further developed by Crisp [3, 17]. The
authors of the previously mentioned papers mainly confined their study within electric dipole
moments. Here we make an attempt to enlarge this study taking into account the moments
of higher order, particularly electric quadrupole moment.

2. FUNDAMENTAL EQUATIONS

Let us consider a nonrelativistic, spinless particle in external magnetic field. It can be
described by the Hamiltonian

Ĥ =
1

2m

[
p̂− e

c
A

]2 − e2

r
. (2.1)

Varying this Hamiltonian (2.1) with respect to A in account of the continuity equation

∂ρ

∂t
+ divj = 0, (2.2)

one finds the current and charge density of the field

j =
ie~
2m

{Ψ∇Ψ∗ −Ψ∗∇Ψ} − e2

mc
AΨΨ∗, (2.3)

ρ = eΨ∗Ψ. (2.4)

Now, any state of atomic system may be expressed as

Ψ(r, t) =
∑

α

aα(t)ψα(r) (2.5)

where ψ(r) is the eigenfunctions of Ĥ0 = −(~2/2m)∇2 − e2/r, i.e.,

Ĥ0ψα(r) = Eαψα(r). (2.6)
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Substituting (2.5) into (2.3) we obtain

j(t, r) =
e~

2mi

∑
α,β

[
ραβψ

∗
β∇ψα − ρβαψβ∇ψ∗α

]
(2.7)

− e2

mc
A

∑
α,β

aα(t)aβ(t)ψα(r)ψβ(r),

where
ρβα(t) = aα(t)a∗β(t) = ραβ(t)∗ (2.8)

is the βα density matrix element of the atom in the Schrödinger picture that evolves ac-
cording to

i~ρ̇αβ(t) =
∑

γ

[Ĥαγργβ − ραγĤγβ]. (2.9)

Taking the field to be weak we further neglect the diamagnetic term in the Hamiltonian and
current density.

In the Coulomb gauge (divA = 0) the equation for A is

∇2A− 1

c2
∂2A

∂t2
= −4π

c
j⊥, (2.10)

where j⊥ is the transverse current density defined as

j⊥ =
1

4π
∇×∇×

∫
j(t,x′)

|x− x′|
d3x′. (2.11)

Further we denote j⊥ = j. The solution to the Maxwell equation can be written as

A(x, t) =
1

c

∫
j(x′, t− |x− x′|/c)

|x− x′|
d3x′. (2.12)

Expanding j as a function of time in Eqn. (2.12) we obtain

A(x, t) ≈
∫

j(x′, t)

|x− x′|
d3x′ − 1

c

∫
∂j(x′, t)

∂t
d3x′ +

1

2c2

∫
∂2j(x′, t)

∂t2
|x− x′|d3x′ + · · · .(2.13)

Further expanding |x− x′| for x′ � x one finds

A(x, t) ≈
∫

j(x′, t)

|x− x′|
d3x′ − 1

c

∫
∂j(x′, t)

∂t
d3x′ +

x

2c2

∫
∂2j(x′, t)

∂t2
d3x′

(2.14)

− x

2c3r

∫
∂2j(x′, t)

∂t2
x′d3x′ − · · · .

Substituting Eqn. (2.7) into Eqn. (2.14) and retaining the electric dipole and quadrupole
moments we find

A(x, t) ≈
∑
αβ

ραβ(t)
[ −ie~
2π2mc

∞∫
0

dk

∫
dΩ(β|e−ik·x′∇|α)⊥e

ik·x

(2.15)

+
( 2

3c2
Ωαβ +

ir

3c3
Ω3

αβ

)
D

(1)
αβ −

ixα

2c3r
Ω3

αβD
(2)
αβ

]
+ A0(x, t),
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where the transition frequencies and the electric dipole and quadrupole moments are defined,
respectively, as

Ωαβ = (Eα − Eβ)/~, (2.16)

Dαβ =

∫
ψαexψ

∗
βdx, or in components D

(i)
αβ =

∫
ψαex

iψ∗βdx, (2.17)

Q
(ij)
αβ =

∫
ψαer

ijψ∗βdx, rij =
1

2
(xixj − 1

3
r2δij), r = |x|. (2.18)

Here A0 is an externally applied field. Substituting Eqn. (2.15) into (2.9), for the density
matrix we find

ρ̇αβ = −iΩαβραβ − i
∑

κ

(Γακ − Γκβ)ρκκραβ

−
∑

κ

[1

2
(Aακ +Aβκ)− (Bακ + Bβκ) + (Cακ + Cβκ)

]
ρκκραβ (2.19)

− A0(0, t)

~c
∑

κ

[
ΩακDακρκβ − ΩκβDκβρακ

]
,

where we define

Γαβ ≡ − e2~
2π2m2c2

∞∫
0

∫
dΩ(α|eik·x′|β)⊥(β|e−ik·x|α)⊥ = Γβα, (2.20)

Aαβ ≡ 4

3
(DαβDβα/~c3)Ω3

αβ = −Aβα, Einstein coefficient, (2.21)

Bαβ ≡ (Dαβ∆αβ/~c4)Ω3
αβ ≡,−Bβα, ∆αβ =

∫
rJ̄αβ(x)dx, (2.22)

Cαβ ≡ (Qij
αβδ

k
αβ/~c4)Ω3

αβ ≡ −Cβα, δk
αβ =

∫
xk

r
J̄αβ(x)dx. (2.23)

Here we denote J̄αβ = (e~/2mi)
[
ψ∗β∇ψα − ψβ∇ψ∗α

]
.

The equation (2.19) can be written in the following way where the repeating index denotes
summation

ρ̇αβ = −iΩαβργτMαβγτ − i(Γακ − Γκβ)ρκκργτMαβγτ

−
[1

2
(Aακ +Aβκ)− (Bακ + Bβκ) + (Cακ + Cβκ)

]
ρκκργτMαβγτ (2.24)

− A0(0, t)

~c
[
ΩακD

(1)
γκ ρκτ − ΩκβD

(1)
κτ ργκ

]
Mαβγτ ,

where we define Mαβγτ = δαγδβτ .
As one sees from (2.19) or (2.24), the off-diagonal density matrix elements oscillate at

frequencies Ωαβ + δΩαβ(t), where the time-dependent frequency-shift is

δΩαβ(t) = −
∑

κ

(Γακ − Γκβ)ρκκ(t). (2.25)
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Now the expectation of dipole moment of the atom

< µ >=

∫
Ψ∗(x, t)exΨ(x, t)dx (2.26)

in account of (2.5) can be written as

< µ >=
∑
αβ

Dαβρβα(t). (2.27)

Thus we see that the off-diagonal matrix elements are directly connected with the expecta-
tion of dipole moment.

3. SPONTANEOUS DECAY

In what follows we take into account only two of these levels. We choose the zero from
which we measure the energies to be midway between the two active levels, so that

E2 = −E1. (3.1)

The equation (2.24) can then be written as

ρ̇11 = −2qρ11ρ22, (3.2)

ρ̇22 = 2qρ11ρ22, (3.3)

ρ̇12 = −i
[
Ω12 + Γ11ρ11 − Γ22ρ22 − Γ12(ρ11 − ρ22)

]
ρ12 + q(ρ11 − ρ22)ρ12, (3.4)

ρ̇21 = −i
[
Ω21 − Γ11ρ11 + Γ22ρ22 + Γ12(ρ11 − ρ22)

]
ρ21 + q(ρ11 − ρ22)ρ21, (3.5)

where we denote 2q = A12 − 2B12 + 2C12.
Let us now rewrite ραβ in the form [18, 19]

ραβ =
1

2

(
δαβ + Pjσ

j
αβ

)
, (3.6)

where σj are the Pauli matrices and P = (Px, Py, Pz) is a unit vector of three-dimensional
Poincaré representation. It follow from (3.6):

ρ11 =
1

2

(
1 + Pz), ρ12 =

1

2

(
Px − iPy),

(3.7)

ρ22 =
1

2

(
1− Pz), ρ21 =

1

2

(
Px + iPy),

or equivalently,

ρ11 + ρ22 = 1, ρ11 − ρ22 = Pz, ρ12 + ρ21 = Px, ρ12 − ρ21 = −iPy. (3.8)

In account of (3.7) and (3.8) from (3) we find the following system of equations

Ṗx = qPzPx + (Ω12 + τ + λPz)Py, (3.9)

Ṗy = qPzPy − (Ω12 + τ + λPz)Px, (3.10)

Ṗz = q(P 2
z − 1), (3.11)
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where we denote τ = (Γ11−Γ22)/2 and λ = (Γ22 +Γ11)/2−Γ12. The solutions to the system
of equations (3) read

Px = cos [Ω12(t− t0) + τ(t− t0) + (λ/q)ln cosh q(t− t0)] sech q(t− t0), (3.12)

Py = sin [Ω12(t− t0) + τ(t− t0) + (λ/q)ln cosh q(t− t0)] sech q(t− t0), (3.13)

Pz = −tanh q(t− t0), (3.14)

Rewriting (3) in terms of ρ we find

ρ11 = 1/
[
exp [2q(t− t0)] + 1

]
, (3.15)

ρ22 = 1/
[
exp [−2q(t− t0)] + 1

]
, (3.16)

ρ12 =
[
exp

(
−i[Ω12(t− t0) + τ(t− t0) + (λ/q)ln cosh q(t− t0)]

)]
sech q(t− t0), (3.17)

ρ21 =
[
exp

(
i[Ω12(t− t0) + τ(t− t0) + (λ/q)ln cosh q(t− t0)]

)]
sech q(t− t0). (3.18)

The Eqn. (3.16) predicts a nonexponential decay for an atom in its excited state. This
corresponds to a fundamental difference between semiclassical theory and QED.

For the expectation value of the energy in account of (3.1) we find

< H0 > = E1ρ11(t) + E2ρ22(t) = −~
2
Ω21(ρ22 − ρ11)

= −~
2
Ω21tanh[q(t− t0)], (3.19)

where as, for the expectation of the dipole moment we obtain

< µ > = D21(ρ12 + ρ21) = D21Px

= D21 sech q(t− t0) cos [Ω21t+ ϑ(t)], (3.20)

where we define

ϑ(t) = ϑ0 − τt− (λ/q)ln coshq(t− t0), ϑ0 = [(Γ11 − Γ22)/2− Ω21]t0, (3.21)

which corresponds to a time-dependent frequency shift

δΩ21(t) = dϑ/dt = −τ − λtanhq(t− t0) (3.22)

Comparing (3.22) with those obtained in [3] one finds the additional frequency shift as

∆(δΩ21(t)) = λ
tanh[(C21 − B21)(t− t0)]sech

2[A21(t− t0)/2]

1 + tanh[A21(t− t0)/2]tanh[(C21 − B21)(t− t0)]
. (3.23)

Thus we see that higher multipole moments, in particular quadrupole one, contribute to the
spontaneous decay of the atom from an exited state beside Einstein A coefficient.
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4. CONCLUSION

Using the semiclassical formulation of radiation theory, the frequency shift due to the
quadrupole term in the external magnetic field has been calculated. It has been shown that
the radiation damping due to quadrupole radiation is non-trivial [cf. Eqn. (3.23)] though is
much smaller than the one due to dipole radiation.
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