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In a recent paper [1] a modified system of equations of electrodynamics of moving
continuous media has been obtained in account of toroid polarizations. In this letter
it has been shown that these equations are invariant under Lorentz transformations.
The transformation law for the toroid polarizations has also been worked out.
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In the early fifties, while solving the problem of the multipole radiation of a spatially
bounded source, Franz and Wallace [2, 3] found a contribution to the electric part of ra-
diation at the expense of magnetization. Further Ya. Zel’dovich [4] pointed out the non-
correspondence between the existence of two known multipole sets, Coulomb and magnetic,
and the number of form-factors for a spin – 1

2
charged particles. Following the parity

non-conservation law in weak interactions Zel’dovich suggested a third form-factor in the
parametrization of the Dirac spinor particle current. As a classical counterpart of this form-
factor he introduced anapole in connection with the global electromagnetic properties of a
toroid coil that are impossible to describe within the charge or magnetic dipole moments
in spite of explicit axial symmetry of the toroid coil. In 1963 Shirokov and Cheshkov [5]
constructed the parametrization for relativistic matrix elements of currents of charged and
spinning particle, which contain the third set of form-factors. Finally, in 1974 Dubovik and
Cheskov [6] determined the toroid moment in the framework of classical electrodynamics.
Note that anapole and toroid dipole are not the different names of one and the same thing.
They are indeed quite different in nature. For example, the anapole cannot radiate at all
while the toroid coil and its point-like model, toroid dipole, can. The matter is that the
anapole is some composition of electric dipole and actual toroid dipole giving destructive
interference of their radiation.

Recently a principally new type of magnetism known as aromagnetism was observed in
a class of organic substances, suspended either in water or in other liquids [7]. Later, it was
shown that this phenomena of aromagnetism cannot be explained in a standard way, e.g.,
by ferromagnetism, since the organic molecules do not possess magnetic moments of either
orbital or spin origin. It was also shown that the origin of aromagnetism is the interaction
of vortex electric field induced by alternative magnetic one with the axial toroid moments
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in aromatic substances [8].
In a recent work Dubovik and Kuznetsov [9] calculated the toroid moment of Majorana

neutrino. It was also pointed out that the magnitude of the toroid dipole moment of a Dirac
neutrino (νd) is just the half of that of a Majorana one (νm) and both of them possesses
non-trivial toroid moments even if mν = 0 [10]. The study of toroid moments in high energy
physics indicates its importance in modern physics. Beside the works mentioned above we
would like to refer the paper by Rubin [11], about applications of Toroidal moments in
relativistic anyons theory and the need in considering generalized Toroidal 4-moments as
effective 4-vector potentials.

The latest theoretical and experimental development force the introduction of toroid mo-
ments in the framework of conventional classical electrodynamics that in its part inevitably
leads to the modification of the equations of electromagnetism and the equations of motion
of particles in external electromagnetic field. Two alternative schemes of introduction of
toroid polarizations in the electromagnetic equations and two potential formalism of elec-
trodynamics were given in [1, 12].

In this letter we will consider the toroid polarizations subject to Lorentz transformation.
For histories sake, we note that one to the earliest attempts to give an alternative description
of electrodynamics of moving bodies was undertaken by E. Cohn as early as 1902 [13]. Here
we will work within the framework of Lorentz transformation.

To begin with we write the Maxwell equations for electromagnetic fields in vacuum, in
the presence of extraneous electric charge ρ and electric current, i.e., charge - in - motion,
of density j.

curlB− 1

c

∂E

∂t
=

4π

c
j (1a)

divE = 4πρ (1b)

curlE +
1

c

∂B

∂t
= 0 (1c)

divB = 0 (1d)

where E and B are the flux densities of electric field and magnetic induction, respectively.
As we mentioned earlier, the system (1) should be rewritten taking the toroid polarizations
into account. The details of the calculations one may find in [1, 12]. Here we write the final
system as follows:

curl H =
1

c

∂D
∂t

+
4π

c
j (2a)

divD = 4πρ (2b)

curlE = −1

c

∂B
∂t

(2c)

divB = 0 (2d)

where we define

E = E + 4πcurlTe, H = H− 4πcurlTm,

D = D + 4πcurlTe, B = B− 4πcurlTm, (3)

D = E + 4π P, H = B − 4π M.

D = E + 4π P, H = B− 4π M.
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Indeed, due to the introduction of toroid polarizations, having independent origin in terms
of atomic and molecular current and charge distributions, the quantities B and D as well
as E and H lost their initial meaning. The existence of the vorticities Te and Tm, generally
speaking, can be imputed to the one and the same physical volume.

Finally we introduce the two-potential formalism that was developed by us earlier [1, 12]
defining B and E in the following way:

B = curlαm +
1

c

∂αe

∂t
+∇ϕm, (4a)

E = curlαe − 1

c

∂αm

∂t
−∇ϕe (4b)

Inserting (4) into (2) we find the potential form of the electro-magneto-toroic equations:

¤αm = −4π

c

(
jfree +

∂P

∂t
+ c curlM

)
(5a)

¤ ϕm = 0 (5b)

¤ αe = 0 (5c)

¤ ϕe = −4π (ρ− divP) (5d)

We now write the transformation law that leaves the systems (5) and (2) Lorentz covariant
under

div αm,e + (1/c)(∂ϕe,m/∂t) = 0. (6)

Connecting the fields in stationary frame (unprimed) with those in moving one (primed) in
the following way

P = γ
(
P′ + β ×M′)− γ − 1

β2
(P′ · β)β (7a)

M = γ
(
M′ − β ×P′)− γ − 1

β2
(M′ · β)β (7b)

αm = αm′ + γβϕe′ +
γ − 1

β2
(αm′ · β)β (7c)

ϕe = γ
(
ϕe′ + β ·αm′) (7d)

αe = αe′ + γβϕm′ +
γ − 1

β2
(αe′ · β)β (7e)

ϕm = γ
(
ϕm′ + β ·αe′) (7f)

ρ = γ
(
ρ′ +

1

c
(β · J′)) (7g)

J = J′ + γβρ′ +
γ − 1

β2
(J′ · β)β (7h)

one can easily show that the system (5) is Lorentz covariant. Inserting (7c) – (7f) into (4)
one finds that the vectors E and B transform in the following way

E = γ
(E ′ + β ×B′)− γ − 1

β2
(E ′ · β)β

(8)

B = γ
(B′ − β × E ′)− γ − 1

β2
(B′ · β)β
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Finally, we write the transformation law for toroid dipole polarizations. In doing so, we
underline a very original relation between the vector potential and toroid moment [14]

curl curlA = 4πccurl curlTδ(r) (9)

On the other hand we determine

B = B + curlTm = curlA + curlTm.

All these facts suggest us to handle A and T in the same manner. In other words, Te,m

should form the space part of some four-vectors. To this end, we introduce two four-vectors

Πe = (φe,Te), Πm = (φm,Tm) (10)

with φe,m being the scalar parts of the four-vectors Πe,m. Now we can write down the
transformation law for toroid polarization, which is exactly the same for vector potentials,
precisely,

Tm = Tm′ + γβφm′ +
γ − 1

β2
(Tm′ · β)β (11a)

φm = γ
(
φm′ + β ·Tm′) (11b)

Te = Te′ + γβφe′ +
γ − 1

β2
(Te′ · β)β (11c)

φe = γ
(
φe′ + β ·Te′) (11d)

with the additional condition

curlTe,m = ±
(1

c

∂Tm,e

∂t
+ ∇φm,e

)
(12)

to be fulfilled. Naturally arises the question ”what do the φe,m stand for”? To answer this
question let us write the multipole expansions of scalar Φ and vector A potentials:

Φ(r, t) ≈ 1

R
D(0) +

Rβ

R2
D

(1)
β +

3RβRγ −R2δβγ

2R4

(
2D

(2)
βγ +

1

3
D

(0)
2 δβγ

)
+ · · · (13a)

Aα(r, t) ≈ 1

cR
Ḋ(1)

α +
Rβ

cR2

[
Ḋ

(2)
αβ − cεγαβM (1)

γ +
1

6
Ḋ

(0)
2 δαβ

]

+
3RβRγ −R2δβγ

2cR4

[
Ḋ

(3)
αβγ − c

(
εαβµM

(2)
µγ + εαγµM

(2)
µβ

)

+
(
Ḋ

(1)
2β δαγ + Ḋ

(1)
2γ δαβ

)
− c

{
2T (1)

α δβγ − T
(1)
β δαγ − T (1)

γ δαβ

}]
· · · (13b)

where we denote

• D(0) =
∫

ρ(r, t)dr - total charge

• D
(0)
2 =

∫
r2 ρ(r, t)dr - scalar mean-square radii

• D
(1)
2α =

∫
r2rα ρ(r, t)dr - vector mean-square radii
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• D
(1)
α =

∫
r
(1)
α ρ(r, t)dr - electric dipole moment

• D
(2)
αβ =

∫
r
(2)
αβ ρ(r, t)dr - electric quadrupole moment

• D
(3)
αβγ =

∫
r
(3)
αβγ ρ(r, t)dr - electric octupole moment

• M
(1)
α = 1

2c

∫
[r× j]αdr - magnetic dipole moment

• M
(2)
αβ = 1

6c

∫ {[r× j]αrβ + [r× j]βrα}dr - magnetic quadrupole moment

• T
(1)
α = 1

10c

∫
(rαrβjβ − r2jα)dr - toroid dipole moment

where r1
α = rα, r

(2)
αβ = 1

2
(rαrβ − 1

3
r2δαβ) and r

(3)
αβγ = 1

6

(
rαrβrγ − r2

5
(rαδβγ + rβδγα + rγδαβ)

)
.

From (13) follow that the toroid moment contains in the third order of Taylor expansion
of A whereas the third order multipole expansion of Φ consists of scalar mean-square-radii
and electric quadrupole moment. Thus it makes sense to connect the scalar part of four-
vectors Π, i.e., φ with the scalar mean-square radii and quadrupole moment depending on
the orientation of motion of the torus itself. Here we would like to note that a detailed
analysis of the relations between A and T indicates that beside the scalar mean-square radii
and quadrupole moment the quantity φ can also be connected with the dipole moment.
Thus we can write down the transformation law for the toroid polarizations as

(Tm)i = (Tm′)i + γβiD
(0)
2 +

γ − 1

β2
(Tm′ · β)βi

(Tm)i = (Tm′)i + γβkD
(2)
ki +

γ − 1

β2
(Tm′ · β)βi

· · · · · · · · · · · ·
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